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Abstract— This paper gives the sufficient and necessary
conditions which guarantee the existence of a diffeomorphism
and an output injection in order to transform a nonlinear
system in a ‘canonical’ normal form depending on its output.
We propose two methods: one is based on the commutativity
via the Lie brackets of a family of vector fields and the second
one is the dual of the first one, based on the closure of a family
of 1−forms.

I. INTRODUCTION

In control theory, the design of an observer for linear sys-
tem is well-known. Motivated by this, the so-called problem
of observability linearization by means of a diffeomorphism
and an output injection of nonlinear system was proposed.
Till now, the linearization problem has been extensively
studied in [9] [10] [7] [12]. The Sufficient and necessary
geometrical conditions, which guarantee the existence of
a diffeomorphism and an output injection to transform a
nonlinear system into the canonical linear form, were first
addressed in [9] and [10]. As these conditions are too
restrictive, an analytical approach is introduced in [13] and
is generalized by Krener and Xiao [11]. Other approaches
using quadratic normal forms were given in [2], [3], [4] [5].
All these approaches allow us to design an observer for a
larger class of nonlinear systems.

Recently, [8] gave the sufficient and necessary geometrical
conditions to transform a nonlinear system to the so-called
output-dependent time scaling linear canonical form. In [6]
the author gave independently the dual geometrical condi-
tions of [8].

In this paper, we will propose two different methods
to deduce the geometrical conditions which are sufficient
and necessary to guarantee the existence of a local diffeo-
morphism and an output injection to transform a nonlinear
system in a ‘canonical’ normal form depending on its output.
This kind of linearization will be called Output Dependent
Observability linear normal form (ODO linear normal form).

This paper is organized as follows. Notations, definition
and problem statement are given in section 2. In Section
3, we present our first method to deduce the geometrical
conditions for a nonlinear system to be transformed to ODO
linear normal form. The dual result, based on the closure of
a family of 1−forms, is given in section 4. Throughout the
paper, an example is discussed to highlight our propositions.

II. NOTATIONS AND PROBLEM STATEMENT

Consider the following system:{
ẋ = f(x)
y = h(x) (1)

where U � �n is the set of admissible state, f : U � IR n →
IR n and h :U � IR n → IR are analytic.

Assume that for all x ∈ U the codistribution
span

{
dh, dLfh, ..., dLn−1

f h
}

is of rank n. Set θi = dLi−1
f h

for 1 ≤ i ≤ n and θ =
(

θ1 .... θn

)T
.

We call the components of θ the observability 1−forms,
and they form a basis of the cotangent bundle T ∗U of U.

Let g1 be the vector field defined by:{
θi (g1) = 0 for 1 ≤ i ≤ n − 1
θn (g1)= 1

and define gk = (−1)k−1
adk−1

f (g1) for 2 ≤ k ≤ n. It is
clear that {g1, ...., gn} form a basis of the tangent bundle
TU of U . Moreover, we have:

θ (g1, ...., gn) =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 ... 0 1

0
... ... 1 l2,n

... ... 1 ...
...

... 1 ... ...
...

1 ln,2 ... ... ln,n

⎞⎟⎟⎟⎟⎟⎟⎠ := Λ

where
lk,j = θk(gj) (2)

with 2 ≤ k ≤ n and n − k + 2 ≤ j ≤ n

Definition 1: We say that a dynamical system is in Output
Dependent Observability linear normal form (ODO linear
normal form) along its output trajectory y(t) if it is in the
following form: {

ż = A(y)z + β(y)
y = zn = Cz

(3)

where

A(y) =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 ... 0 0
α1(y) 0 ... 0 0

0 α2(y) 0 ...
...

... .. ... ...
...

0 ... 0 αn−1(y) 0

⎞⎟⎟⎟⎟⎟⎟⎠
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and αi(y) �= 0 for y ∈ ]−a, a[ and a > 0.

Without lose of generality we can assume that αi(y) > 0
on ]−a, a[ for all i = 1 : n− 1. Indeed, if for a certain k we
have αk < 0 then we take −zk+1 instead of zk+1.

Remark 1: We just consider the linear output in this
normal form as the work in [9], but it’s not necessary to
set the output as a linear one. A function of the linear output
such as h(Cz), even a nonlinear output such as h(z) in [13]
would be considered in the future.

Before to state the problem which we will deal with in
this paper, we first give some motivations to study systems
in the ODO linear normal form.

The main motivation for ODO linear normal form is
to generalize the linearization theorem in [9], [4] and [6].
Moreover, we also want to apply this normal form into
cryptography since that it introduces the observability bi-
furcations into the matrix A(y) which can be use to increase
the robustness of the cryptosystem. In addition, it’s obvious
that we can design observes for this kind of normal form.

Indeed, for system (3), there exist many ways to design
an observer. We can construct a step by step sliding mode
observer (see [1]) for the system (3) as follows:

˙̂z = A(y)ẑ + β(y) +

⎛⎜⎜⎜⎜⎜⎝
En−1κnsign (z̃1 − ẑ1)
En−2κn−1sign (z̃2 − ẑ2)
...
E1κ2sign (z̃n−1 − ẑn−1)
κ1sign (zn − ẑn)

⎞⎟⎟⎟⎟⎟⎠
with the auxiliary states:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z̃n−1 = ẑn−1 + E1κ1
sign(zn−ẑn)

αn−1(y)

z̃n−2 = ẑn−2 + E2κ2
sign(z̃n−1−ẑn−1)

αn−2(y)

...
z̃1 = ẑ1 + En−1κn−1

sign(z̃2−ẑ2)
α1(y)

where

if zn = ẑn, E1 = 1, else E1 = 0
if z̃n−1 = ẑn−1 and E1 = 1, E2 = 1, else E2 = 0
...
if z̃2 = ẑ2 and En−2 = 1, En−1 = 1, else En−1 = 0

So, if all observation errors are bounded and all αi �= 0 then
it is possible to find κ1, ...., κn such that the observation
errors go to zero in finite time.

Obviously, there exist many other observers which work
for system (3), but the problem which we consider here is
the following.

Problem statement: When does there exist a local diffeo-
morphism and an output injection which transform system
(1) to the ODO linear normal form?

We answer this question in two ways: in next section we
give the sufficient and necessary conditions using a family
vector fields associated with the nonlinear system and in the
following section we give the dual of the first method which
give us the diffeomorphism.

III. MAIN RESULT

In this section, we will use Lie brackets commutativity of
a family of vector fields to give the sufficient and necessary
conditions to solve our problem.

Theorem 1: System (1) can be transformed to ODO lin-
ear normal form (3) by a diffeomorphism and an out-
put injection if and only if there exist a family of func-
tions (αi(y))1≤i≤n−1 such that the following family of
vector fields: g̃1 = π1g and g̃2 = 1

α1
[g̃1, f ], ....., g̃n =

1
αn−1

[g̃n−1, f ] satisfy to the commutativity conditions:

[g̃i, g̃j ] = 0 for 1 ≤ i, j ≤ n

where π1 = α1...αn−1.
Remarks 1: 1) If αi for all 1 ≤ i ≤ n − 1 are constants,

so their derivatives are zero, then we get [gi, gj ] = 0 for
1 ≤ i, j ≤ n, so we obtain the linearization theorem of
([9]).

2) If αi = s(y) for all 1 ≤ i ≤ n − 1 then we obtain the
result stated in [8] and [6].

Proof: Necessary condition:
For system in the form (3), it is easy to show that g1 =

1
π1

∂
∂z1

which yields that g̃1 = ∂
∂z1

and then by construction
we obtain g̃i = ∂

∂zi
for all 2 ≤ i ≤ n.

Sufficient condition:
Assume that there exist (αi(y))1≤i≤n−1 such that:

[g̃i, g̃j ] = 0 for 1 ≤ i, j ≤ n

then there exists a local diffeomorphism φ = z such that

dφ(g̃i) =
∂

∂zi

As dφ is a multiclosed 1−forms, and dφ(g̃i) = ∂
∂zi

is
constant, so ∂

∂zi
dφ(f) = dφ ([g̃i, f ]) = αidφ(g̃i+1) =

αi
∂

∂zi+1
, thus ∂

∂zi
dφ(f) = αi

∂
∂zi+1

for 1 ≤ i ≤ n − 1.

Thus, by integration we obtain: dφ(f) = A(y)z + β(y).

It’s natural to ask how to compute such functions
(αi(y))1≤i≤n−1? The following criterion, in many cases,
yields us to determine functions (αi(y))1≤i≤n−1.

Criterion 1: If system (1) can be transformed to ODO
linear normal form then there exist functions λ1, ..., λn−1

such that:

[g1, gn] = λ1g1

[gk, gn] = λkgk mod [g1, ..., gk−1]
for all 2 ≤ k ≤ n − 1

where

λn−k = (−1)k+1
(
Ck

k−1

π′
n−k−1

πn−k−1
+ Ck+1

k−1

π′
n−k−2

πn−k−2

+.... + Cn−1
k−1

π′
1

π1

)
+

(
π′

n−k

πn−k
+

(−1)k+1 π′
n−k

πn−k

)
for 1 ≤ k ≤ n − 2

λ1 = (−1)n π′
1

π1
+ π′

1
π1

(4)
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and πk =
n−k∏
i=1

αn−i for all 1 ≤ k ≤ n − 1, and π′
k = dπk

dy .

Before, to proof this criterion, we will give some remarks
on the family (λi)1≤i≤n−1 .

Remarks 2: 1) Until the compilation of this paper we
don’t know if equation (4) is sufficient to find the family
(αi(y))1≤i≤n−1 . Indeed in (4), we can have the same
equations for different λi. If n is odd then λ1 = 0, thus
for n = 2k + 1 we have at most n− 2 equations, and as we
will show it in our example for n = 4, we have λ3 = −λ2.
However, in many cases, by identification, the writing of
equation (4) allows us to give (αi(y))1≤i≤n−1 .

2) Lie brackets [gi, gj ] for 1 ≤ i, j ≤ n − 1 don’t give
us more equations than those obtained in (4). Indeed, if we
set B = (bi,j)1≤i,j≤n = ([gi, gj ])1≤i,j≤n , then B is an
antisymmetric matrix and

bi,i = bi,j = 0 for all i ∈ [1, n − 1] and j ∈ [1, n − i]

and by using the Jacobi’s identity we have:

[g2, gn−1] = [[g1, f ] , gn−1]
= (− [[gn−1, g1] , f ]

+ [g1, gn])

As [gn−1, g1] = 0, we have

[g2, gn−1] = [g1, gn]

By the same argument we obtain:

b1+k,n−k = λ1g1 for k = 1 : p

where p = n+1
2 if n is odd else p = n

2 .

To show that the other bi,j provide equations which are
combinations of λk, we use over and over the Jacobi’s
identity. For example for b3,n−1, we have:

b3,n−1 = [g3, gn−1] = [[g2, f ] , gn−1]
= − [[gn−1, g2] , f ] + [g2, gn]
= − [[g1, gn] , f ] + λ2g2 mod [g1]
= λ2g2 mod [g1] − [λ1g1, f ]
= λ2g2 mod [g1] − λ1 [g1, f ]

+ (Lfλ1) g1

= (λ2 − λ1) g2 mod [g1].
Proof: For system (3) we compute g1 and g2 and we

get:

g1 =
1
π1

∂

∂z1

g2 =
1
π2

∂

∂z2
+

π′
1

π2
1

αn−1zn−1
∂

∂z1

Now, as for 3 ≤ k ≤ n we have gk = [gk−1, f ] then by
induction we obtain:

gk = 1
πk

∂
∂zk

+

⎛⎜⎜⎜⎝
π′

k−1

π2
k−1

+ π′
k−2

π2
k−2

αk−2+
π′

k−3

π2
k−3

αk−1αk−2 + ...

+π′
1

π2
1
α1α2...αk−2

⎞⎟⎟⎟⎠πn−1zn−1
∂

∂zk−1

−

⎛⎜⎜⎜⎝
π′

k−2

π2
k−2

+ C2
1

π′
k−3

π2
k−3

αk−2+

C3
1

π′
k−4

π2
k−4

αk−2αk−1 + ....

+C
(k−2)
1

π′
1

π2
1
α1α2...αk−2

⎞⎟⎟⎟⎠ πn−2zn−2
∂

∂zk−2

+

⎛⎜⎜⎝
π′

k−3

π2
k−3

+ C3
2

π′
k−4

π2
k−4

αk−4

+....

+C
(k−2)
2

π′
1

π2
1
α1α2...αk−2

⎞⎟⎟⎠ πn−3zn−3
∂

∂zk−3

· · ·
+(−1)k π′

1
π2
1
πn−k+1zn−k+1

∂
∂x1

+Rk,1(zn, zn−1, .., zn−k+2)g1 + ...
+Rk,k−2(zn, z2

n−1)gk−2

(5)

From this it is easy to compute all Lie Brackets [gk, gn]
for 1 ≤ k ≤ n − 1 and deduce equation (4).

Here, a simple example is studied in order to illustrate the
previous theorem. Moreover, it allows us to highlight our
concern stressed in Remarks 2.

Example 1: Consider the following system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = γ(y)

1+x4
x1x3

ẋ2 = β(y)
1+x4

x1

ẋ3 = μ(y)x2

ẋ4 = γ(y)x3

y = x4 (6)

Its family vector fields is:

g1 =
1 + x4

γμβ

∂

∂x1

g2 =
1

γμ

∂

∂x2
+

(
x3

μβ
− γx3

(
1 + x4

γμβ

)′)
∂

∂x1

g3 =
1
γ

∂

∂x3
+

(
(γμ)′

(γμ)2
+ β

(γμβ)′

(γμβ)2

)
γx3

∂

∂x2

−γμx2 (1 + x4)
(γμβ)′

(γμβ)2
∂

∂x1
+ R1,3g1

g4 =

(
γ′

γ2
+

(
(γμ)′

(γμ)2
+ β

(γμβ)′

(γμβ)2

)
μ

)
γx3

∂

∂x3

+
∂

∂x4
−

(
(γμ)′

(γμ)2
+ 2β

(γμβ)′

(γμβ)2

)
γμx2

∂

∂x2

+
(

1
1 + x4

+
(γμβ)′

γμβ

)
x1

∂

∂x1

+R1,4 (z3, z2) g1 + R2,3(z2
3)g2
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From which a straight computation gives:

λ1 =
(γμβ)′

γμβ
+

(γμ)′

γμ
+ 2

γ′

γ

λ2 = −2
(γμβ)′

γμβ

λ3 = 2
(γμβ)′

γμβ

which by identification with equation (4) yields to α1 =
β, α2 = μ and α3 = γ, so

g̃1 = (1 + x4)
∂

∂x1

g̃2 =
∂

∂x2

g̃3 =
∂

∂x3

g̃4 =
∂

∂x4
+

x1

1 + x4

∂

∂x1

It is clear that [g̃i, g̃j ] = 0 for all 1 ≤ i, j ≤ 4. Therefore the
two conditions of theorem 1 are fulfilled, thus system (6)
can be transformed to ODO linear normal form.

Theorem 1 allows us to know whether a nonlinear system
can be or not transformed to ODO linear normal form.
However, it doesn’t give the diffeomorphism for transforming
system (1) to ODO linear normal form. The following section
deals with this question.

IV. THE DUAL VERSION AND THE DIFFEOMORPHISM

In this section, we propose another method, based on the
closure of a family of 1−forms, to give the diffeomorphism
which transforms system (1) to ODO linear normal form.

Considering the family of vector fields (g̃i)1≤i≤n defined
in theorem 1 it is easy to show that:

θ (g̃1, ...., g̃n) =⎛⎜⎜⎜⎜⎜⎜⎝

0 0 ... 0 1

0
... ... πn−2 l2,n

... ... .. ...
...

... π2 ... ...
...

π1 ln,2 ... ... ln,n

⎞⎟⎟⎟⎟⎟⎟⎠ :=Λ̃

where

l̃k,j = θk(g̃j)
with 2 ≤ k ≤ n and n − k + 2 ≤ j ≤ n

Set
ω = Λ̃−1θ := (ω1, ω2, ..., ωn)T (7)

where, for all 1 ≤ s ≤ n, we have:

ωs =
n∑

m=1
rs,mθm (8)

Then the following algorithm gives all components of ω:

Algorithm 1:

for all 1 ≤ j ≤ n
rn,j = ... = rn−j+2,j = 0 and rn−j+1,j = 1

for 2 ≤ k ≤ n − 1 and 1 ≤ j ≤ n

rn−k,j = −
k∑

i=2

l̃k,n−k+i−(j−1)rn−k+i−(j−1),j

and then (8) become: ωs =
n−s+1∑
m=1

rs,mθm.

Theorem 2: System (1) can be transformed to ODO linear
normal form (3) by a diffeomorphism and an output injection
if and only if there exist a family functions (αi(y))1≤i≤n−1

such that the multi 1−form ω given in (7) is such that dω =
0.

Moreover, the diffeomorphism which transforms (1) to (3)
is given locally by φ(x) = z where

zi = φi(x) =
∫

γ

ωi + φi(0) for all 1 ≤ i ≤ n

where γ is a smooth path from 0 to x lying in a neighborhood
V0 ⊆ U of 0.

Proof: To prove this theorem we will show that the
two following conditions are equivalent:

i) [g̃i, g̃j ] = 0, ∀i, j ∈ [1, n]
ii)dω = 0

Recall that for any two vector fields X, Y we have:

dω(X, Y ) = LX (ω(Y )) − LY (ω(X)) − ω([X, Y ])

Now set X = g̃i and Y = g̃j , we obtain:

dω(g̃i, g̃j) = Lgi
ω(g̃j) − Lgj

ω(g̃i) − ω([g̃i, g̃j ])

As ω(g̃j) and ω(g̃i) are constants, then we have

dω(g̃i, g̃j) = −ω([g̃i, g̃j ])

As ω is an isomorphism and (g̃i)1≤i≤n is a basis of TU,
then condition i) is equivalent to condition ii).

The following gives another way to find equations in
(αi)1≤i≤n−1.

Criterion 2: If system (1) can be transformed to ODO
linear normal form (3) by means of a diffeomorphism and
an output injection then there exist functions σ1, ..., σn−1

such that:

d [θn (gk)] = σk−1θk mod [θ1, ..., θk−1]
for all 2 ≤ k ≤ n − 1

Remarks 3: i) The multi 1−form ω can be viewed as an
isomorphism TUn → U × IR n which sends each g̃i to the
canonical vector basis ∂

∂zn−i+1
. Moreover, dω = 0 means

that locally there is φ : U → U such that ω is the tangent
map of φ.

ii) The family of (σi)1≤i≤n−1 is linearly dependent of the
family of (λi)1≤i≤n−1 .

iii) For a given k = 2 : n − 1 we have:

dθn (gk) = dln,k
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where lk,j for 0 ≤ i ≤ n − 2 are given in matrix Λ (2).
The other components of Λ don’t yield other equations than
those we obtain in (4). Indeed,

dθn (gk) = dθn−i (gk+i)
= dln−i,k+i

= σk−1θkmod[θ1, ..., θk−1]

θn−1 (g3) = θn−1 ([g2, f ]) = θn (g2) − Lfθn−1 (g2) =
θn (g2) because θn−1 (g2) = 1 is constant. By using induc-
tively the same argument over and over we obtain the above
formula.

Now, ln−1,4 = θn−1 (g4) = θn−1 ([g3, f ]) =
θn (g3) − Lfθn−1 (g3) = θn (g3) − θn (g2) . So, dln−1,4 =
σ2θ3mod[θ1, θ2] − Lf (σ2θ2mod[θ1]) = σ2θ3mod[θ1, θ2] −
(((Lfσ2) θ2 + σ1Lfθ2) mod[θ1]) . Thus we have:

dln−1,4 = (σ2 − σ1) θ3 mod [θ1, θ2].

In the same way we can show that the other components
of dΛ don’t give us more equations than those given by
(dln,i)2≤i≤n−1 in σi.

Example 2: (example 1 continued)
The observability 1−forms of (6):

θ1 = dx4

θ2 = γdx3 + γ′x3dx4

θ3 = γμdx2 + 2γ′γx3dx3

+
(
(γμ)′ x2 + 2 (γ′γ)′ x2

3

)
dx4

θ4 = γμ
β

1 + x4
dx1 +

(
2γ′μ + (γμ)′

)
γx3dx2

+
(
2γ′γμx2 + γ (γμ)′ x2 + 3γ (γ′γ)′ x2

3

)
dx3

+rθ1

According to criterion 2, we get:

σ1 =
(γμβ)′

γμβ
+

(γμ)′

γμ
+ 2

γ′

γ

σ2 = − (γμβ)′

γμβ
+

(γμ)′

γμ
+ 2

γ′

γ

σ3 = 2
(γμβ)′

γμβ

It is clear that λ1 = σ1, λ1 + λ2 = σ2 and λ3 = σ3.
After some computations we have:

Λ̃ =

⎛⎜⎜⎝
0 0
0 0
0 γμ

γμβ
(
2γ′γμx3 + (γμ)′ γx3

)
0 1
γ γ′x3

2γ′γx3 (γμ)′ x2 + 2 (γ′γ)′ x2
3(

2γ′γμx2 + γ (γμ)′ x2

+3γ (γ′γ)′ x2
3

)
γμ x1β

(1+x4)
2 + r

⎞⎟⎟⎟⎟⎠
A straight computation gives

ω = Λ̃−1θ =

⎛⎜⎜⎜⎝
d

(
x1

1+x4

)
dx2

dx3

dx4

⎞⎟⎟⎟⎠

Thus ω = dφ where φ(x) = z = ( x1
1+x4

, x2, x3, x4)T , and
so we obtain the diffeomorphism coordinate.

V. CONCLUSION

In this paper we propose the geometrical conditions which
allow us to determine whether a nonlinear system can be or
not transformed locally to ODO linear normal form by means
of a diffeomorphism and an output injection. In addition,
two equivalent results are given. In the first one, we use Lie
brackets commutativity and the second one is based on the
closure of a family of 1−forms. Moreover the last solution
gives explicitly the diffeomorphism coordinate.

However, one question remained to solve is to find more
equations to determine functions (αi)1≤i≤n−1 . Finally, this
paper only deals with the system with only single input single
output, and the case of multi-inputs multi-outputs is under
development.
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électroniques chaotiques”, Thèse de l’Université de Cergy-
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