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Abstract— This paper investigates the controller synthesis
problem for the stochastic fault tolerant control systems
(FTCS). The faults of random nature is modeled as a Markov
process. Because the real system fault modes are not directly
accessible, the controller is reconfigured based on the output
of a Fault Detection and Identification (FDI) process, which
is assumed to indicate the actual system modes only after an
exponentially distributed random time delay. By considering the
modeling uncertainty and the external disturbances, both state
feedback and output feedback control are developed to achieve
the Mean Exponential Stability (MES) and the H∞ performance.

I. INTRODUCTION

Due to the increasing demands for high reliability and
survivability of the complex control systems, the fault tol-
erant control (FTC) has attracted extensive interests and
attention from both industry and academia during the last two
decades. Based on whether or not the controller needs to be
reconfigured, the FTC methodologies can be classified into
active and passive ones. Compared with the passive design,
the active FTC can achieve superior fault tolerance capability
and has less design constraints, hence is more desirable for
practical applications. On the other hand, design of active
FTC is more challenging because the two important ingre-
dients, the fault detection and Identification (FDI) and the
control reconfiguration have coupled inter-relationships in
a closed-loop configuration, especially when the separation
principle does not hold under the circumstances of modeling
uncertainty and unknown disturbances, see [1], [2], [3] etc.
for details.

In the previous work on the integrated FTC design,
faults/failures were modeled by using a Markov chain, then
the open-loop system was simply described as a Markovian
jump linear system (MJLS) for it has been widely adopted
for modeling structural and parametric changes. But unlike
MJLS, where the control law is constructed based on real
system mode, a second Markov chain was introduced to
model a simple memoryless FDI decision process. The rea-
sons to incorporate the FDI in the model are two folds: First,
It is known that in an active fault tolerant control system
(FTCS), the real system mode is not directly accessible to the
controller, but is ‘identified’ by a FDI scheme implemented
in the loop. The FDI is usually imperfect with possibilities of
detection delays, false alarms and missing detections due to
the model uncertainty and noises/disturbances. Secondly, in
the MJLS context, the mode estimation problem is actually
NP-hard, and the algorithm for the estimation of precise
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system mode which can be executed online in real-time is
not available yet. See [4] and the reference therein.

Such a formulation offers a convenient framework for
analysis and is useful for demonstrating effects of imperfect
FDI decision [5]. By using this formulation, [6],[7],[8] have
studied the closed-loop system stability, with or without the
presence of noises. However the design problem in this
framework is more complicated, particularly because the
controller only depends on the FDI process mode although
there are two Markov chains. It means that the number of
controllers to be designed is less than the total number of
the closed loop system modes by combining both fault and
FDI Markov chains. The design process involves searching
feasible solutions where there are more constraints than the
variables to be solved. Generally speaking, there lacks a
tractable design method for this stochastic FTC problem. In
[9], the state feedback controller for H∞ performance was
synthesized based on the assumption that the controller must
access both fault and FDI modes. And the same situation
occurs in [10]. [11] relaxed this restriction by designing a
controller based on cluster observation of Markov states.
However a common Lyapunov function like approach is
used, which means the information of FDI is at least partially
neglected, conservative controllers are expected.

It is worthwhile to mention that this FTC formulation is
different from Markovian Jump Linear Systems especially in
the synthesis problems. The latter is equivalent to the former
only if it is assumed that the real fault mode is immediately
available for the controller design. Otherwise, the controller
design for FTC system with two Markov chains is generally
more challenging. To the authors knowledge, in this well
accepted stochastic FTCS framework, the design of fault
tolerant controllers, which only access FDI outputs, is still
an open problem.

In this paper, we adopt a simpler yet more practical model,
where the FDI is assumed to be able to indicate the real
modes of the system, but after a random time delay. This
random memoryless detection delay can be interpreted as
computation time when using single sample in FDI algo-
rithm. Similar assumption have been made by Mariton in
[12] to study the stability. And analysis of effects of the
detection delay have been addressed in [8]. In this paper, the
system under consideration is assumed to have both mod-
eling uncertainties and external disturbances, in addition to
the system component and actuator failures. By considering
the Mean Exponential Stability and H∞ performance, both
state feedback and output feedback controllers are designed
via convex optimization.

This paper is organized as following. Section II contains
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the modeling and the problem formulation. In section III,
without considering modeling errors, sufficient conditions
are given as preliminary results for the nominal system to
achieve the desirable stability and the H∞ performance. In
section IV, we extend the results to the uncertain system.
The synthesis of state feedback control is then achieved by
solving the intersection of parametrization controllers. The
result on output feedback is presented in Section V, while
a numerical example is included in Section VI to demon-
strate the proposed design method. And the conclusions are
contained in section VII.

II. MODELING AND PROBLEM FORMULATION

The nominal system to be studied in this paper is given
as follows:{

ẋ(t) = A(rt)x(t)+B(rt)u(t, lt)+D(rt)w(t)
y(t) = C(rt)x(t)

(1)

where w(t), x(t), y(t) are disturbance, state and output,
respectively; it is assumed that w(t) ∈ L2[0,+∞); all the
matrices have corresponding compatible dimensions. {rt , t ≥
0} represents the fault process of the system, and is assumed
to be a continuous-time homogeneous Markov chain taking
values on a finite set S = {1, 2, . . . , m}. Let its transition
rate matrix be (αi j), then it follows that

rt : pi j(∆t) =

{
αi j∆t +o(∆t), i �= j

1+αii∆t +o(∆t), i = j

In a practical FTC system, the FDI itself can be a dynamic
sub-system, hence its output can not be synchronous with
the changes of the system modes. A time delay is always
expected. Such a time delay may have an undesirable impact
on the overall system stability and performance. The exis-
tence of modeling uncertainties can even result in a longer
and more serious time delay. To model the delayed FDI,
another random process {lt , t ≥ 0}, lt ∈ S is used as a system
mode indicator. For simplicity but without loss of generality,
we make the following assumptions for the characteristics of
FDI:

1) When system jumps from one mode to another, the
FDI output can always follow and jump to the same
mode after a time delay.

2) The possibilities of multiple transitions of r(t) between
two consecutive transitions of l(t) are negligible.

3) The FDI delay is modeled by an independent exponen-
tially distributed variable, whose mean value is given
as 1/βi j, j �= i, where i, j is the current mode of lt and
rt respectively.

This formulation of FTCS was firstly adopted by Mariton
in [12] when studying the stability.

For notational simplicity, in the remainder of the paper, for
any matrix M whose values depend on the particular modes
of rt or lt , e.g. when rt = i, lt = j, we denote: M(rt) = Mi,
M(lt) = Mj or M(rt , lt) = Mi j.

Given the system model in (1),and the state feedback
control law u(t, lt) = K(lt)x(t), the closed-loop system model

can then be written as following forms, assuming rt = i, lt =
j: {

ẋ(t) = (Ai +BiKj)x(t)+Diw(t)
y(t) = Cix(t)

(2)

we can simplify the notation for the closed-loop system
as:

G :

{
ẋ = Ãi jx+Diw
y = Cix

(3)

Finally the design objectives of the proposed FTC are
defined as follows:

• For the closed-loop system G , design a state feedback
controller so that: (1) the system is internally Mean Ex-
ponentially Stable (MES); and (2) the H∞ performance
is satisfied in the sense that E (‖y‖2) ≤ γ‖w‖2.

where E {.} stands for the mean value, and γ is pre-
determined or to optimize.
Remark 1: In some literatures, the design objective is to
make the system Mean Square Stable (MSS). [13] proved
that MES and MSS are equivalent, and each implies almost-
sure stability.

III. PRELIMINARY RESULTS ON NOMINAL STABILITY

AND PERFORMANCE

The purpose of this section is to introduce some prelim-
inary results on MES and H∞ performance for the nominal
system G given in (3). The results can then be readily
extended to the case when the system is subject to inevitable
modeling errors, and used for designing the controllers in the
next section.

Theorem 3.1: The nominal system G in the absence of
disturbance w(t) is MES if and only if there exist Pi j > 0,
such that

Ni j = ÃT
i jPi j +Pi jÃi j +1{i= j}(∑k∈S αikPk j)

+1{i �= j}β ji(Pii −Pi j) < 0, i, j ∈ S
(4)

where 1{.} stands for a measure, such that 1{x} equals one
only if x is true, otherwise it equals zero.
Proof: For rt = i, lt = j, we define the Lyapunov function of
the joint Markov process x,r, l as V (x,rt , lt , t) = xT Pi jx. For
such a Lyapunov function candidate, a weak infinitesimal
operator A V can be defined as follows:

A V (x,rt , lt)
= lim∆→0

1
∆

(
E {V (x(t +∆),rt +∆, lt +∆|x(t),rt , lt)}

−V (x(t),rt , lt)
)

Given rt = i, lt = j, A V is calculated differently in the
following two cases:
case 1: if i = j, then A V can be calculated as:

A V = xT [ÃT
i jPi j +Pi jÃi j +∑k∈S αikPk j]x

+wT DT
i Pi jx+ xT Pi jDiw

(5)

case 2: if i �= j, then the weak infinitesimal operator of
V (x,rt , lt) becomes:

A V = xT [ÃT
i jPi j +Pi jÃi j +β ji(Pii −Pi j)]x

+wT DT
i Pi jx+ xT Pi jDiw

(6)
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By using the notation Ni j defined in the theorem, for both
cases, the weak infinitesimal operator can be expressed in a
unified form as:

A V = xT Ni jx+wT DT
i Pi jx+ xT Pi jDiw (7)

By setting w(t) = 0 in the system G , it is known that the
system is mean exponentially stable if and only if the weak
infinitesimal operator A V < 0 [6]. It is equivalent to that

Ni j < 0, i, j ∈ S (8)

This completes the proof. �

Remark 2: From Remark 1, it is clear that ẋ = Ãi jx is an
ordinary MJLS. It has been shown that for a stable system,
when choosing the Lyapunov function as xT P(rt , lt , t)x, the
matrix P(rt , lt , t) will converge to a constant matrix P(rt , lt)
as t → ∞ ([6]. Hence using a constant Pi j herein will not
introduce any conservatism in the design.

Although the stability analysis of the stochastic FTCS
considered in this paper can be similarly done as that of
an ordinary MJLS, it can be seen later that the existence of
the FDI delay in the FTCS makes the controller synthesis
much more difficult and complex than that of MJLS.

In addition to the critical stability criterion, other important
performance, such as disturbance/noise attenuation is also
desirable. By considering the system H∞ performance as
defined in the design objective, the sufficient condition is
given in the following theorem.

Theorem 3.2: By assuming that the system G is internally
MES and the disturbance w∈ L2[0,+∞), given γ > 0, the sys-
tem H∞ performance is achieved if the following inequalities
hold,

Ni j +CT
i Ci + γ−2Pi jDiD

T
i Pi j < 0 (9)

where the expression of Ni j is given in (4)
Proof: For H∞ performance, we can write:

J = E {‖y‖2}− γ2‖w‖2

= E
{∫ ∞

0 (yT y− γ2wT w)dt
}

= E
{∫ ∞

0 (yT y− γ2wT w+A V )dt
}−E {∫ ∞

0 A V dt}
= E

{∫ ∞
0 (yT y− γ2wT w+A V )dt

}
−E {V (∞)}+V (0)

(10)
Since w ∈ L2[0,+∞) and system is internally MES, so

E (V (∞)) = 0 [14], and if we assume zero initial conditions,
then the equation above will be:

J = E

{
∞
∑

k=0

∫ tk+1
tk

[
x
w

]T [
N(rtk , ltk)+C(rtk)

TC(rtk)
D(rtk)

T P(rtk , ltk)
P(rtk , ltk)D(rtk)

−γ2I

][
x
w

]
dt

}
< 0

(11)
where tk is the k-th transition time of two processes rt and
lt . The inequality will hold if for any states i, j ∈ S:[

Ni j +CT
i Ci Pi jDi

DT
i Pi j −γ2I

]
< 0 (12)

From Schur Complement, it is the equivalent expression of
(9), and this completes the proof. �

IV. DESIGN OF STATE FEEDBACK FAULT TOLERANT

CONTROL FOR STABILITY AND PERFORMANCE

For practical systems, exact mathematical models are
extremely hard or even impossible to obtain. In FTCS,
modeling errors and unknown disturbances are the major
causes of an imperfect FDI result, which in turn affect the
control performance. In this section, the FTC design problem
is considered for the same stochastic system treated in the
previous section, but with modeling uncertainties. In this
case, the system and input matrices in system G are assumed
to be of the following form:

Ai = A0i +A1i∆1iA2i, Bi = B0i +B1i∆2iB2i

where ‖∆1i‖ ≤ 1 and ‖∆2i‖ ≤ 1. Furthermore, the FDI
parameter may change as well, because while the system has
time-varying model uncertainties, the threshold and decision
rules in a FDI scheme are usually fixed. Hence, we further
assume that the FDI delay parameter, βi j is uncertain but
bounded, i.e. β−

i j ≤ βi j ≤ β+
i j .

Under the assumption that all states are accessible, the
state feedback control strategy can be adopted. It can be
seen from (2) and (3), that the closed-loop system matrix is
then written as:

Ãi j = (A0i +A1i∆1iA2i)+(B0i +B1i∆2iB2i)Kj (13)

In this case, it can be easily shown that the matrix
inequality (9) in Theorem 3.2 becomes:

AT
0iPi j +Pi jA0i +AT

2i∆
T
1iA

T
1iPi j +Pi jA1i∆1iA2i +KT

j BT
0iPi j

+Pi jB0iKj +Pi jB1i∆2iB2iKj +KT
j BT

2i∆
T
2iB

T
1iPi j +CT

i Ci

+γ−2Pi jDiD
T
i Pi j +1{i= j}(∑

k∈S

αikPk j)

+1{i�= j}β ji(Pii −Pi j) < 0

(14)

Furthermore, it is true that, ∀εi j,δi j > 0,

Pi jA1i∆1iA2i +AT
2i∆

T
1iA

T
1iPi j ≤ ε−1

i j AT
2iA2i + εi jPi jA1iAT

1iPi j

Pi jB1i∆2iB2iKj +KT
j BT

2i∆
T
2iB

T
1iPi j ≤ δi jPi jB1iBT

1iPi j

+δ−1
i j KT

j BT
2iB2iKj

(15)
The proof is obvious from several useful lemmas in the

robust control literature, hence is omitted.
By substituting these two inequalities into (14), following

the similar steps in the proof of Theorems 3.1 and 3.2, the
following lemma can be obtained:

Lemma 4.1: For the uncertain system G with the system
matrix shown in (13), given γ > 0, the MES and H∞ perfor-
mance (i.e. disturbance attenuation by γ) will hold if there
exist matrices Kj, Pi j > 0, and scalars εi j > 0,δi j > 0, such
that the following matrix inequality holds for any i, j ∈ S,
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AT
0iPi j +Pi jA0i + ε−1

i j AT
2iA2i + εi jPi jA1iA

T
1iPi j +KT

j BT
0iPi j

+Pi jB0iKj +δi jPi jB1iB
T
1iPi j +δ−1

i j KT
j BT

2iB2iKj +CT
i Ci

+γ−2Pi jDiD
T
i Pi j +1{i= j}(∑

k∈S

αikPk j)

+1{i �= j}β ji(t)(Pii −Pi j) < 0
(16)

Proof: the proof is omitted. �
Remark 3: Since we assume that the parameter of FDI delay,
β ji, i, j ∈ S are uncertain but bounded, they are contained in
a polytope in the parameter space. It can also be seen that
the left hand side of (16) is affine with respect to β ji. In the
following sections, when solving the matrix inequalities, the
vertices formed by β−

i j and β+
i j will be substituted to replace

βi j. If all these inequalities with β+
ji or β−

ji hold, then for
any βi j in the polytope, the corresponding inequalities will
also hold.

Hence the design problem can be tackled by solving (16)
for Kj, j ∈ S, the state feedback control gains. Unfortunately,
(16) is in a complex form of nonlinear matrix inequali-
ties, and cannot be solved directly. To handle this difficult
problem, an effective procedure is introduced, in which this
nonlinear matrix inequality is transformed into its two-step
equivalence, and each step only involves solving the LMIs.
First of all, the following projection lemma is introduced.

Lemma 4.2: Projection Lemma ([15]): Given Ψ,U,V ,
there exists X such that

Ψ+UT XTV +V T XU < 0

if and only if

NT
U ΨNU < 0, NT

V ΨNV < 0

holds, where NU and NV are bases of null spaces of U and
V respectively.

Using this lemma, the state feedback control gains can be
calculated by solving the two-step LMIs. The first step give
out the necessary conditions for existence of H∞ controller,
which also lead to the controller Ki j, controller accesses both
fault mode and FDI output. Then the controller Kj, if exists
under given set of parameters, lies in the intersection of
controllers Ki j.

Theorem 4.1: In the case of state feedback control, if the
nonlinear matrix inequality (16) has feasible solutions, then
there exist positive definite matrices Xi j and positive scalars
εi j,δi j,i, j ∈ S, such that the following LMIs are feasible for

∀i, j ∈ S:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M2i j W T
1i Xi jAT

2i W T
1i Xi jCT

i εi jW T
1i A1i

A2iXi jW1i −εi jI 0 0
CiXi jW1i 0 −I 0
εi jAT

1iW1i 0 0 −εi jI
δi jBT

1iW1i 0 0 0
DT

i W1i 0 0 0
MT

3i j 0 0 0
δi jW T

1i B1i W T
1i Di M3i j

0 0 0
0 0 0
0 0 0

−δi jI 0 0
0 −γ2I 0
0 0 M4i j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(17)

where[
W T

1i W T
2i

]T = Ker(
[
BT

0i BT
2i

]
)

M2i j = W T
1i [Xi jAT

0i +A0iXi j +(1{i= j}αii

−1{i�= j}β ji)Xi j]W1i −δi jW T
2iW2i

M3i j = W T
1i

[√
1{i�= j}β ji,

√
1{i= j}αi1, · · · ,

√
1{i= j}αi,i−1,√

1{i= j}αi,i+1, · · ·
]

Xi j

M4i j = −diag {Xii,X1 j, · · · ,Xi−1, j,Xi+1, j, · · ·}
Proof:

First re-write the matrix inequality (16) by using Schur
Complement:

⎡
⎢⎢⎢⎢⎣

G11i j +Pi jB0iKj +KT
j BT

0iPi j εi jPi jA1i δi jPi jB1i

εi jAT
1iPi j −εi jI 0

δi jBT
1iPi j 0 −δi jI

DT
i Pi j 0 0

B2iKj 0 0
Pi jDi KT

j BT
2i

0 0
0 0

−γ2I 0
0 −δi jI

⎤
⎥⎥⎥⎦ < 0

(18)
where

G11i j = AT
0iPi j +Pi jA0i + ε−1

i j AT
2iA2i +CT

i Ci

+1{i= j}(∑k∈S αikPk j)+1{i �= j}β ji(Pii −Pi j)

Then we rearrange the inequality above in the same form as
appeared in the projection lemma 4.2 as:

Gi j +UT KT
j Vi j +V T

i j KjU < 0

where

Gi j =

⎡
⎢⎢⎢⎣

G11i j εi jPi jA1i δi jPi jB1i Pi jDi 0
εi jAT

1iPi j −εi jI 0 0 0
δi jBT

1iPi j 0 −δi jI 0 0
DT

i Pi j 0 0 −γ2I 0
0 0 0 0 −δi jI

⎤
⎥⎥⎥⎦

U =
[
I 0 0 0 0

]
,Vi j =

[
BT

0iPi j 0 0 0 BT
2i

]
Using the projection lemma, we conclude that this non-

linear matrix inequality has solution if and only if

NT
U Gi jNU < 0 and NT

V Gi jNV < 0
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Notice that for positive scalars εi j, δi j,

NT
U Gi jNU =

⎡
⎢⎢⎣
−εi jI 0 0 0

0 −δi jI 0 0
0 0 −γ2I 0
0 0 0 −δi jI

⎤
⎥⎥⎦ < 0

always holds. Therefore the only constraint left is

NT
V Gi jNV < 0 (19)

We have

NV = diag{P−1
i j , I, I, I, I} ·

⎡
⎢⎢⎢⎢⎣

W1i 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

W2i 0 0 0

⎤
⎥⎥⎥⎥⎦

Substitute this equation into the inequality (19) to obtain,⎡
⎢⎢⎣

W T
1i M1i jW1i −δi jW T

2iW2i εi jW T
1i A1i δi jW T

1i B1i W T
1i Di

εi jAT
1iW1i −εi jI 0 0

δi jBT
1iW1i 0 −δi jI 0

DT
i W1i 0 0 −γ2I

⎤
⎥⎥⎦ < 0

(20)
where

M1i j = A0iP
−1
i j +P−1

i j AT
0i +P−1

i j [ε−1
i j AT

2iA2i +CT
i Ci

+1{i= j}(∑k∈S αikPk j)+1{i �= j}β ji(Pii −Pi j)]P−1
i j

With M1i j substituted in, the block matrix W T
1i M1i jW1i −

δi jW T
2iW2i in the left-hand-side of the above inequality can

be expanded into the following equivalent matrix by using
Schur complements:⎡

⎢⎢⎢⎣
M2i j W T

1i P
−1
i j AT

2i W T
1i P

−1
i j CT

i M3i j

A2iP
−1
i j W1i −εi jI 0 0

CiP
−1
i j W1i 0 −I 0

MT
3i j 0 0 M4i j

⎤
⎥⎥⎥⎦

where M2i j, M3i j, M4i j are defined in the theorem.
Finally with simple matrix rearrangement, and definition

Xi j = P−1
i j , the LMI (20) is made equivalent to the LMI (17)

given in the theorem. In conclusion, based on the projection
lemma, the original nonlinear matrix inequality (18) holds if
and only if the LMI (17) has feasible solutions. Hence the
proof. �

Based on the result of Theorem 4.1, the controller only
accessing FDI mode, can be obtained, by substituting the
values of Pi j,εi j,δi j into the nonlinear matrix inequality (18).
Obviously, it becomes an LMI with respect to Kj, and the
feasible controllers Kj can be solved.

V. OUTPUT FEEDBACK CONTROLLER SYNTHESIS

In this section, the output feedback design will be briefly
discussed. First we make following definitions:

Kj =
[

Â j B̂ j
Ĉ j D̂ j

]
, Ā0i =

[
A0i 0
0 0

]
, B̄0i =

[
0 B0i
I 0

]
,

C̄i =
[

0 I
Ci 0

]
, Λ̄1i =

[
A1i B1i
0 0

]
, Ā2i =

[
A2i 0
0 0

]

B̄2i =
[

0 0
0 B2i

]
,∆ =

[
∆1 0
0 ∆2

]
C̄1i =

[
Ci 0

]
, D̄i =

[
Di
0

]

For output feedback case, we now have,

Pi jĀ0i + ĀT
0iPi j +Pi jB̄0iKjC̄i +C̄T

i KT
j B̄T

0iPi j +Pi jΛ̄1i∆(Ā2i+
B̄2iKjC̄i)+(Ā2i + B̄2iKjC̄i)T ∆T Λ̄T

1iPi j +1{i= j}(∑k∈S αikPk j)
+1{i�= j}β ji(Pii −Pi j)C̄T

1iC̄1i + γ−2Pi jD̄iD̄T
i Pi j < 0

Which is equivalent to: there exist scalars εi j > 0, such that
the following matrix inequality holds for any i, j ∈ S,

Pi jĀ0i + ĀT
0iPi j +Pi jB̄0iKjC̄i +C̄T

i KT
j B̄T

0iPi j + ε−1
i j (Ā2i

+B̄2iKjC̄i)T (Ā2i + B̄2iKjC̄i)+ εi jPi jΛ̄1iΛ̄T
1iPi j +1{i= j}(∑k∈S αikPk j)

+1{i�= j}β ji(Pii −Pi j)+C̄T
1iC̄1i + γ−2Pi jD̄iD̄T

i Pi j < 0
(21)

Similar to state-feedback situation, after using the Projection
lemma, we have the following result.

Theorem 5.1: The necessary condition for the existence of
output feedback controller is that there exist εi j > 0, Pi j > 0,
Xi j = P−1

i j such that the following two matrix inequalities
hold:⎡

⎢⎣
W T

3i M5i jW3i W T
3i ĀT

2i W T
3i Pi jΛ̄1i W T

3i Pi jD̄i
Ā2iW3i −εi jI 0 0

Λ̄T
1iPi jW3i 0 −ε−1

i j I 0
D̄T

i Pi jW3i 0 0 −γ2I

⎤
⎥⎦ < 0 (22)

⎡
⎢⎢⎣

M6i j εi jW T
1i Λ̄1i W T

1i D̄i M3i j

εi jΛ̄T
1iW1i −εi jI 0 0

D̄T
i W1i 0 −γ2I 0

MT
3i j 0 0 M4i j

⎤
⎥⎥⎦ < 0 (23)

where[
W1i

W2i

]
= ker(

[
B̄T

0i B̄T
2i

]
), W3i = ker(C̄i)

M5i j = Pi jĀ0i + ĀT
0iPi j +1{i= j}( ∑

k∈S
αikPk j)

+1{i �= j}β ji(Pii −Pi j)+C̄T
1iC̄1i

M6i j = W T
1i [Xi jĀT

0i + Ā0iXi j +(1{i= j}αii −1{i �= j}β ji)
Xi j]W1i +W T

2i Ā2iXi jW1i +W T
1i Xi jĀT

2iW2i

−εi jW T
2iW2i

We notice that in the inequalities above, both Pi j, εi j

and their inverse appeared. This difficult situation appears
in the static output feedback (SOF) problem as well. Many
algorithms have been proposed to solve this nonconvex prob-
lem, such as alternating projection, XY-centering, Min-Max
algorithm and cone complementarity Linearization (CCL).
where the comparison of these algorithms can be found
in [16] and the an improved CCL algorithm is presented
in [17]. And the objective function for minimization is
∑i ∑ j{trace(Pi jXi j − I)+ εi jε̄i j −1}, where ε̄i j = ε−1

i j . Based
on this objective function, the corresponding SLPMM algo-
rithm can be constructed similarly as in [17]. Due to the page
limit, the details of the algorithm is omitted here.

After solving these two matrix inequalities, controllers can
be solved in exactly the same way as the state feedback case.

VI. NUMERICAL EXAMPLE

Consider a second-order system, S = {1, 2}. (A1,B1,C1)
is assumed to be the normal system model and (A2,B2,C2)
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is a faulty one:

A1 = A2 =
[

1 0
0 0.8

]
, B1 =

[
0 1

−0.25 0.25

]
,

B2 =
[

0 0.2
−0.25 0.05

]
,C1 = C2 =

[
1 2

]
The weighting matrices for the disturbance, and the bounds
for ∆Bi, i = 1, 2, the model uncertainties on B matrices, are
given as:

D1 =
[

0.5
0.5

]
,D2 =

[
0.5
1

]
,Ai j = Bi j =

[
0.1 0
0 0.1

]
, i, j ∈ S

The transition rate matrix for failure Markov chain is

chosen as: α =
[−0.5 0.5

1 −1

]
, 2 ≤ β12 ≤ 3, 2.5 ≤ β21 ≤ 3.5.

For this system, a state feedback control is designed by
solving the LMIs developed in the previous section. By
pre-setting the disturbance attenuation level as γ = 0.8, the
solutions are obtained as:

K1 =
[

2.4563 29.4954
−21.0010 −7.5161

]
,K2 =

[
1.9998 24.5445

−12.4093 −3.2219

]

By using the first set of controllers, a single sample path
simulation is performed, and the results are shown in Fig. 1.
The disturbance is modeled as w = e−0.1t sin t. It is calculated
that ‖y‖2 = 0.3202, ‖w‖2 = 1.5767. Obviously, the desirable
disturbance attenuation is achieved.
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Fig. 1. Single sample path simulation: (a) system modes; (b) FDI modes;
(c) system state response; (d) the system output and disturbance

VII. CONCLUSION

In this paper, we focus our discussions on the design of
stochastic Fault Tolerant Control in the presence of random
FDI delays. The fault/failure of the system is described
by a continuous-time Markov chain, and the FDI delay

is represented by another exponentially distributed random
variable. The main difficulty in the design lies in the fact
that the mode of controller is solely dependent on the mode
of the FDI process, whose transitions depend on those of the
system failure mode as well as the FDI delay. The sufficient
conditions for the desirable Mean Exponential Stability and
H∞ performance are obtained for the system with modeling
uncertainties and external disturbances. By transforming the
given nonlinear matrix inequalities into the tractable two-
step LMI formulations, state feedback controllers can be
solved conveniently by using the available commercial soft-
ware packages. An illustrative example is given at last and
simulation results are shown to demonstrate the effectiveness
of the proposed design algorithm.
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