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Timing Feedback Control of a Rhythmic System

Renaud Ronsse, Philippe Lefevre and Rodolphe Sepulchre

Abstract— This paper addresses the question relative to the
role of sensory feedback in rhythmic tasks. We study the
properties of a sinusoidally vibrating wedge-billiard as a model
for 2-D bounce juggling. If this wedge is actuated with an
harmonic sinusoidal input, it has been shown that some periodic
orbits are exponentially stable. This paper explores an intuitive
method to enlarge the parametric stability region of the simplest
of these orbits. Accurate processing of timing is proven to be an
important key to achieve frequency-locking in rhythmic tasks.

I. INTRODUCTION

How much sensory information is needed to perform a
rhythmic task and how is this information integrated to
periodically produce intermittent control actions ? This issue
reaches across a number of disciplines and seems relevant
not only to animal behavior modeling but also to rhythmic
robotics. But it has received limited attention in the control
community beyond the pioneering work of Koditschek and
coworkers, initially in juggling robotics [1], [2], [3] and more
recently in legged robotics [4].

The rhythmic task we consider in this paper is based
on a simplified juggling task. The planar wedge-billiard
we consider has been previously presented in [5], [6], [7].
This robotic device is viewed as an idealization of a human
juggler: the ball in a constant gravitational field undergoes
collisions with two edges, acting the juggler arms.

In [6] and [7], we emphasized how a simple sensorless
sinusoidal actuation of the edges could achieve exponential
stability of periodic orbits which mimics the popular shower
juggling pattern. This stability result can be interpreted as a
2-D generalization of the celebrated bouncing ball dynamics
[8], [9]. The sinusoidal actuation exploits the intermittent
nature of control to achieve stability of the impact times. The
juggled ball velocity is regulated by the decelerating motion
(at impact) of the edges. In the present paper, we enhance
this stabilizing mechanism based on a simple proportional
feedback, the output being an estimate of the timing of
the forthcoming impact. The proportional output feedback
(FB) loop enlarges the parametric stability region of the
feedforward (FF) sinusoidal actuation. The relative timing
between the controller and the controlled object, i.e. in this
case, the phase between the edges and the ball, is therefore
proved to be an important information to control the rhythmic
task.
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Fig. 1. The wedge-billiard.

The role of sensory feedback in rhythmic tasks remains
an outstanding puzzle in animal behavior modeling. While a
discrete action such as pointing or grasping can be interpreted
as a path planning control problem [10], [11], this is however
less evident to understand how sensory feedback is integrated
during rhythmic tasks. Recent papers have particularly inves-
tigated the differences in motor programming of equivalent
rhythmic and discrete tasks [12], [13]. Aiming at focusing
on the particular role of sensory feedback in the control
loop of rhythmic tasks, we point out the paper of Kuo [14]
which disentangles the role of FF and FB paths in a simple
rhythmic task. It focuses mainly on the role of the central
pattern generator' (CPG). In the present paper, we exhibit
how steady-state control of a rhythmic task rests in fact on
the control of its phase.

The paper is organized as follows: in Section II, we
review the wedge-billiard model and its steady-state periodic
orbits. We summarize also the results on the feedforward
stabilization. In Section III, we will show how the role played
by the vibration amplitude in the feedforward approach
could be reinterpreted as a proportional feedback tuning
the vibration amplitude as a function of a phase prediction.
This significantly enlarges the parametric stability region of
the feedforward input. This proportional controller achieves
stability over a large range of gain, giving therefore the
gain stability margin which is illustrated in Section IV.
In Section V, we briefly outline the future implementation
of this feedback loop in the lab. The paper ends with a
conclusion.

II. A SIMPLIFIED JUGGLER
A. Model
The dynamical system studied in this paper is an idealiza-

tion of a human juggler. We consider a motion restricted to

!CPGs are neural circuits that generate periodic motor commands for
rhythmic movements.
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a plane under a constant gravitational field g (with |g| = g).
The juggled ball undergoes collisions with two edges, which
act as the juggler arms (see Fig. 1). In contrast to human
juggling, the impacts between the “hands” and the ball are
supposed to be instantaneous, hence the name impact (or
bounce) juggling. This paper focuses on patterns involving
one ball.

Our model is an actuated version of the model introduced
in [15] and was first presented in [5] in order to study
feedback stabilization schemes of juggling patterns. The
four-dimensional wedge billiard dynamics are studied via the
three-dimensional discrete Poincaré map relating the state
from one impact to the next one, the ball motion between
two impacts being parabolic (a ballistic flight in a constant
gravitational field g). Let (e,,e,,) be an orthonormal frame
attached to the fixed point O with e, aligned with the
ball position vector r = re,. The ball is assumed to be
a unit mass point, let v = v,e, + v, e, denote its velocity.
Therefore the discrete state vector denotes the state of the
ball at the impacts. This state being discontinuous at the
impacts, we choose the post-impact values to make up the
state vector as a convention:

V. [K] Vi (t[k])
x[k] = [ [Vallk] | = [ViII(t[k])
R[k] R (t[k])
where V, = =V, = s and R = - denote the

state of the ball and the * notations denote the post-impact
values, evaluated at impact time ¢[k]. The corresponding pre-
impact values are denoted e —. We consider the absolute value
of the normal velocity, the wedge-billiard being symmetric
with respect to its bisecting line.

The discrete wedge-billiard map is the composition of an
impact rule and a parabolic flight map. The impact rule
7 adopted is derived from the Newton’s impact law: the
normal velocity is reversed, proportionally to a coefficient
of restitution e modeling the energy dissipation at impact
(0 < e < 1), while the tangential velocity is conserved.
This paper focuses on solutions implying an actuation of the
edges in order to feed some energy to the ball at each impact.
This control input is captured in the impact rule where the
normal velocity expression is therefore expressed relatively
to the edge velocity:

Valk] = 3[k] = —e (V, (t[k]) — 3[k])

where s[k| = $(t[k]) = S pg 5(t[k]) denotes the edge

sin 6

velocity at the impact time ¢[k]. The impact rule Z is then:
VoKl = Vo (ik)]) M
Valkl = —eV, (t[k]) + (1 + €)$[K]

Considering the unactuated wedge-billiard [15], the flight
map is the velocity and position update of the ball integrated
through a flight between two impacts. Two different flight
maps must be considered whether these impacts occur on
the same edge or not. These flight maps have been derived
in [5]. The rest of this paper focusing only on solutions, and

Fig. 2. The controlled rotational wedge (left), and the simplified model
when g is small (right).

stability properties, where the ball hits the edges alternately,
the wedge-billiard map is therefore the composition of the
impact rule Z (1) and the second flight map. One obtains the
discrete billiard map B:

Vb1 = [VallK] - Vilk] — Vi [k + 1]
Valk+1] = —e |V |lk+1] sign(Va[k)

+(14 e)sk + 1] ()
Rlk+1] = R[k]—%m?[mu—w?[kn

—j—;uv;m?[kﬂ] V2R

where |V,"|[k + 1] denotes the absolute value of the ball
normal velocity just before impact [k + 1]:

' 2_ 2
|Vn_|[k —+ 1] = \/(QVr[k]'i‘(l(:_a;”%sz]) + 1_;4_‘22R[k] 3)

with

o = tand

The position update of (2) derives from the energy expres-
sion:

BlH = 1o (3V70+ V2N + o) o

and the conservation of energy through the flight implies:
E-[k+1] = E[k].

For later reference, one also notes the flight time equation
given by:

Atlk] = tlk+1] — t[k] )

042_ n T
(Wil -+ 1 =2

1
g

Considering now the rotational actuation, the angle 6 of
each edge with the vertical is no longer constant, which
significantly complicates the derivation of the flight map. To
avoid the complication of computing that new flight map,
a “small amplitude” assumption is introduced: we neglect
the variation of # in the derivation of the flight map but
only take it into account in the derivation of the impact
map. As illustrated on Fig. 2, this simplification amounts
to assume that the impacts always occur at angle € but that
the angular actuation p rotates the normal and tangential
directions of the impacted edge by an angle u (Fig. 2, right).
This simplification neglects the displacement of the impact
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mad (Vi) = (6

(VEE) = s

T D

[Vl (K] = Vi [k] = |V [Tk + 1] ) 1+e( —asin plk + 1) R[k + 1]
[V |Tk + 1]. sign(Va[k])

a cos plk + 1] R[k + 1] ) Alk +1] @)

1 a? 1 a?
Rlk+1] = R+ —V2kl+ V2Kl = —(Vallk] = Vilk] = [V |k +1)% = |V, [*[k + 1]
29 29 29 29
with (1te)
1 0 2 _ 2 @ e in?2
JW:MFM(O_%)WMZ R emn L p ®)
P sin2p sin“ pu — e cos”

point and is more likely if |u| < 6. The final impact rule 7
is now given by (6) with M (1) denoting the rotation matrix
COS [i

of the edge:
asinp
M(p) = ( —SmE oy )

and plk] = p(tlk]) (k] = f[(t[k])) denoting the edge
position (velocity) at impact time t[k].

The presence of R[k] in (6) is due to a second important
feature introduced by the rotational actuation: the energy
exchange with the edges depends now on the impact position
RI[k]. The map B of the rotational wedge is given by (7).

B. Steady-state orbits with a harmonic actuation

In [6] and [7], we studied the behavior of the wedge-
billiard actuated with a harmonic sinusoidal input:

ult) = Asin (wt) — Coy ©)

where C,. and C; are constants that are tuned such that
u[k] = 0 for the steady-state orbits.

This simple sensorless actuation of the wedge-billiard has
been proven to be a 2-D generalization of the extensively
studied “bouncing ball” system [8], [9]. In fact, the dynamics
of the square wedge-billiard (¢« = 1 & 6 = 45°: the
edges form a right angle) decouple into the dynamics of two
independent 1-D bouncing balls, one along each edge. For
this simple case, the steady-state periodic orbits are shown in
Tab. I. Indeed, a steady-state regime is characterized by two
frequency-locking relations between the ball an the wedge:

(tlk + 2] — t[k])* =
(tlk +1] —t[k])* =

(10)

(1)

2

At 4 Al = 28
w

™

At = (2m — 1)~
om— 1)

where (e)* denotes the steady-state solutions. These relations
rest on the trivial assumption m < n, m and n being positive
integers. Equation (10) expresses that the ball period is a
multiple of the edge vibration period: this is the frequency-
locking relation of each dynamics. Equation (11) expresses
that the phase difference between two successive impacts
must be equal to an odd multiple of the vibration half-
frequency. As a convention, m will be associated with the
flight time between the right edge and the left edge: At™ =
(2m — 1), while the flight time between the left edge and
the right edge will be At'* = (2n—2m + 1)Z in the steady-
state regime. A well sustained steady-state shower pattern

will be characterized exactly by the same ratios, n denoting
also the number of juggled balls. It is interesting to point out
how the symmetry of the square wedge-billiard captures the
symmetry of the juggler behavior.

The general wegde-billiard (o« # 1) possesses topo-
logically equivalent periodic orbits. Note however that the
period-two orbits ((z : y) # (1 : 1)) are no longer
characterized by exact ratios between flight times: indeed
there is a symmetry breaking in the energy of the ball within
both parabolas.

The rest of this paper will be devoted to the analysis of
the period-one orbits (n = 2m — 1). In this case, a periodic
orbit corresponds to a fixed point of the Poincaré map (7).
According to [6] and [7], this fixed point is:

V. = 0 (12)
. 1+a?(2m -7
Var] = e )79 (13)
o 2w
N 1+a? ((2m—1)m\°
Ro= ] <( ) ) g (14)
a w
Note that ) 5
3 2m —1
B = ;g‘ (( m )779> {15
a w

is the energy of these orbits.
The sinusoidal actuation adds a fourth state variable, i.e.
the phase of the edges vibration. Its iteration equation is

TABLE I
PERIODIC ORBITS FOR THE SQUARE WEDGE-BILLIARD. (z : y) DENOTES
THE RATIO BETWEEN BOTH FLIGHT TIMES WHERE Z (y) IS ASSOCIATED
WITH THE FLIGHT FROM LEFT TO RIGHT (FROM RIGHT TO LEFT).
m=4

m=1 m=2 m=3

n=1

n=2

n=3

n=4
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25V, [k + 1]

£0|Vallk + 1]
<SR[k +1]
wotlk + 1]
with
—4a?—a? 2
Trent Wl myemz — (0F — Dan
2e(a’®—1) e(a?-1)2
M o= Granz +(2m—1Du2y Tiranz ez
- (2m—1)(1—a?) 2(2m—1)a?
1+a2 1+a2
402 2(12(a2—1)
(14+a2)2 (14+a2)2
_ 1-e 402
p = l+el+a?
—(2m — I’ 2(1 — a?) )
= (1-
Hat ( e)(au+a% T em D0+ o)

simply given by the the flight time equation (5) while its
steady-state value is:

. 1—e2a 1
¢* = arccos (1 e A@mo 1)7r) [—7] (19)

The [—n| applying to the left arm. The steady-state phase
corresponds to the point where the edge compensates exactly
for the energy dissipated by the impact. The actuation offsets
are therefore:

c, =
C =

—Asin ¢*
Asin ¢*

(20)
2y

The stability is studied via the linearized Poincaré map
of B (7) and of the flight time (5) around the period-one
solution just derived. We find the Jacobian matrix (16). Note
that the determinant of M is equal to

e ((1 —e)(3a? —1)+2(1 + a2))
(1+e)(1+ a?)

which is equal to 1 in the elastic case (e = 1), Va.
This illustrates that the sinusoidal input does not achieve
exponential stability of the period-one orbit in the elastic
wedge, because all the eigenvalues of this matrix cannot be
< 1 in that case.

The eigenvalues of (16) were numerically computed for
several values of e and «. Fig. 3 depicts the stability region
for the first two period-one orbits (n = 1, m = 1 (a) and
n = 3, m = 2 (b)). The superposed curves stand for different
values of e.

A decreasing coefficient of restitution reduces the para-
metric stability region and shifts it in a zone corresponding
to smaller angles between the edges. We can see that even
for e = 0, the first period-one orbit is still theoretically
stabilizable with a sinusoidal vibration of the edges if the
impacts occur with 6 € [15°,40°].

A sinusoidal actuation of the edges therefore stabilizes
period-one orbits, for any coefficient of restitution e < 1
and for a broad domain of wedge geometry. For § > 45° this
exponential stability is in sharp contrast with the instability
of the same periodic orbit in the fixed elastic wedge [15].

M| = (22)

%5% (k]
- Lo|\Vnllk
_ gz\ n|[K] 16
Y 5R[k]
g
wdt[k]
402 2 1— 2
~ oD (iTa?Z T @EmoTy M1l —17e2(1+a%)
dea? + _ (1-e)(1+a?)(2m-1)21’
@m-1)(1ta2)? " K21 4a® (17)
1— 2
1+Z2 0
402 1
2m—1)(1+a?)2
(1 —a?)(2m —1)21/ 402 )
= (1-
22 ( e) ( 20(1 + a2) + T+ a2
2 2
o= ((14%6)4Aw2) -( 2ma ) (18)
1—e 2m —1
80,
60-
=075
e=0.25 e=0.5
< 40r
e=0
20r
20 40 60 80
0
@n=1m=1
G n=3, m=2
Fig. 3. Parametric stability region of two period-one orbits in the general

wedge (solid lines). The dotted lines denote the physical minimum value
for the amplitude A (the arccos argument in (19) must be < 1).

This result is particularly interesting because the sinusoidal
“control” uses no feedback measurement ! The interested
reader can find some movies illustrating this sensorless sta-
bilization of periodic orbits on www.montefiore.ulg.
ac.be/ ronsse/.

ITII. TIMING FEEDBACK

The sinusoidal input p(t) = A (sin (wt) £ sin (¢*)) in-
troduced in Section II isolates one of the period-one orbits
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1—4a?—a* 40 402 2 1—
W —2p11 ' Tra?)Z ~ (a® = Dunr T Em—D(Fa?)?  @Em-D Ml —17e2(l + a?)
2e(a?—1) a1 2(1—a?)  e(a?-1)2 a1 402 deq 1 ) 2(1—a?) 0
v Tran? TU-50 ez (-9 s  Gaonarenz T~ 9n-naten
M= (2m—1)(1—a?) 2(2m—1)a? 1—a?
1+a? 1+a? 1+a?2 0
402 202((’2_1) 402 1
(1+a?)? T(1+a2)2 @m—T1)(1+a?)?
0
2
(1 _e)(1+a )(2m—1)m o2 202(a2—1) a2 om—1_,
207 (1-',-(;2)2 (1+a2)2 (Qm—l)(zl+0t2)2 ) 2ra r @3
0 C
B

existing in the unactuated elastic wedge-billiard.

Existence of a period-one orbit in the non-elastic model
imposes a minimal amplitude A indicated by the dotted lines
in Fig. 3.

Stability of the period-one orbit extends across the am-
plitude range over which the matrix M in (17) has all its
eigenvalues within the unit circle. The dependence of M
on the amplitude A is emphasized in (23) since only the
parameter IV depends on A, see (18). For a given coefficient
of restitution e, the parametric stability region in Fig. 3(a) is
bounded from above by the stability requirement and from
below by the steady-state existence requirement.

We will propose a simple feedback strategy to enlarge the
parametric stability region. The control input we introduce is
a simple gain in the vibration amplitude. The new vibration
law is then:

wu(t) = A (sin (wt) £ sin (¢*)) (\1/_/—!— oulk]) (24)

——
FF FB

where du[k] denotes the control input. This control input both
preserves the same isolated steady-state fixed point, and does
not change the periodicity of the sinusoidal vibration.

Restricting to first order terms O(¢), this control input
affects only the normal velocity update. The linearized
update equations become:

26V, [k +1] 20V, [k]
LH|Vullk+1 ~ | L6V, [k
AT O L T -
2 0R[k + 1] 2 OR[K]
wdt[k + 1] wdtlk]
(25)

where B has already been defined in (23).

Defining now a proportional output feedback as:

dulk] = kyoylk] (26)
v
— g
= k,C < SR 27
wotlk]

We obtain the following closed-loop iteration map:

25V, [k +1] 25V, k]
26|V [k +1] - 20|V, |[K]
9, =(M+EBC)| 9.
LRk +1] ( TRy ) <G R[K]
wdt[k + 1] wdt[k]

(28)
Observing the similarity between (23) and (28), we con-
clude that the pole locus achieved with a variation of the
gain k, in the closed-loop map is exactly the same as
the one corresponding to a variation of IV (i.e. a variation
of the amplitude A) for the pure feedforward sinusoidal
actuation (23). This means that the closed-loop analysis of
the feedback control (24) and (26) proceeds from the open-
loop analysis, but that the steady-state requirement (on A)
has been decoupled from the stability requirement (on k,).
A closer look at M (23) reveals that the matrix we have
called C is exactly equal to the fourth row of M. The output
signal just defined can then be physically interpreted as a
prediction of the next impact phase:

dulk] = kywdt[k + 1] (29)

The feedback mechanism consists therefore in tuning the
vibration amplitude according to this phase prediction.

IV. CLOSED-LOOP GAIN MARGIN

This section aims at quantifying the gain margin of the
closed-loop system just derived.

Let’s assume that the amplitude A is now fixed. We
choose to fix A at its minimal value, i.e. A = ﬁ(?wfigl)w
This choice would for instance result from minimum control
consideration. For this particular value of A, we have IV = 0.

Fig. 4 depicts the parametric stability region of the first
period-one orbit (n = m = 1) of the closed-loop system,
for e = 0.5. This stability region has exactly the same shape
as the one obtained with a variation of A, their poles loci
being identical. However this region has increased compared
to the one in Fig. 3(a), simply because there is no steady-
state requirement on k,. We can see for example that it is
now possible to stabilize the period-one orbit with a wedge
angle 6 close to 0, whereas the open-loop parametric stability
region shrank around 6 = 20° for e = 0.5.

For any value of the vibration amplitude

1—e 2a

A>__—° ==
~ l+e(@2m—1)m
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> 1.5f

0.5r

Fig. 4. Parametric stability region of the closed-loop wedge-billiard. I =
0, e =0.5.

we will obtain the same figure as Fig. 4, with a shift of
%F’ downward. The proportional control stabilizes
the period-one orbits over a broad range of parameters:
0<80,, <0 <0 and VA > %(2”1272‘1)77 For e = 0.5,
0y is about 54° while 6,,, tends to 0°. In this case, 6, has
not changed from the open-loop limit (see the corresponding
curve on Fig. 3(a)) while 6,, was only about 20° in that
case. Proportional output feedback has therefore significantly

enlarged the left-hand side of the parametric stability region.

V. DISCUSSION

The parametric stability region depicted in Fig. 4 is
in accordance with the angular region over which human
subjects are able to juggle the period-one orbit in a wedge-
billiard. We refer the reader to [16] for preliminary results
about human strategies in the wedge-billiard. This supports
the hypothesis that the simplest feedback loop implemented
by human subjects in this task is based on a control of the
impact times.

For instance, the control law (24) can be interpreted as
an open-loop control between two successive impacts. In
the context of the present paper, the shape of this control
input does not vary over successive impacts (sinusoidal
input). Only its amplitude is varied based on some feedback
information. In current work, we aim at generalizing this
idea, while using minimal feedback information for the input
shaping.

VI. CONCLUSION

With a model of a simplified juggling task, we showed
how to control a particular rhythmic task with a feedforward
harmonic input. To increase the parametric stability region,
we designed a simple feedback law, based on an prediction
of the phase between the juggler and the juggled object. This
supports the hypothesis that an accurate processing of timing
is required to control a rhythmic task.

Section II presented our planar juggler model, called the
wedge-billiard. A harmonic sinusoidal vibration of the edges
is integrated into this model. This pure feedforward input
stabilizes the simplest periodic orbits of the wedge-billiard
over a large range of impact angle and vibration amplitude.
We designed an output feedback controller in Section III to

increase this stability region. This controller predicts the next
impact phase to tune the vibration amplitude. In Section IV,
the stability region of the controller gain has been illustrated.
This gives the margin over which the timing controller
achieves stability of the period-one orbit. Future work and
implementation issues were outlined in Section V.
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