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Abstract— In this paper, sufficient conditions for the existence
of Zeno behavior in a class of hybrid systems are given;
these are the first sufficient conditions on Zeno of which the
authors are aware for hybrid systems with nontrivial dynamics.
This is achieved by considering a class of hybrid systems
termed diagonal first quadrant (DFQ) hybrid systems. When
the underlying graph of a DFQ hybrid system has a cycle,
we can construct an infinite execution for this system when the
vector fields on each domain satisfy certain assumptions. To this
execution, we can associate a single discrete time dynamical
system that describes its continuous evolution. Therefore, we
reduce the study of executions of DFQ hybrid systems to the
study of a single discrete time dynamical system. We obtain
sufficient conditions for the existence of Zeno by determining
when this discrete time dynamical system is exponentially
stable.

I. INTRODUCTION

Zeno behavior is a phenomenon in hybrid systems that
is of special interest; it exists when an infinite number
of discrete transitions occur in a finite time interval. Zeno
behavior has seemed to be impervious to analysis. This is
a byproduct of the fact that to determine whether Zeno
behavior exists in a hybrid system, the vector fields on each
domain must be solved for explicitly. Since this is generally
not possible, finding sufficient conditions on the existence of
Zeno has remained an open problem in the hybrid systems
community, at least in the case when the vector fields on
each domain are nontrivial, i.e, when they are not constant
vector fields.

In this paper, we provide sufficient conditions on the
existence of Zeno for a class of hybrid systems, termed diag-
onal first quadrant (DFQ) hybrid systems. The distinguishing
factor for DFQ hybrid systems is that on each domain the
vector fields are given by diagonal affine hybrid systems (cf.
Section II). This allows us to explicitly solve for the solutions
of these vector fields. Using this, conditions can be derived
on the existence of an event (cf. Section III), i.e., a discrete
transition. We then can derive conditions on when there exists
an infinite execution for a DFQ hybrid system, and we can
exploit this condition to construct a nonlinear discrete time
map that describes the discrete evolution of this execution in
space. The study of DFQ hybrid systems is thus reduced to
the study of a single discrete time dynamical system (cf.
Section IV). Linearizing this map, we are able to obtain
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conditions on when this map is exponentially stable about
the origin; these are exactly the conditions that imply the
existence of Zeno behavior in the DFQ hybrid system (cf.
Section V). Moreover, these conditions are easily verifiable.

Zeno behavior has been well-studied in hybrid systems
(see [1]-[5],[7] to name a few). In the literature, the condi-
tions that have been obtained to date have been necessary
(cf. [2]-[4],[7]); these are generally based on the “geometry”
of the hybrid system, i.e., the spacial configuration of the
guards and the reset maps. There have been some sufficient
conditions for the existence of Zeno for certain classes of
hybrid systems with trivial vector fields on each domain
and with control inputs (cf. [4]). Unfortunately, these do not
seem generalizable to the case when no control is present.
Therefore, the results obtained in this paper are the first
of which the authors are aware for hybrid systems with
nontrivial dynamics.

II. DIAGONAL FIRST QUADRANT (DFQ) HYBRID

SYSTEMS

First quadrant hybrid systems are a special class of hybrid
systems whose domains, guards and reset maps are in special
configurations. This class of hybrid systems is actually quite
general in that it is possible to transform a large class of
hybrid systems into first quadrant hybrid systems. Diagonal
first quadrant hybrid systems are a special class of first
quadrant hybrid systems that have diagonal affine vector
fields on each domain. In this paper, this is the class of
hybrid systems that we will consider. The main impetus for
this is that these hybrid systems have sufficiently interesting
dynamics, in that they are not trivial, while they are amenable
to analysis. In this section, we discuss DFQ hybrid systems
and Zeno behavior.

Definition 1: A first quadrant hybrid system (FQ hybrid
system) is a tuple

HFQ = (Q, E, D, G, R, F ),

where

• Q = {q1, . . . , qm} is a set of discrete states.
• E ⊆ Q × Q is a set of edges. The source and target

of an edge e = (qi, qj) are denoted by s(e) = qi and
t(e) = qj , respectively.
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• D = {Dq}q∈Q is a set of domains of the form1

Dq = {x ∈ R
n : x1 ≥ 0 and x2 ≥ 0}

for every q ∈ Q.
• G = {Ge}e∈E is a set of guards of the form

Ge = {x ∈ R
n : x1 = 0 and x2 ≥ 0}

for every e ∈ E.
• R = {Re}e∈E is a set of reset maps such that

Re(x) = Re(x1, x2, . . . , xn) = (x2, x1, x3, . . . , xn)T

for every e ∈ E.
• F = {fq(x)}q∈Q is a set of vector fields, Lipschitz on

R
n. The solution to the ODE ẋ = fq(x) with initial

condition x0 is denoted by ϕq(t, x0).
The graph Γ = (Q, E) is called the underlying graph of the
FQ hybrid system.

2.1: An (infinite forward)2 execution of a hybrid system
is given by a tuple

χ = (ρ, τ, ξ),

where

• ρ : N → Q is a discrete evolution map.
• τ = {τi}i∈N such that 0 = τ0 ≤ τ1 ≤ · · · ≤ τi ≤ · · · is

a set of event (or switching) times.
• ξ = {ξi}i∈N is a set of initial conditions with ξi ∈ Dq

for some q ∈ Q.

An execution χ must satisfy the conditions

(i) ϕ1
ρ(i)(τi+1 − τi, ξi) = 0,

(ii) ϕ2
ρ(i)(t − τi, ξi) ≥ 0 ∀ t ∈ [τi, τi+1],

(iii) ξi+1 = R(ρ(i),ρ(i+1))(ϕρ(i)(τi+1 − τi, ξi)),
(iv) (ρ(i), ρ(i + 1)) ∈ E,

for all i ∈ N. The first of these conditions says that an event
must occur at time τi+1, the second says that the flow must
stay in the domain Dρ(i) for all time in [τi, τi+1], the third
says that the initial conditions must be in the image of the
guards under the reset maps, and the fourth condition says
that discrete evolution map must evolve in a way that is
consistent with the edges.

Definition 2: An execution χ is Zeno if

lim
i→∞

τi =
∞∑

i=0

(τi+1 − τi)

converges. A FQ hybrid system is Zeno if it admits a Zeno
execution, i.e., if there exists an execution χ that is Zeno.

1The special form of these domains is the motivation for the term “first
quadrant”.

2We will be interested only in infinite executions because these are the
executions that can result in Zeno behavior. For a more general definition
of an execution, see [7].

2.2: The definition of a Zeno execution results in two
qualitatively different types of Zeno behavior (cf. [3]). They
are defined as follows: for an execution χ that is Zeno, χ is

Chattering Zeno: If there exists a finite C such
that τi+1 − τi = 0 for all i ≥ C.

Genuinely Zeno: If τi+1 − τi > 0 for all i ∈ N.

The difference between these is especially prevalent in their
detection and elimination. Chattering Zeno executions result
from the existence of a switching surface in which the vector
fields “oppose” each other; for this reason they are easy to
detect. Filippov solutions can be defined on these surfaces in
order to force the flow to “slide” along the switching surface.

Genuinely Zeno executions are much more complicated
in their behavior. There currently is no way to detect the
existence of genuinely Zeno executions, and very little has
been done in the area of eliminating these executions be-
cause genuinely Zeno executions are fundamentally global
in nature, which prevents the use of local techniques in their
analysis.

Definition 3: A diagonal first quadrant hybrid system
(DFQ hybrid system) is a FQ hybrid system

HDFQ = (Q, E, D, G, R, F )

such that

• F = {Λqx + aq}q∈Q is a set of diagonal affine linear
systems, i.e., aq ∈ R

n and Λq ∈ R
n×n is a diagonal

matrix for every q ∈ Q.

We denote Λi,i
q by λi

q and refer to it as the ith eigenvalue.

Note that for a DFQ hybrid system, the flow is given by

ϕq(t, x0) = (exp(Λqt) − 1)Λ−1aq + exp(Λqt)x0

which is well defined even if Λq has zero eigenvalues; in
the case when Λq = 0, this expression becomes ϕq(t, x0) =
taq + x0, or this is the flow of the constant system ẋ = a.

III. EVENT DETECTION

Discrete transitions in a hybrid system occur when there
is an event—that is when the flow hits the guard. In this
section we determine when an event exists for some domain
and initial condition of a DFQ hybrid system, and we
explicitly solve for the time in which this event occurs. These
conditions are important because when they are satisfied, it
is possible to construct an infinite execution.

3.1: For some x0 ∈ Dq, we say that there exists an event
for this initial condition if there exists a finite ∆t(x0) > 0
such that

(i) ϕ1
q(∆t(x0), x0) = 0

(ii) ϕ2
q(t, x0) ≥ 0 ∀ t ∈ [0, ∆t(x0)].

In the case of DFQ hybrid systems, we give conditions on
when events exist. The first two components of the flow of
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ẋ = Λqx + aq are given by

ϕ1
q(t, x0) =

(exp(λ1
qt) − 1)
λ1

q

a1
q + exp(λ1

qt)x
1
0.

ϕ2
q(t, x0) =

(exp(λ2
qt) − 1)
λ2

q

a2
q + exp(λ2

qt)x
2
0.

There exists an event if

∆tq(x1
0) =

1
λ1

q

log

(
a1

q

a1
q + λ1

qx
1
0

)

is finite and positive (possible zero) and

(exp(λ2
qt) − 1)
λ2

q

a2
q + exp(λ2

qt)x
2
0 ≥ 0 ∀ t ∈ [0, ∆t(x0)].

We can make these conditions more explicit by considering
initial conditions in a ball of radius δ > 0 around the origin:

Bδ(0) = {x ∈ R
n : ‖x‖ < δ}.

We have the following Proposition.

Proposition 1: For some δ > 0, there exists an event for
x0 ∈ Bδ(0) ∩ Dq if

a1
q < 0 and a2

q ≥ 0.

Proof: Proving this proposition amounts to first con-
sidering the inequality

1
λ1

q

log

(
a1

q

a1
q + λ1

qx
1
0

)
≥ 0

and deriving conditions on a1
q and λ1

q such that it holds for
0 ≤ x1

0 < δ for some δ > 0. It turns out that these conditions
are independent of λ1

q , i.e., we only require that a1
q < 0. Note

that λ1
q does affect δ. Specifically, if λ1

q ≤ 0, then δ = ∞,
while if λ1

q > 0,

δ =
−a1

q

λ1
q

.

In other words, it will be seen that the eigenvalues affect the
radius of convergence of a Zeno point, but not its stability.

The second step in showing this lemma is to understand
what the conditions are on a1

q and λ1
q such that

(exp(λ2
qt) − 1)
λ2

q

a2
q + exp(λ2

qt)x
2
0 ≥ 0

for t ∈ [0, ∆t(x0)]. It easily can be seen that this holds as
long as a2

q ≥ 0, regardless of the values of x2
0 and λ2

q .

Corollary 1: There exists an event for all x0 ∈ Dq if

λ1
q ≤ 0 and a1

q < 0 and a2
q ≥ 0.

Example 1: Consider the diagonal system given by

ẋ =
(

c 0
0 −c

)
x +

( −4
4

)
.

Fig. 1. The phase space of the diagonal system given in Example 1 for
c = 1 (left) and c = −1 (right).

In the case when c = 1, an event exists if x1
0 < 4, and

otherwise one does not exist. If c = −1 then an event always
exists.

IV. DISCRETE NONLINEAR SYSTEMS FROM DFQ
HYBRID SYSTEMS

Using the conditions obtained in the previous section, we
are able to construct an infinite execution for a DFQ hybrid
system satisfying these conditions. From this execution,
we can define a set of discrete time maps—analogous to
Poincaré maps—defining the evolution of the sequence of
initial conditions of this execution. Thus, studying discrete
evolution in space is equivalent to studying a set of discrete
time dynamical systems. Later, we will study one of these
discrete time dynamical systems, termed the discrete time
dynamical system associated to a DFQ hybrid system, and
show that its behavior in some way dictates the behavior
of the other discrete time dynamical systems. Thus, we will
demonstrate that studying the behavior a hybrid system is
equivalent to studying a discrete time dynamical system.

4.1: A directed graph Γ = (Q, E) has a directed cycle
or directed loop if a directed subgraph Γ� = (Q�, E�) ⊆ Γ
exists, i.e.,

Q� = {q�
0, . . . , q

�
K} ⊆ Q

E� = {e�
1, . . . , e

�
K} ⊆ E

such that

t(e�
K) = s(e�

1) = q�
0, t(e�

i) = s(e�
i+1) = q�

i

for i ∈ {1, . . . , K − 1}. The importance of cycles is that, if
Γ is the underlying graph of the hybrid system HFQ, then
for this hybrid system to be Zeno it must have a directed
cycle. For this reason, since we are interested in deriving
sufficient conditions for the existence of Zeno behavior, we
will assume that HDFQ has a cycle (otherwise it could not be
Zeno [3]). Let Γ� be a directed cycle of the underlying graph
of the DFQ hybrid system HDFQ. We make the following
assumption:

Assumption 1: For the cycle Γ� of the DFQ hybrid
system HDFQ, assume that for every q� ∈ Q�, Λq�x + aq�

satisfies the conditions:

λ1
q� ≤ 0 and a1

q� < 0 < a2
q� .
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4.2: If the above assumption holds, we can construct an
infinite execution of HDFQ for the cycle Γ�. This execution
is given by

χ = (ρ, τ, ξ),

where ρ : N → Q� is defined to be

ρ(i) = q�
i (modK+1).

The set of event times and the set of initial conditions are
given by τ = {τi}i∈N and ξ = {ξi}i∈N where: ξ0 ∈ Dq�

0

with ξ2
0 = 0 and

τi+1 = ∆tρ(i)(ξ1
i ) + τi

ξi+1 = R(ρ(i),ρ(i+1))

(
ϕρ(i)(∆tρ(i)(ξ1

i ), ξi)
)
.

Note that here R(ρ(i+1),ρ(i)) is the reset map which is given
by switching the first and second coordinates, and

ϕρ(i)(∆tρ(i)(ξ1
i ), ξi) =

(exp(Λρ(i)∆tρ(i)(ξ1
i )) − 1)Λ−1aρ(i)

+ exp(Λρ(i)∆tρ(i)(ξ1
i ))ξi.

Note also that this execution is well-defined for all i ∈ N

because of the results of the previous section.

From the execution given in the previous paragraph, we
would like to construct a single nonlinear discrete map;
this map will be used to derive sufficient conditions on the
existence of Zeno. In order to construct this map, consider
the first component of the sequence of initial conditions ξ:
ξ1 = {ξ1

i }i∈N. This is done by first defining a map that
computes this sequence independently of τ ; the next step is
to define a map that computes this sequence independently
of both τ and ρ. The end result is a single map that gives
the first component of the sequence of initial conditions so
that we can study the behavior of this sequence by studying
the behavior of this map.

4.3: Define the following function: for q� ∈ Q� let Φq� :
R

+
0 → R

+
0 (here R

+
0 = {x ∈ R : x ≥ 0}) given by

Φq�(x) =

1
λ2

q

(
exp

(
λ2

q�

λ1
q�

log

(
a1

q�

a1
q� + λ1

q�x

))
− 1

)
a2

q� .

Note that this function is well-defined because of Assumption
1. This function also has some important properties. First
note that it is a diffeomorphism, where both Φq� and its
inverse satisfy the properties:

Φq�(0) = 0 Φ−1
q� (0) = 0

Φ′
q�(0) = −

a2
q�

a1
q�

(Φ−1
q� )′(0) = −

a1
q�

a2
q�

This function is important because it gives the elements in
the sequence ξ1 inductively, i.e.,

ξ1
i+1 =

(
R(ρ(i),ρ(i+1))

(
ϕρ(i)(∆tρ(i)(ξ1

i ), ξi)
))1

= ϕ2
ρ(i)(∆tρ(i)(ξ1

i ), ξi)

= Φρ(i)(ξ1
i ).

So we have reduced the dependence of the sequence of the
first component of the initial conditions on τ (or the event
times).

4.4: The next step in defining a single nonlinear discrete
map from this execution is to eliminate ρ from a subsequence
of the sequence ξ1 that has the same limiting behavior as the
original sequence. To do this, define the map Ψ : R

+
0 → R

+
0

by

Ψ(x) = Φq�
K
◦ Φq�

K−1
◦ · · · ◦ Φq�

0
. (1)

Note that this map has the following important properties:

Ψ(0) = 0, Ψ′(0) =

(
K∏

i=0

−
a2

q�
i

a1
q�

i

)
.

It also can be verified that

ξ1
(K+1)i+K+1 = Φρ((K+1)i+K)(ξ1

(K+1)i+K)
= Φρ((K+1)i+K) ◦ Φρ((K+1)i+K−1) ◦

· · · ◦ Φρ((K+1)i)(ξ1
(K+1)i)

= Φq�
K
◦ Φq�

K−1
◦ · · · ◦ Φq�

0
(ξ1

(K+1)i)

= Ψ(ξ1
(K+1)i)

since ρ(i) = q�
i (modK+1). Therefore, define the following

subsequence

z = {zi}n∈N := {ξ1
(K+1)i}i∈N

of this sequence ξ1. This subsequence is important because,
as we have just shown, it is a discrete time dynamical system:
zi+1 = Ψ(zi). It is also important because when it converges
to the origin, so does the sequence ξ1. This can be seen in the
following lemma, which will be important for establishing
results in the subsequent sections.

4.5: The final step in deriving a single map that describes
the sequence ξ1 is to show that every element of ξ1 can
be expressed in terms of the map Ψ (composed with other
maps); this fact will be essential in establishing the main
result of this paper. Define the following subsequences of
the sequence ξ1,

η(J) = {η(J)i}i∈N := {ξ1
(K+1)i+J}i∈N,

for J ∈ {0, . . . , K}. Note in particular z = η(0), and it is
clear that

ξ1 =
K⋃

J=0

η(J).

Now we can relate each sequence η(J) to the sequence z
by defining the maps ΥJ : R

+
0 → R

+
0 , for J ∈ {0, . . . , K},

given by

ΥJ = Φq�
J−1

◦ · · · ◦ Φq�
0
◦ Φq�

K
◦ Φq�

K−1
◦ · · · ◦ Φq�

J
,

= Φq�
J−1

◦ · · · ◦ Φq�
0
◦ Ψ ◦ Φ−1

q�
0
◦ · · · ◦ Φ−1

q�
J−1

.
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In other words, they are related to each other and Ψ by
conjugation:

Υ0 = Ψ, ΥJ+1 = Φq�
J
◦ ΥJ ◦ Φ−1

q�
J

.

These maps are important because they describe the se-
quences η(J), i.e., it easily can be verified that

η(J)i+1 = ΥJ(η(J)i).

The maps ΥJ also have the following important properties:

ΥJ(0) = Ψ(0) = 0

Υ′
J(0) = Ψ′(0) =

(
K∏

i=0

−
a2

q�
i

a1
q�

i

)
.

All of the aforementioned properties can be summarized by
noting that we have the following lemma.

Lemma 1: If

lim
i→∞

zi = 0 ⇒ lim
i→∞

η(J)i = 0,

for all J ∈ {0, . . . , K}.

Proof: We will reason by induction on J . For the case
when J = 0, by assumption:

lim
i→∞

η(0)i = lim
i→∞

zi = 0.

Now assume that limi→∞ η(J − 1)i = 0, and note that

η(J)i = ξ1
(K+1)i+J

= ΦJ−1(ξ1
(K+1)i+J−1)

= ΦJ−1(η(J − 1)i)

Therefore,

lim
i→∞

η(J)i = lim
i→∞

ΦJ−1(η(J − 1)i) = ΦJ−1(0) = 0.

This lemma indicates that in studying the behavior of the
hybrid system HDFQ, one can study the behavior of the
sequence z = {zi}i∈N. Moreover, analyzing the behavior
of this sequence is more manageable since it is determined
by a discrete time system. We thus can apply the analysis
of discrete time systems theory to hybrid systems. This
motivates the following definition.

Definition 4: The discrete time dynamical system associ-
ated to the diagonal hybrid system HDFQ and the cycle Γ�

is given by.

zi+1 = Ψ(zi),

where Ψ : R
+
0 → R

+
0 as defined in (1).

4.6: Note that the discrete time system given by zi+1 =
Ψ(zi) has an isolated equilibrium point at the origin Ψ(0) =
0. It also is interesting to note that this system is linear in

the case when λ1
q� = λ2

q� = 0. To see this, note that in this
case we have the discrete time linear system

zi+1 = Ψ(zi) =

(
K∏

i=0

−
a2

q�
i

a1
q�

i

)
zi.

The startling fact is that the stability of the map Ψ in
the general case will be directly related to the stability
of this linear system. In the next section, we will derive
results relating the properties of this function, specifically its
stability, to Zeno behavior.

V. SUFFICIENT CONDITIONS FOR THE EXISTENCE OF

ZENO BEHAVIOR

Studying the discrete time dynamical system associated to
a dynamical system, we are able to obtain easily verifiable
conditions on the existence of Zeno behavior in DFQ hybrid
systems. This is the main result of this paper.

5.1: Recall that a discrete dynamical system, zi+1 =
Ψ(zi), is exponentially stable at the origin if there exist
constants c > 0 and 0 ≤ α < 1 such that

|zi| ≤ cαi|z0|.
We can derive conditions on when the discrete dynamical
system associated to a DFQ hybrid system and cycle is
stable—at least when the cycle satisfies Assumption 1.

Theorem 1: Let HDFQ be a DFQ hybrid system and Γ�

be a cycle of the underlying graph Γ of this hybrid system
satisfying Assumption 1. Then the discrete dynamical system

zi+1 = Ψ(zi)

associated to HDFQ and Γ� is exponentially stable at the
origin if ∣∣∣∣∣

K∏
i=0

a2
q�

i

a1
q�

i

∣∣∣∣∣ < 1.

Here q�
i ∈ Q� and K = |Q�| − 1.

Proof: The result follows from the Hartman-Grobman
theorem (cf. [6]) after suitably extending the map Ψ to the
entire real numbers.

Theorem 2: Let HDFQ be a DFQ hybrid system and Γ�

be a cycle of the underlying graph Γ of this hybrid system.
Then if Λq�x + aq� , q� ∈ Q�, satisfies the conditions:

λ1
q� ≤ 0

a1
q� < 0 < a2

q�

∣∣∣∣∏K
i=0

a2
q�
i

a1
q�
i

∣∣∣∣ < 1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⇒ HDFQ is Zeno.
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Proof: Let χ = (ρ, τ, ξ) be the execution constructed
in Paragraph 4.2. The goal is to show that the series

∞∑
i=0

(τi+1 − τi)

converges. To do this, we will consider subsequences of the
sequence {τi+1 − τi}i∈N. Namely, recall from the definition
of the execution and the sequences η(J) that

∞∑
i=0

(τi+1 − τi) =
∞∑

i=0

∆tρ(i)(ξ1
i )

=
∞∑

i=0

K∑
J=0

∆tρ((K+1)i+J)(ξ1
i )

=
K∑

J=0

∞∑
i=0

∆tqJ
(η(J)i).

Therefore, we need show only that
∑∞

i=0 ∆tqJ
(η(J)i) con-

verges for each J . First, it can be seen that

∆tqJ
(0) = 0, ∆t′qJ

(0) =
−1
a1

q�
J

.

Now our assumptions imply that the sequence z = {z}i∈N

is exponentially stable to the origin, i.e., for all J ∈
{0, . . . , K},

lim
i→∞

zi = 0 ⇒ lim
i→∞

η(J)i = 0,

by Lemma 1. Applying the ratio test for each J , we have

lim
i→∞

∣∣∣∣∆tqJ
(η(J)i+1)

∆tqJ
(η(J)i)

∣∣∣∣ = lim
i→∞

∣∣∣∣∆tqJ
(ΥJ(η(J)i))

∆tqJ
(η(J)i)

∣∣∣∣
= lim

x→0

∣∣∣∣∆tqJ
(ΥJ(x))

∆tqJ
(x)

∣∣∣∣
= lim

x→0

∣∣∣∣∆t′qJ
(x)Υ′

J(x)
∆t′qJ

(x)

∣∣∣∣
=

∣∣∣∣∆t′qJ
(0)

∆t′qJ
(0)

Υ′
J(0)

∣∣∣∣
=

∣∣∣∣∣
K∏

i=0

−
a2

q�
i

a1
q�

i

∣∣∣∣∣ < 1.

Or
∑∞

i=0 ∆tqJ
(η(J)i) converges for each J and hence∑∞

i=0(τi+1 − τi), so HDFQ is Zeno.

Example 2: The two water tanks hybrid system is a clas-
sic example of a hybrid system that displays Zeno behavior
(see Figure 2 for a simulated trajectory of this system).
We will demonstrate how the conditions above allow us
to verify that this hybrid system is Zeno without explicitly
solving for the vector fields. First, we introduce the two water
tanks hybrid system as a DFQ hybrid system3 given by the
following data: Its underlying graph Γ = (Q = {1, 2}, E =
{e1 = (1, 2), e2 = (2, 1)}, and its domains, guards and reset

3The two water tanks hybrid system, viewed as a DFQ hybrid system, is
easily obtainable from the classical definition [1] by “flipping” the dynamics
on one of the domains.
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Fig. 2. A simulated trajectory of the two tank system given in Example 2.

maps are in the form given in Definition 1. Therefore, to
complete the description of this system, we need only specify
the vector fields on each domain. These are given by:

f1(x) =
( −v2

w − v1

)
f2(x) =

( −v1

w − v2

)
.

Here, w > 0 is the inflow of water into the system, and
v1 > 0 and v2 > 0 are the outflows of water from each tank.
The goal is to verify that, for this system, the water levels
of each tank stay above l1 and l2, respectively. To make this
problem more interesting, we assume that

max{v1, v2} < w < v1 + v2.

That is, we assume that the inflow is greater than the outflow
of each tank, and that the total outflow of the system is
greater than the total inflow. Under these conditions, we
would like to verify that this hybrid system is Zeno.

Since this system consists of a single cycle, we need only
examine the discrete dynamical system associated with this
cycle. Therefore, we can apply Theorem 2 to this system.
Namely, the system is Zeno because: λ1

1 = λ2
1 = 0,

−v2,−v1 < 0, w − v1, w − v2 > 0, and

(w − v1)(w − v2)
v1v2

<
((v1 + v2) − v1)((v1 + v2) − v2)

v1v2
= 1

because w < v1 + v2.
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