
 

Abstract—In this paper, a new technique for designing 
iterative learning controllers has been proposed. The control 
update law is based on the minimization of a quadratic cost 
function. The control input update law is time varying. It is 
shown that the proposed controller has monotonic super-linear 
convergence. A systematic robustness and performance analysis 
has been presented to evaluate the effectiveness of the 
controller. The effect of different design parameters on the 
closed loop system performance, robustness, learning rate is 
investigated. The relationship between three critical indices for 
evaluation of ILC’s – performance, rate of learning and 
robustness – has been studied and inferences drawn about the 
trade-offs. Numerical simulations verify the results.  

I. INTRODUCTION

TERATIVE  Learning Control has been extensively used 
in control of systems that are repetitive. When a process is 

repeatedly executed, it is natural to use information obtained 
from previous trials about the process to improve 
performance in the current trial. It is akin to the human 
“learning” pattern, hence the name Iterative Learning 
Control (ILC). The first paper on ILC was published by 
Uchiyama [1]. It was followed by similar work by Arimoto 
et al [2], Bartolini et al [3] and Craig [4], among others. 
Since then, several research efforts have been directed at 
design of more efficient learning algorithms [12][13][14]. In 
the industrial scenario, numerous applications of ILC have 
been explored, especially in robotics [3][12] and, of-late, in 
semi-conductor manufacturing [9][19]. Many books and in-
depth reviews have also been published on ILC research 
[17][18].

 Several design techniques have been proposed for ILC 
based controllers. One of the most effective design 
techniques for learning filters is based on optimality criteria. 
Yamakita et al [16] used a steepest descent method to 
minimize the L2 norm of the tracking error. Phan et al [10] 
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used the term Linear Quadratic Optimal Learning Control 
(LQL) to describe the ILC counterpart of optimal linear 
quadratic regulator (LQR) problems in standard control 
system design, and used Riccati equations to design the 
learning filters. Amann et al [6][7][8] proposed an ILC 
design strategy based on optimization of a quadratic 
performance index.   

For analysis of the performance of ILC controllers, a lifted 
formulation of the closed loop system was first developed by 
Phan et al [20].  It provides a powerful tool for systematic 
analysis of learning controllers. A synthesis tool for learning 
controllers based on the lifted ILC formulation was proposed 
by Bosgra et al [21]. Recently, Feng et al [11] have 
suggested the use of a parameter optimal iterative learning 
controller. 

One of the key issues in learning control is the “rate of 
learning”. The rate of learning is a direct consequence of the 
rate of convergence of the output to the steady state output. 
Using the lifted ILC formulation, it is possible to get 
expressions for bounds on the rate of convergence of the 
learning algorithm. Although several interesting 
optimization-based learning controllers have been 
implemented and analyzed, the convergence guaranteed is at 
best linear [5][10]. There is, therefore, strong motivation for 
designing learning controllers with better learning behavior, 
i.e., with faster rates of convergence. 

In this paper, we propose a new convergent iterative 
learning controller based on the optimization of a different 
quadratic cost function. We exploit the structure of the 
optimization problem to obtain time varying learning filters. 
The solution of the optimization problem yields a recursive 
relation between the learning filters from one cycle to the 
next.  Further, we prove that the rate of convergence is faster 
than the standard quadratic learning controller. The notion of 
super-linear convergence is introduced. However, the 
controller designed by naively optimizing the cost function 
has poor robustness. To improve robustness while retaining 
super-linear convergence, the control update law mentioned 
above is modified slightly. A comparison of the performance 
of different optimization based ILC’s highlights the three-
way trade-off between performance, robustness and rate of 
learning.

The paper has been organized as follows. Section II 
introduces some nomenclature. Section III poses the iterative 
learning controller design problem using a lifted ILC 
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formulation. In section IV, we examine and compare two 
quadratic optimal learning controllers based on different 
optimization of different cost functions and derive 
expressions for convergence rates, and steady state errors. In 
section V, the robustness of the proposed controllers has 
been analyzed. Section VI proposes a scheme based on the 
modified Quadratic Iterative Learning Control scheme with 
better robustness. Finally simulation results are shown in 
section VII. To conclude, the effectiveness of the proposed 
controller is evaluated and a discussion of tradeoffs involved 
in quadratic cost optimal ILC filter design is presented in 
section VIII. 

II. NOMENCLATURE

Tu – Lifted Plant Matrix  
g(i) – ith Markov Parameter (Impulse Response Coefficient) 
N – Period of the Repetitive Process
(•)k(j) – (•)(kN+j)
uk – Lifted Input Vector at the kth cycle 
r – Lifted Reference Vector  
yk – Lifted Plant Output Vector at the kth cycle
ek – Lifted Output Error Vector at the kth cycle
||•||− Standard 2-norm on ℜ N , or induced 2-norm on ℜ NxN

ρ(•) – Spectral Radius of the Matrix •
σ(•) – Largest Singular Value of the Matrix •

III. PROBLEM FORMULATION

Lifted Formulation of Quadratic Iterative Learning 
Control Problem (Q-ILC) 

In this paper, we will consider the application of learning 
controllers to stable single input single output (SISO) 
systems in discrete time. The plant dynamics can then be 
described by:  ruy rkuk TT +=             
     (1) 

where, 
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Without loss of generality, we can assume Tr= 0, and, if the 
plant is LTI, 
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Remark (1): It is interesting to note that the lifted ILC 
formulation implicitly assumes that the initial condition at 
the beginning of each cycle is zero. If the initial rest 
condition is violated, then the plant model assumed is only 
an approximation of the actual plant. 

The ILC problem considered here is a first order ILC 
design problem, which uses an update law of the form: 

)(1 kkk LQ euu +=+             (4) 
where the bold face letters represent the lifted super-vectors. 
We use the error and the control inputs in the previous cycle 
to compute an updated control input for the current cycle.  
This has been shown in a block diagram in Fig. 1.  

Fig. 1.  Block Diagram of the Closed Loop System with the ILC. 
Note the internal model Z-1 in the controller. 

It can be shown easily that [5] with the update law satisfying 
eq. (4), the closed loop system is stable iff  

.1))(( <− uLTIQρ  Further, monotonic exponential 
convergence is guaranteed if  ( ) 1)( <=− λσ uLTIQ ,     
           (5) 
and the rate of convergence is governed by the following 
equation: 0uuuu −≤− ∞∞

k
k λ           (6) 

From eq. (6), with time invariant Q, and L, at best linear 
exponential convergence is guaranteed, if eq. (5) is satisfied.  
It is, however, important to notice that the final steady state 
input u∞ need not result in perfect tracking. The final steady 
state value of the input vector is a key indicator for the 
evaluation of performance of the learning controller, since it 
is related directly to the steady state tracking error.  

The Quadratic ILC problem can then be stated as:   

Given a reference trajectory r, and a quadratic cost function 
Jk for a cycle, the objective is to design the learning matrices 
Q, L such that the cost function Jk is minimized, i.e.,  

}{minarg 11 ++ = kk Ju

where  )(1 kkk LQ euu +=+          (QILC) 

IV. THE QUADRATIC OPTIMAL LEARNING CONTROL 
PROBLEM

In this section, the solution of the Q-ILC problem for two 
specific cost functions is presented. The first problem was 
solved by Phan et al [10] and Amann et al [6]. This is the 
“standard” Q-ILC problem [5]. The second problem 
considers a modified Q-ILC using a cleverly designed cost 
function.  

A. Solution of the “Standard” Q-ILC Problem  
Consider the problem (QILC) with the following cost 

function:

ky
Tu

Q*L 

Z-1 

Q
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To obtain the control update law that minimizes this cost 

function, we find, 
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Remark (A1):  It is interesting to observe that the matrices 
Q L remain the same from cycle to cycle. The advantage of 
this scheme is that the matrices Q and L are pre-computable 
offline. 
Lemma IV.A.1: The closed loop system using the Q-ILC 
controller designed above is stable. 
Proof: To check for stability of the closed loop system, using 
eq. (5),
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Since We ,Wu > 0,  β < 1. Therefore the closed loop system is 
stable.                     
Lemma IV.A.2: The convergence rate of the Q-ILC is given 
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Remark (A2): From Lemmas IV.A.1-2, we get better 
stability and faster convergence rates if we have β <<1. This 
can be achieved by making Wu and We “larger”, i.e., if 

0)(),( >>eu WW σσ .
Remark (A3): It is also important to observe that the rate of 
convergence is linear exponential. In other words, the 
exponent of the contraction factor β is linear in ‘k’. 

We now propose a lemma to evaluate the performance of 
the controller in terms of the steady state tracking error e∞∞∞∞.
Lemma IV.A.3: The final steady state error e∞∞∞∞ is given by 
the expression  
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Remark (A4): It is clear from eq. (11) that for ensuring 
small steady state error, we must choose Wu as “small” as 
possible! Therefore, there is a tradeoff involved in choosing 
tracking performance vs. rate of learning. 

B.  Solution of a “Modified” Q-ILC Problem  
In the previous section, the cost function Jk+1 (eq.(7)) 
penalizes the current cycle error, the current cycle control 
effort, and finally, the rate of change of input from cycle to 
cycle. Instead of penalizing the input from cycle to cycle, it 
is more intuitively consistent to penalize the rate of change 
of the ‘predicted input’. Further, we have assumed Q and L
to be time invariant matrices.  In this analysis, we will not 
restrict ourselves to choosing Q and L as time invariant 
matrices. So, the control update law from cycle to cycle is: 

)( 111 kkkkk LQ euu +++ +=  ,            (12) 
and, the “predicted control input” for the k+1st cycle is 
defined as: )(ˆ 1 kkkkk LQ euu +=+ ,        (13) 
Consider the problem (QILC) with the new cost function 
defined by: 
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                      (14) 
As before, to obtain the control update law that minimizes 
the cost function Jk+1′, we get the following recursions 
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Remark (B1): From the recursion equations involving Qk+1

and Lk+1, it is clear that they are time varying and 
computationally intensive to implement. However, we can 
pre-compute these matrices offline and store them before an 
experiment is run. 
Lemma IV.B.1: The closed loop system using the modified 
Q-ILC controller designed above is stable if Q0= I, L0= 0. 
Proof: The time varying system is stable if  

iTLIQ uii ∀<− 1))((ρ            
 (16) 

Using eq. (15),  
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Therefore, iTLIQ uii ∀<− 1))((ρ , and the closed loop time 

varying system is stable.              
 The recursions are convergent if 
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Remark (B2): The steady state matrices Qss and Lss are in 
fact, the solution to the Q-ILC problem using the cost 
function 11111 +++++ += ku

T
kke

T
kk WWJ uuee      (19) 

that is, a cost function without any penalty on the rate of 
change of the control input from one cycle to another. It can 
also be shown that assuming that there is no model 
uncertainty, this controller converges to the steady state in 
just one cycle. 

Lemma IV.B.2: The convergence rate of the control input 
the modified Q-ILC scheme is given by:  
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Remark (B3): Eq. (20) shows that the rate of convergence 
of the control input to the steady state value is much faster 
than the exponential linear convergence obtained by using 
standard QILC discussed in section IV A, since, the error 

converges monotonically as 
2kβ -- superlinear convergence.

Though the rate of convergence is increased by the 
modified Q-ILC scheme, the performance of the controller 
must also be evaluated in terms of the steady state tracking 
error e∞∞∞∞.
Lemma IV.B.3: The final steady state error e∞∞∞∞ is given by 
the expression  

re 11 )( −−
∞ += e

T
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Remark (B4): While the rate of convergence for the 
proposed modified Q-ILC is much faster, the steady state 
output tracking error is the same as that obtained from the 
standard QILC implementation! At first glance, it seems as if 
the proposed controller is more ‘effective’ as compared to 
the standard QILC scheme. However, so far we have not 
compared the robustness of the two controllers. 

V. ROBUSTNESS ANALYSIS OF THE Q-ILC SCHEMES  

In practical applications, the model of the plant Tu is not 
known exactly. So, it is important to examine performance of 
any control system assuming that the true plant and the 
nominal plant (or plant model) are different. The robustness 
of the controller to modeling error has to be considered 
before implementation. In this analysis, we will consider 
only additive plant uncertainty, i.e., ∆+= uu TT ˆ , where 

uT̂  is 

the nominal plant, ∆ is the model uncertainty. Such an 
uncertainty model also absorbs the case when we have 
nonzero initial conditions at the start of each cycle. We first 
design the learning controller based on the nominal model, 
and then determine the worst-case performance.  

A. Robustness Analysis of “Standard” Q-ILC 

The stability criteria is satisfied if .1))(( <− uLTIQρ  Using 
the nominal plant model in the controller,  
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We see that the rate of convergence slows down if there is 
model uncertainty in the plant. Further, if the uncertainty is 
large, the closed loop system might even become unstable. 
Another important observation is that the larger the penalty 
on the output tracking error, We, the larger the effect of the 
plant uncertainty on stability and convergence. The 
maximum change in the rate of convergence of the learning 
controller is 
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B. Robustness Analysis of the “Modified” Q-ILC 
Since the closed loop system is time varying in this case, for 
stability, we need iTLIQ uii ∀<− 1))((ρ . As in section 
V.A., we use the nominal plant model in the controller,  
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First we will consider the case when we let k→∞. The 
matrices Qss and Lss then determine the robustness of the 
learning algorithm. From eq. (18), using the nominal model 
in the controller,     
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Comparing eq. (21) and (22), we infer that the standard Q-
ILC problem is more robust than the modified Q-ILC 
scheme. Further, it is natural to argue that instead of 
implementing time varying Qk and Lk, we can just plug in the 
steady state solutions Qss and Lss. However, the robustness of 
this scheme is extremely poor.  

VI. AN ALTERNATIVE ITERATIVE LEARNING CONTROLLER 

From the discussion in sections IV and V, it is clear that 
there is a three-way tradeoff between robustness, 
performance and convergence (or learning) rate. In this 
section, we propose a controller based on the modified Q-
ILC scheme, which cleverly uses the super-linear 
convergence and is robust at the same time. One of the 
reasons for the poor robustness of the modified Q-ILC 
scheme is the fact that the learning filters are cautious in the 
beginning and get more aggressive as iterations are 
completed. Therefore, the steady state closed loop system is 
not robust to modeling error. We wish to have a learning 
controller that is aggressive in the beginning and cautious as 
it approaches steady state. Hence, we start from the solution 
of the modified Q-ILC scheme at the time ‘M’, and then 
evolve the matrices backwards in time, from iteration to 
iteration as: 

=
=

−
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kMk

kMk

LL

QQ   if  k < M   and   
=
=

0L

IQ
  if  k > M    (23) 

where, QM-k , LM-k are the solutions to the modified Q-ILC 
problem at the (M − k)th iteration. By using the Q-ILC 
solution backwards in time we ensure that we are aggressive 
in the beginning and slowly become cautious. Eventually, the 
learning is turned off  (after M iterations). Secondly, the 
super linear convergence rate is preserved, because we 
merely change the order in which the matrices are updated. 
Therefore, the control input error converges super-linearly 
for the first M iterations. Further, since the steady state 
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values of the learning matrices are fixed at I and 0
respectively, we also have good robustness. By the above 
choice of the learning law, we can assure fast convergence 
(super-linear convergence attained by the modified Q-ILC), 
while ensuring robustness.  The rate of convergence in this 
case is 2

)1(
2

))1(2( ++−
>>

kkkMk

ββ . Therefore, this scheme has 
much faster convergence initially than the modified Q-ILC 
scheme, and at k = M, the convergence rate is the same. In 
future, we will refer to this scheme as the backward Q-ILC 
scheme. 

VII. RESULTS  

For evaluating performance of the controllers discussed in 
sections IV and VI, we chose a model of a continuous time 
LTI system shown below: 

+++
++=
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148)( 23
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sG             (24)  

The reference trajectory was defined as shown in Fig. (2). 
The period of the trajectory was 0.4 seconds, and the 
sampling time was 0.008 seconds (N = 50).

 In the first set of simulations, the proposed modified Q-
ILC scheme was implemented on the same plant and 
reference trajectory as before. Figure (3) shows the plot of 
the tracking error when the steady state matrices Qss and Lss

given by eq. (18) are used in the control update law. The 
steady state error converges in just one cycle, with the final 
steady state error dependent on the ratio (Wu )-1We. In fig. (4) 
the performance of the controller under a small model 
perturbation is plotted. It is observed that this scheme has 
very poor robustness.  

The second set of simulations tests the performance, 
robustness and convergence of the backward Q-ILC scheme 
proposed in section VI. The design parameter M was chosen 
to be 8 in this case. For smaller steady state error, we can 
choose larger M. Figure (5) plots the tracking error for 
different values of the ratio (Wu )-1We assuming that there is 
no modeling uncertainty. As in the standard Q-ILC case, the 
steady state tracking error decreases on increasing the ratio. 
Figure (6) shows a plot of the robustness of the controller 
towards modeling uncertainty. The closed loop system is 
stable even for large uncertainties. Figure (7) shows a 
comparison of the nominal performance of the three 
proposed controllers under the same weights We and Wu. It is 
clear that under similar operating conditions, the rate of 
convergence of the backward Q-ILC scheme is much faster 
than the modified Q-ILC and the standard Q-ILC. The 
backward QILC scheme and the modified Q-ILC scheme 
have similar performance, and converge to almost the same 
error. The standard Q-ILC scheme has a much slower rate of 
convergence. Figure (8) shows that the backward Q-ILC has 
very good robustness and has faster convergence.  
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Fig. 2.  Reference Trajectory for simulations 
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Fig. 3.  Plot of tracking error when the steady state matrices Qssand
Lss are used in the ILC. Note that the convergence is in just one 
cycle for all choices of Wu. The steady state error is different. 
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Fig. 4.  Plot of tracking error (using the steady state solution to the 
modified Q-ILC problem) with modeling uncertainty || ∆ ||=0.3  
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Fig. 7.  Comparison of performance of the three controllers 
presented in this paper under nominal conditions (i.e., when the 

plant model is known exactly).  
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Fig. 8.  Comparison of the robustness of the three controllers 
discussed in the paper under similar modeling errors, same choices 

of the weighting matrices We and Wu.

VIII. SUMMARY AND CONCLUSION

In this paper, three design techniques based on optimization 
of quadratic cost indices for iterative learning controllers 
were presented. Each design technique was developed in 
detail, and the effects of the design parameters on the closed 
loop system were studied. We also specified three criteria for 
evaluating the effectiveness of the iterative learning 
controller – steady state tracking error (performance), 
convergence rate (or rate of learning) and robustness. On 
closer analysis of the controllers based on theoretical results, 
it was predicted that there is a three-way tradeoff between 
these three metrics. The controllers were numerically 
simulated on an example plant. Secondly, a new controller 
design strategy was suggested that used a modified Q-ILC 
scheme to generate a learning law that is aggressive in the 
beginning and settles into a conservative scheme after the 
initial learning process is over. This gives us better 
convergence properties initially, and then robustness in the 

steady state. The two-fold advantage is that we achieve both 
good robustness and very high (super-linear) rates of 
convergence. Simulation results agree with predicted 
behavior.  
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