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Abstract— Motivated by the study of the controlled Kepler
problem, we analyze the controllability properties of some
classes of mechanical systems. Consider a control system with
drift. Our aim is to determine if, given a pair of initial states
at a fixed initial time, assuming that the controller acts only on
one of the two corresponding trajectories, it is possible for the
controlled trajectory to reach the uncontrolled one in finite time.
We prove that this is the case for the controlled Kepler problem,
taking into account both elliptic and non-elliptic orbits. We
extend the result to other classes of mechanical controlled
systems.

I. INTRODUCTION

The study of low-thrust transfer between elliptic orbits
of the Kepler problem stimulates a great attention, between
specialists and non-specialists, due mainly to its potential ap-
plications to the space industry. For many practical satellite-
based technologies, including telecommunications, the actual
goal of the orbit transfer is to join with a satellite endowed
with electro-ionic engines an assigned geostationary orbit at
a precise longitude. This special kind of transfer is usually
called rendez-vous. Similar problems, where the rendez-
vous is targeted at elliptic orbits which are not necessarily
geostationary, are frequently met in the domain of formation
flying.

The motivation of the present work is to better frame the
concept of rendez-vous and to extend it to more general
control systems. The notion of rendez-vous controllability
is easily formulated: Given a control system q̇ = f(q, u),
q ∈ M , u ∈ U , and fixed a control ū ∈ U which plays the
role of basic dynamics, we say that the system is rendez-vous
controllable if, for every pair of states (q0, q1), there exists
an admissible trajectory q(·), defined on an interval [0, T ],
T being free, such that q(0) = q0 and q(T ) = φ(T, q1, ū),
where t �→ φ(t, q1, ū) is the solution of q̇ = f(q, ū) such
that φ(0, q1, ū) = q1.

Control problems for which the controller’s goal is to per-
form such kind of rendez-vous arise naturally, and are in fact
currently handled. We can think, for instance, of any control
system where uncontrolled trajectories are determined by
some drift. The problem of reaching an “object” moving
according to the dynamics determined by such drift is of
intrinsic rendez-vous nature.

Rendez-vous controllability problems can be seen as clas-
sical controllability problems by adding the time as an extra
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variable to the original system. However, we belive it useful
to acknowledge the specificity of such kind of problems and
to treat them as elements of a common class.

Our attention to rendez-vous controllability moved from a
quite natural question about the controlled Kepler problem:
Is the Kepler problem rendez-vous controllable on the totality
of elliptic and non-elliptic orbits? The non-elliptic part of the
question becomes relevant when we consider, for instance,
the problem of sending an exploratory device to an asteroid
passing close to the Earth. As long as the gravitational field
of the Earth is predominant, the asteroid moves approxima-
tively on an hyperbolic trajectory for the Kepler problem
centered at the Earth.

The answer to the rendez-vous controllability issue is
positive, as it is shown in Section III. We stress that the proof
follows constructive guidelines. Indeed, an explicit strategy
is proposed to join the domain of elliptic orbits to a target
hyperbolic one and then to reach the desired “longitude” on
it. Efficient transfer strategies between elliptic orbits are not
discussed here. For a feedback control aimed at the rendez-
vous to a geostationary orbit, we refer to the recent work by
Kellett and Praly [1].

In Section IV we generalize the results obtained for the
Kepler problem to more general controlled problems. Such
problems are of the same mechanical nature as the Kepler
one, in the sense that the control is assumed to act as
an external acceleration. The aim is less to provide the
widest possible result than to suggest the possible appli-
cations of the method. The recurrence hypothesis which is
asked on bounded trajectories of the uncontrolled system
is suggested by the well-known properties of Hamiltonian
systems (namely, the fact that Hamiltonian flows are volume-
preserving).

An important feature of the method, which reflects the
original low-thrust assumption, is that it is independent on
the maximal size of admissible controls. Physically, this cor-
responds to the assumption that the controller has an arbitrar-
ily small allowed acceleration capacity, which is independent,
however, of the time and of the state. Such feature gives rise
to the notion of unrestricted rendez-vous controllability, and
explains the qualitative/geometrical, rather than quantitative,
arguments which are presented. The corresponding notion of
unrestricted complete controllability was introduced in [2]
for a class of Dubins’-like control problems on Riemannian
manifolds. Similarly to the problems treated here, Dubins’-
like control problems are characterized by the fact that the
control plays the role of an external acceleration.

Future extensions of the present work are expected to
go in the direction of unifying the results presented here

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThC16.6

0-7803-9568-9/05/$20.00 ©2005 IEEE 8271



with those of [2] and [3], considering systems defined on
submanifolds of tangent bundles of Riemannian manifolds.
In particular, results as [3, Proposition 4.1] suggest that
controllability can be recovered from recurrence assumptions
on the projection of uncontrolled trajectories on the base
manifold, instead that on trajectories on the tangent bundle
(as done in Section IV). Such kind of extensions would
surely enrich the theory and definitely enlarge its horizons
beyond Kepler-like applications.

II. DEFINITIONS AND BASIC FACTS

Let M be a smooth (C∞) manifold and U be a measurable
subset of Rm, m ≥ 1. Consider a map f : M × U → TM
and assume that f is the restriction on M × U of a smooth
map from M × Rm to TM . Let, for every u ∈ U , fu(·) =
f(·, u) be a vector field on M .

Recall that a vector field g : M → TM is called complete
if all the solutions of the dynamical system q̇ = g(q) are
defined on the entire line R. For every complete vector
field g on M , we write etg : M → M to denote the flow
associated with g at time t, that is, t �→ etg(q) is the solution
to q̇ = g(q) passing through the point q at time t = 0.

An admissible control for the control system

q̇ = f(q, u) (1)

is, by definition, a measurable essentially bounded function
u : [0, +∞) → U . An admissible trajectory for (1) is a
solution of (1) corresponding to an admissible control.

A classical notion of controllability for (1) is given by
complete controllability: We say that (1) is completely con-
trollable if, for every q0, q1 ∈ M , there exist T ≥ 0 and an
admissible trajectory q : [0, T ] → M such that q(0) = q0

and q(T ) = q1.
A controllability notion focused more on orbits, instead of

points, is introduced by the following definition.
Definition 2.1: We say that (1) is rendez-vous controllable

with respect to ū ∈ U if fū is complete and, for every
q0, q1 ∈ M , there exist T ≥ 0 and an admissible trajectory
q : [0, T ] → M such that q(0) = q0 and q(T ) = eTfū(q1).

Rendez-vous controllability does not imply, in general,
complete controllability. A simple counterexample is given
by the control system q̇ = 1 + u, q ∈ R, |u| < 1. As ū one
can take any of the admissible controls.

The definition of rendez-vous controllability makes sense
particularly when there exists a control ū which corresponds
to a physical drift, as it is the case for controlled mechanical
systems. Notice, by the way, that it can be useful for
applications – and completely straightforward – to extend
the definition of rendez-vous controllability to the case in
which ū is replaced by a non-constant admissible control.

In the present work, we restrict our attention to systems
of the type {

ẋ = v ,
v̇ = ψ(x, v) + Γ(x, v, u) ,

(2)

where (x, v) belongs to an open subset Ω of R2n.

We assume, moreover, that there exists a positive real
number ε such that the closed ball in Rn centered at the
origin of radius ε, denoted by Bn

ε , is contained in Γ(x, v, U)
for every (x, v) ∈ Ω. In order to prove that (2) is rendez-
vous controllable, we simplify the notations by assuming that
U = Bn

ε and Γ(x, v, u) = u, that is, we focus our attention
on control systems of the form

(Σε) :
{

ẋ = v ,
v̇ = ψ(x, v) + u ,

u ∈ Bn
ε .

An important feature of the arguments developed in the
next two sections is that they do not depend on the size
of ε. This leads to the notion of unrestricted rendez-vous
controllability, in analogy with the corresponding notion of
unrestricted complete controllability, introduced in [2], [3]
and recalled below.

Definition 2.2: We say that ε �→ (Σε) has the unrestricted
rendez-vous controllability property (equivalently, that it is
URVC) if, for every ε > 0, (Σε) is rendez-vous controllable
with respect to 0. Similarly, we say that ε �→ (Σε) has the
unrestricted complete controllability property if, for every
ε > 0, (Σε) is completely controllable.

Let us recall the classical notion of recurrence. We say
that a vector field g on M is recurrent at q ∈ M if there
exists a sequence of positive times {tn}n∈N converging to
infinity and such that etnf (q) → q as n tends to infinity. The
vector field g is called recurrent on M , if it is recurrent at
every point in a dense subset of M .

III. THE CONTROLLED KEPLER SYSTEM IS URVC

Let R3
0 = R3 \ {0}. Define L : TR3

0 = R3
0 × R3 → R3

by
L(x, v) = x × v ,

where by “× ” we denote the vector product in R3.
Define

Ω = {(x, v) ∈ TR3
0 |L(x, v) �= 0} .

The controlled Kepler system is the control system, defined
on Ω,

(Kε) :
{

ẋ = v ,
v̇ = −µ x

‖x‖3 + u
u ∈ B3

ε ,

where µ is a positive constant.
In this section we prove that
Proposition 3.1: The Kepler system ε �→ (Kε) is URVC.
Let ψ(x) = −µ x

‖x‖3 and define, for every (x, v) ∈ Ω,

f0(x, v) = (v, ψ(x)) , (3)

E(x, v) =
1
2
‖v‖2 − µ

‖x‖ . (4)

Notice that f0 is a complete vector field on Ω (a necessary
condition for the URVC of the Kepler system).

We can restrict (Kε) to D = {(x, v) ∈ Ω |E(x, v) <
0}, the union of the supports of all elliptic non-degenerate
trajectories. Notice that also the restriction of f0 to D is
complete.
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Let us recall a classical controllability result related to
recurrence (see [4], [5]). Let X0, . . . , Xm be m + 1 vector
fields on a smooth manifold M . The Lie algebra generated
by X0, . . . , Xm is the family of vector fields

Lie(X0, . . . , Xm) =
span{[Xjk

, [Xjk−1 , [. . . , Xj1 ] · · · ] |
k ≥ 1, j1, . . . , jk ∈ {0, . . . , m}}

where [Xi, Xj] denotes the Lie bracket between Xi and Xj .
Assume that Lie(X0, . . . , Xm) spans TqM at every point
q ∈ M . (In this case, we say that the family of vector fields
{X0, . . . , Xm} is bracket generating.) Assume, moreover,
that X0 is recurrent on M . Then the control system q̇ =
X0(q)+

∑m
i=1 uiXi(q), u ∈ Bm

ε , is completely controllable
for every ε > 0.

Caillau, in his PhD thesis [6], noticed that such result im-
plies the complete controllability of (Kε) restricted to D, for
every ε > 0. The proof of the rendez-vous controllability of
the restricted system needs only some minor modifications.
First, consider as X0 the vector field

R ×D −→ R × R3 × R3

(t, x, v) �−→ (1, v, ψ(x))

and, for i = 1, 2, 3, let Xi(t, x, v) = (0, 0, ei), where
{e1, e2, e3} is an orthonormal basis of R3.

Let τ : D → (0, +∞) be the map associating with (x, v) ∈
D the minimal period of the uncontrolled trajectory of (Kε)
passing through (x, v). The precise expression for τ is given
by the third Kepler law, that is,

τ(x, v) = 2π

√
a3

µ
,

where a is the semi-major axis of the elliptic trajectory with
initial conditions (x, v), that is,

a = − 2
µ

E(x, v) =
2

‖x‖ − ‖v‖2

µ
.

What matters most to our approach is the smoothness of
τ with respect to (x, v), which guarantees that the quotient
of R ×D by the equivalence relation

(t1, x1, v1) ∼ (t2, x2, v2) ⇐⇒ (5)

t1 − t2 ∈ τ(x1, v1)Z , x1 = x2 , v1 = v2

is a well-defined smooth manifold M . Moreover, the vector
fields X0, . . . , X3 are constant on each equivalence class
defined by ∼. Therefore, with a slight abuse of notation,
we can consider X0, . . . , X3 as well-defined smooth vector
fields on M . It is easy to check that the Lie algebra generated
by X0, . . . , X3 spans TqM at every point q ∈ M . The
periodicity (and, a fortiori, recurrence) of X0 implies the
complete controllability of the control-affine control system
defined by X0, . . . , X3 on M .

The rendez-vous controllability of (Kε) restricted to D
follows: Indeed, given (x0, v0), (x1, v1) ∈ D, the existence
of an admissible trajectory (x, v) : [0, T ] → D such

that (x, v)(0) = (x0, v0) and (x, v)(T ) = eTf0(x1, v1) is
equivalent to the existence of an admissible trajectory in M
from [(0, x0, v0)] to{[(

t, etf0(x1, v1)
)]∣∣ t ≥ 0

}
={[(

t, etf0(x1, v1)
)]∣∣ t ∈ [0, τ(x1, v1)]

}
,

where square brackets denote equivalence classes for the
equivalence relation defined by (5).

Let us step back for the moment from rendez-vous con-
trollability, and prove that (Kε) is completely controllable
on Ω. Fix (x0, v0), (x1, v1) ∈ Ω. We want to show that there
exists an admissible trajectory (x, v) : [0, T ] → Ω such that
(x, v)(0) = (x0, v0) and (x, v)(T ) = (x1, v1).

Consider the case where (x1, v1) ∈ D. Due to the
complete controllability of (Kε) on D, it is enough to prove
that there exists an admissible trajectory (x, v) : [0, T ] → Ω
such that (x, v)(0) = (x0, v0) and (x, v)(T ) ∈ D. The idea
is to apply the feedback

u = −ε
v

‖v‖ . (6)

Denote by (x, v)(·) the trajectory in Ω corresponding to
(6) and such that (x, v)(0) = (x0, v0). Let [0, T ) be the
largest interval of definition of (x, v)(·), T ∈ (0, +∞]. If T
is finite, then L(x(t), v(t)) → 0 as t tends to T , since neither
x(t) nor v(t) can explode in finite time. Since

d

dt
L(x(t), v(t)) = − ε

‖v(t)‖L(x(t), v(t)) ,

then the only possibility is that v(t) → 0 as t tends to T .
Then, for t close to T , E(x(t), v(t)) is negative, which means
that (x(t), v(t)) belongs to D, and we are done. As for the
case T = +∞, notice that

d

dt
E(x(t), v(t)) = −ε‖v(t)‖ .

Assume by contradiction that (x, v)(·) never enters D.
Hence, limt→∞ E(x(t), v(t)) ≥ 0, which implies that
lim inft→∞ ‖v(t)‖ = 0. But, if ‖v(t)‖ � ε, then
E(x(t), v(t)) � ε and 1/‖x(t)‖ � ε. This last inequality,
in turns, implies that

d2

dt2
E(x(t), v(t)) = −ε

v(t) · v̇(t)
‖v(t)‖

= εµ
x(t) · v(t)

‖x(t)‖3‖v(t)‖ − ε2 � −ε2 ,

where by “ · ” we denote the scalar product. It is easy to
conclude that the assumption that E(x(t), v(t)) ≥ 0 for every
t leads to a contradiction.

We proved that, for every (x0, v0) ∈ Ω, there exists an
admissible trajectory for (Kε) which steers (x0, v0) to D.

Notice now that, if t �→ (x(t), v(t)) is an admissible
trajectory for (Kε), then t �→ (x(−t),−v(−t)) also is.
Therefore, reversing the time in the above argument, we
can conclude that for every (x1, v1) ∈ Ω there exists an
admissible trajectory of (Kε) which joins an element of D
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t

T + t

Fig. 1. The graph of λ

to (x1, v1). This completes the proof that ε �→ (Kε) has the
unrestricted controllability property.

The final step in order to prove unrestricted rendez-vous
controllability is to show that, given ε > 0, q0 = (x0, v0) ∈
Ω and t ∈ R, there exists an admissible trajectory q :
[0, T ] → Ω such that q(0) = q0 and q(T ) = e(T+t)f0(q0).
If q0 ∈ D, this has already been proved to follow from the
recurrence of X0. Let then q0 ∈ Ω \ D. In particular, for
every c > 0, we can assume that ‖ψ(eτf0(q0))‖ ≤ c for
every τ ≥ 0 (simply replace q0 by eτ̄f0(q0) with τ̄ > 0 large
enough). Choose T > 0 and λ ∈ C∞([0, T ], [0, t+ T ]) such
that λ(0) = 0, λ̇(0) = 1, λ(T ) = T + t, and λ̇(T ) = 1 (see
Figure 1).

Notice that, for every δ > 0, we can assume that |λ̇(τ) −
1|, |λ̈(τ)| ≤ δ for every τ ∈ [0, T ] (fixing T in dependence
on δ).

Define ξ(·) and ν(·) through the relation

(ξ(τ), ν(τ)) = eτf0(q0) , τ ∈ [0, t + T ] .

We claim that q(·) can be defined as

q(τ) = (ξ(λ(τ)), λ̇(τ)ν(λ(τ))) . (7)

By definition, q(·) satisfies the required boundary conditions.
The time-derivative of q(·) is given by

q̇(τ) = (λ̇(τ)ν(λ(τ)), λ̈(τ)ν(λ(τ)) + λ̇(τ)2ψ(ξ(λ(τ)))) .

In order to prove that q(·) is admissible, we have to check
that

‖ψ(ξ(λ(τ)))(1 − λ̇(τ)2) − λ̈(τ)ν(λ(τ))‖ ≤ ε .

Let M = supτ∈R ‖ν(τ)‖. Then

‖ψ(ξ(λ(τ)))(1 − λ̇(τ)2) − λ̈(τ)ν(λ(τ))‖ ≤
c|1 + λ̇(τ)| |1 − λ̇(τ)| + M |λ̈(τ)| ≤ c(2 + δ)δ + Mδ ,

which can be made smaller than ε if δ is small.
An important remark from the point of view of applica-

tions, is that the energy required to the rendez-vous operation
(i.e., the total energy of the trajectory q(·) defined by (7))
can be made as small as desired. To prove it, first notice that

λ(3) can be assumed to have constant sign, in such a way
that ∫ T

0

|λ̈(τ)|dτ ≤ 2 max
τ∈[0,T ]

|λ(τ) − 1| ≤ 2δ .

Therefore, taking δ < 1,∫ T

0

‖ψ(ξ(λ(τ)))(1 − λ̇(τ)2) − λ̈(τ)ν(λ(τ))‖2dτ ≤

(2 + δ)c
∫ T

0

(1 − λ̇(τ))dτ + 2Mδ ≤ 3ct + 2Mδ ,

which can be made as small as desired, since, as we already
noticed, we can assume c and δ to be arbitrarily small.

It must be said that, as long as the applications we have in
mind are related to spacecraft subject to the gravitational field
of the Earth, the model stops to be accurate when the distance
from the Earth becomes too large, since the gravitational
attraction of the Earth stops to be predominant. Therefore,
the previous remark on the smallness of the energy required
to change the longitude along a non-elliptic trajectory should
be taken as purely qualitative.

IV. SOME GENERALIZATIONS

Let us go back to the system (Σε) introduced in Section
II. Many of the arguments introduced in Section III can be
extended to the general case, under suitable assumptions on
ψ and Ω.

Denote
f0(x, v) = (v, ψ(x, v)) .

A first extension which we are able to prove is the
following.

Proposition 4.1: Let Ω1 be the subset of Ω given by all
points q such that supt≥0 ‖f0(etf0(q))‖ is bounded. Assume
that, for every (x, v) ∈ Ω1 and for every λ ∈ R \ {0},
(x, λv) belongs to Ω. Let f0 be recurrent at every point of
Ω0 = Ω\Ω1. If ε �→ (Σε) has the unrestricted controllability
property, then it is also URVC.
Proof. What has to be checked is that the argument above
proving the feasibility of the “longitude” variation along an
orbit can still be applied. That is, we want to show that,
given ε > 0, q0 = (x0, v0) ∈ Ω and t ∈ R, there exists an
admissible trajectory q : [0, T ] → Ω such that q(0) = q0 and
q(T ) = e(T+t)f0(q0).

We already showed that this can be done by proving
that there exists λ ∈ C∞([0, T ], [0, t + T ]) such that
λ(0) = 0, λ̇(0) = 1, λ(T ) = T + t, λ̇(T ) = 1, and
τ �→ (ξ(λ(τ)), λ̇(τ)ν(λ(τ))) is admissible for (Σε), where
(ξ(τ), ν(τ)) = eτf0(q0). In order to prove the admissibility
of τ �→ (ξ(λ(τ)), λ̇(τ)ν(λ(τ))) we have to check that its
support is contained in Ω and that

‖ψ(ξ(λ(τ)))(1 − λ̇(τ)2) − λ̈(τ)ν(λ(τ))‖ ≤ ε

for every τ ∈ [0, T ]
If q0 belongs to Ω1, then the proof follows the pattern

described above.
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Fix q0 in Ω0. The idea is to take λ̇(τ) = 1 when
(ξ(λ(τ)), ν(λ(τ))) is far from q0, and to make small varia-
tions in λ(τ)− τ at every passage near f0. For every δ > 0,
let

Wδ = {(x, v) ∈ R2n | ‖x − x0‖, ‖v − v0‖ ≤ δ} .

Fix δ > 0 such that W2δ ⊂ Ω. Let tn be an increasing
sequence of time instants such that etnf0(q0) belongs to
Wδ for every n ≥ 1. Let M = maxq∈W2δ

‖f0(q)‖. Thus,
etf0(q0) ∈ W2δ for every t such that |t − tn| ≥ δ/M =: δ′.
Without loss of generalization, tn+1 − tn ≤ 2δ′ for every
n ≥ 1.

Then λ(·) can be taken in the form

λ(τ) = τ +
N∑

n=1

φ

(
τ − tn − (n − 1)

t

N

)

where φ ∈ C∞(R,R) is such that φ̇(τ) ∈ [−1, 1] for every
τ and

φ(τ) = 0 for every τ ≤ −δ′ ,
2M(1 − φ̇(τ) + |φ̈(τ)|) ≤ ε for every τ ∈ [−δ′, 0] ,

φ(τ) = t
N for every τ ≥ 0 .

The fact that, for every τ , (ξ(λ(τ)), λ̇(τ)ν(λ(τ))) belongs
to Ω follows from the hypotheses of the proposition. �

The corollary below is an example of how the hypotheses
of Proposition 4.1 can be strengthened in such a way to
imply directly the unrestricted complete controllability of
ε �→ (Σε).

Throughout the rest of this section, let us assume that ψ
is even with respect to v, that is, for every (x, v) ∈ Ω,

(x,−v) ∈ Ω and ψ(x,−v) = ψ(x, v) . (8)

Notice that, under assumption (8), if t �→ (x(t), v(t)) is an
admissible trajectory for (Σε), then the same is true for t �→
(x(−t),−v(−t)).

We find useful to define, for every (x, v) ∈ Ω, πx(x, v) =
x and πv(x, v) = v.

Corollary 4.2: Let R > 0 be such that (Rn\Bn
R)×Rn ⊂

Ω, and assume that ‖ψ(x, v)‖ tends to zero as ‖x‖ goes to
infinity, uniformly in v. Let Ω1 be the subset of Ω given
by all q ∈ Ω such that ‖πx(etf0(q))‖ tends to infinity as t
goes to infinity. Assume that f0 is recurrent at every point
of Ω0 = Ω \ Ω1. Then ε �→ (Σε) is URVC.

Proof. Fix ε > 0. It is easy to check that every control
system in the form (Σε) is bracket generating. Hence, the
complete controllability of (Σε) is proved if we show that
−f0 is in the Lie saturate of the family of admissible vector
fields for (Σε) (see [7]).

Since at points of Ω0 the arguments of [7, Theorem 5,
Chapter 4] still hold, the proof is complete if we show that
e−Tf0(q0) is reachable from q0 for every q0 ∈ Ω1 and every
T > 0. In order to do so, it is enough to show that, for
every q0 = (x0, v0) ∈ Ω1, the point (x0,−v0) is reachable
from q0. Indeed, if we write e−Tf0(q0) = (x1, v1), then
(x1,−v1) is reachable from (x0,−v0), as a consequence of
(8). Therefore, if (x0,−v0) is reachable from q0 and (x1, v1)
is reachable from (x1,−v1) (which is in Ω1), then e−Tf0(q0)
is reachable from q0.

Fix q0 = (x0, v0) ∈ Ω1.
Let γ : [0, L] → [0, +∞) × Rn−1 be a smooth trajectory

such that γ(0) = γ(L) = 0, γ̇(0) = (1, 0, . . . , 0) = −γ̇(L).
The idea is to look for an admissible trajectory steering q0

to (x0,−v0) of the following type: Take u = 0 for a time
τ̄ , follow a rotated-dilated copy of (γ(·), γ̇(·)) starting from
eτ̄f0(q0), and finally let u be equal to zero until the trajectory
reaches (x0,−v0).

For every r > 0, let

cr = max{‖ψ(x, v)‖ | (x, v) ∈ Ω, ‖x‖ ≥ r} .

By hypothesis, cr → 0 as r goes to infinity. Fix r > R such
that cr < ε/2 and take τ̄ such that ‖πx(eτ̄ f0(q0))‖ ≥ r.

Since q0 ∈ Ω1, we can assume that

πx(eτ̄ f0(q0)) · πv(eτ̄ f0(q0)) > 0 .

Therefore, for every λ > 0, the trajectory

t �→ πx(eτ̄ f0(q0)) + A(γ(λt)) (9)

is contained in Rn \ Bn
r , where A ∈ SO(n)

is a unitary matrix which sends (1, 0, . . . , 0) to
πv(eτ̄f0(q0))/‖πv(eτ̄f0(q0))‖.

Let M = maxt∈[0,L] ‖γ̈(t)‖. Then, taking λ <
√

ε
2M , (9)

defines an admissible trajectory of (Σε). �
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