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Abstract— A challenge to scaling a video surveillance system
is the amount of human supervision required for control
of the cameras. In this paper, we consider the problem of
coordinating a network of video cameras for the purpose
of identifying people. We pose the problem as a machine
scheduling problem where each person is a job that should be
scheduled before a deadline. To ensure scalability, we propose
a distributed algorithm that only depends on neighbor to
neighbor communication. We compare the performance of this
algorithm to a localized scheduling approach.

I. INTRODUCTION

A network of video surveillance cameras can be used to

address many security challenges such as facility monitoring

and infrastructure protection. For these types of problems,

the cameras provide the video needed for tracking people,

observing activities and identifying individuals. To fulfill

these missions, the network of cameras must provide video at

varying resolutions and perspectives. Recognizing a person

requires high resolution views. Tracking people or vehicles

is best accomplished with cameras with a wide field-of-

view. For many security environments, it is difficult, if not

impossible, to collect the appropriate video with cameras that

have fixed focal lengths and fixed perspectives. For example,

in an area without choke points, it is particularly challenging

collecting images of people’s faces that can be used for

identification. A non-practical solution is to litter the area

with thousands of cameras to ensure a high resolution image

is captured of every person.
A better solution is to use pan-tilt-zoom cameras that

can change the perspective and resolution of the video they

collect. This enables a much smaller number of cameras to

provide the video needed for tasks such as activity analysis

and person recognition. The question is how to control these

cameras. A simple control strategy like panning the cameras

back and forth is not satisfactory. Probably the most common

solution in deployed surveillance systems is operator control.

One or more human operators watch video from the network

of cameras and then direct the cameras based on the observed

activity. This is not a scalable solution due to its reliance

on trained human operators. It also suffers from being

reactive rather than proactive. Ideally, the surveillance system

should be collecting appropriate video before a security event

occurs to either prevent the event or allow for a forensic

investigation.
In this paper, we are investigating coordinating video

surveillance cameras to collect high resolution images of

people that can be used for identification. In this problem,

there are a set of cameras providing fixed, wide field-

of-views of the areas of interest. Using computer vision

techniques, this video is processed to detect moving objects

[1] and track them through the monitored area [2], [3]. The

moving objects can then be classified as to whether they are

people, vehicles or some other type of object [4]. Figure 1

demonstrates an example of this processing on video from

a single camera. A map of activity can be created from

this data to show the locations of the moving objects in

the monitored areas. Depending on how the data is shared

among the cameras, this map can be either local or global in

nature. The pan-tilt-zoom cameras (called active cameras in

this paper) can now be tasked to capture images of people. To

enable identification, the active cameras could collect high

resolution pictures of a people’s faces.

There will often be more than one person at a time in

the area monitored by an active camera. There will also be

times of congestion so that it is not possible for a camera

to collect high resolution images of every person in the

scene. Any person that moves through the region of coverage

of a particular active camera will generally pass by other

cameras. A tasking decision made for a camera will affect

other cameras in the future. This is because a person only has

been identified once since that information can be maintained

through the tracking being performed by the other cameras

in the surveillance system. That person does not have to be

identified again by a different camera. The problem being

considered in this paper is how to select which person

to observe in a coordinated manner. We pose this tasking

problem in a scheduling framework where each person is a

job that must be processed by an active camera in the video

surveillance system. The objective of any scheduling policy

is to observe as many people as possible over the network

of active cameras.

The general problem of controlling active pan-tilt-zoom

cameras to improve human recognition performance has

received significant attention. Many such investigations in-

volve one wide field-of-view camera cueing a high reso-

lution, narrow field-of-view camera to collect imagery in

constrained, indoor environments. Recent systems presented

in the literature that track and image a single individual using

multiple cameras include [5], [6], [7], [8], [9]. Systems for

tracking and imaging more than one person are presented in

[10], [11], [12]. Many of these efforts focus on the problem
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Fig. 1. Tracking and Classifying Moving Objects

This is a picture of the processed video from a camera in a research

surveillance system. The person highlighted in red is currently being

observed by an active camera for the purpose of identification.

of 3D tracking, pose estimation or actively tracking a person

with the camera. Very little attention has been given to the

problem of coordinating the tasking of multiple cameras to

observe multiple people.

The organization of this paper is as follows: section II de-

fines the camera tasking problem for identification of people

and discusses the role of coordination. This is followed by

formulating the problem as a machine scheduling problem in

the next section. Section IV presents two scheduling policies

for coordinating a network of active cameras for identifica-

tion. The first policy is earliest deadline first scheduling. The

second is a distributed policy based on load balancing that

only uses neighbor to neighbor communication. Section V

describes the experiments used to evaluate the policies. This

is followed by a presentation and discussion of the empirical

results. Section VI summarizes the paper.

II. CAMERA TASKING FOR IDENTIFICATION

In our problem, the objective of an active cameras is to

make observations of unknown people in order to determine

their unique global identities. People are continually entering

and leaving the area under surveillance. When a person enters

the area, the individual is detected and his/her movements

are tracked by the other cameras in the system. As the

person moves through the area, different active cameras have

the opportunity to collect images that could be used for

identification.

Each camera can focus on a single person at a time within

its region of coverage. Its region of coverage is the total

area that can be observed as the camera pans and tilts. The

active camera only observes one person at a time because it

zooms in until the person fills the field-of-view. We assume

the amount of time it takes for the active camera to change

its focus from one person to another is small compared to

the length of time for an observation. This was a reasonable

assumption given the pan and tilt speed of the cameras in our

Fig. 2. Active cameras identifying tanks

research surveillance system. Additionally, we assume that

no two sensors have significant overlap between their regions

of coverage. We will mention a modification to the camera

tasking algorithms to handle overlap. For the purposes of

this paper, a person’s identity is established when a camera

focuses on it. This only needs to occur once because of the

continuity of identity due to tracking.

Figure 2 demonstrates how a set of active cameras in a

simple configuration might look at an instant in time. In the

figure, tanks are moving through a network of cameras. The

camera in the bottom center of the figure has two tanks in

its region of coverage and must choose which to view. More

generally, in a high traffic environment any active camera

may have multiple people passing through its coverage area

at any one time. The camera tasking problem is dynamically

deciding which person should be identified.

Coordinating the decision of which person is identified

by a camera should improve the performance of the entire

system. The individuals a camera is not able to identify

before they leave the camera’s region of coverage must

be identified by other cameras in the future. A particular

region in the surveillance network may become congested

depending on traffic patterns. Congestion means there are

more people in an area than the set of cameras covering

that area can handle before the people leave. Ideally, active

cameras would choose to identify people headed towards

this congested area over people headed to an area of low

activity. This increases the likelihood of identifying a higher

percentage of the people.

Coordination could be performed by a centralized con-

troller. This controller would collect the tracking information

from the fixed field-of-view cameras that are distributed

throughout the surveillance network. Based on this data,

the controller could predict which people will visit which

cameras and when this would occur. Using this information,

the tasking of the active cameras can be formulated as a

constrained optimization problem. The optimization problem

must be solved in real-time because the arrival times of

people into the monitored area are not known a priori nor

are the paths that they will take. This centralized approach

has several drawbacks. First, the computational requirements

become unmanageable as the size of the surveillance network

increases. Second, its performance is highly dependent on
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predicting the complete paths that people will take through

the monitored area. Third, there are significant communi-

cation demands with this approach. Wireless networking is

already being used in some video surveillance systems so

bandwidth limitations are an important consideration.

We have looked into distributed approaches since much

less communication bandwidth will be consumed for co-

ordination. Also, each camera will be solving a simpler

optimization problem with a smaller state space which eases

the computational burden on the surveillance network. The

distributed approaches discussed in this paper also do not

depend on predictions as much as the centralized approach

presented above. Each active camera is provided with a list

of all the people that have not been imaged in its region of

coverage. The current positions and velocities of the people

are also provided by the fixed cameras that are tracking

objects.

III. SCHEDULING PROBLEM FORMULATION

We formulate the camera coordination problem as the

scheduling of m machines. In this formulation, each camera

is a machine that can process a single job instance at a

time. A person moving through the surveillance network

corresponds to a job that should be processed by one of

the machines. Processing time is a constant for all jobs and

preemption is not allowed. The path that a person takes

through the surveillance network determines which machines

can process the job. The speed the person moves along this

path determines the release times and deadlines for each

machine for that job. The release time is the time when

the person enters a camera’s region of coverage and the

deadline is the time the person leaves it. For this problem

formulation, we do not allow people to pass through an

active camera’s region of coverage more than once so there

is a single release time and deadline for a camera/person

pair. A schedule matching jobs to machines at particular

times must be developed without the knowledge of future

job information since this is an online problem. It is assumed

that the reward for processing each job is a constant. For any

sequence of jobs, we seek to maximize the throughput of the

set of machines. In other words, we seek to maximize the

cardinality of the set of scheduled jobs.

Let the set of machines (active cameras) be denoted

by M = {1, . . . , m}. The set of jobs (people) is J =
{1, . . . , n}. Each job j is characterized by its release time

and deadline vectors (Rj , Dj) where Rj = {rj,1, . . . , rj,m}
and Dj = {dj,1, . . . , dj,m}. There is restricted assignment

of the jobs since each person will move through a subset of

the cameras. Let rj,i = ∞ and dj,i = ∞ if job j will never

be available for machine i. The global deadline for a job is

defined as

d(j) = max
dj,i �=∞

Dj . (1)

This is the job’s deadline for the last machine it can be

processed on. If it is not processed by this time, it is lost to

the entire surveillance network and that person leaves without

being identified. Without loss of generality, we assume time

is slotted as t ∈ {1, 2, . . .} and each job takes one time

slot to be processed. At time t, the set of jobs available to

machine i is represented by Jt(i). This is all the people at

time t that are in the camera’s region of coverage that have

not been identified. A schedule for machine i is a one-to-one

mapping t → j ∈ Jt(i) if Jt(i) is not an empty set.

This scheduling problem is different from traditional

online scheduling problems because future release times

and deadlines are not known. When a person enters the

surveillance network, its trajectory is not generally known

a priori. It can be predicted based on the person’s heading,

its path up to the current time, and past observed trajectories.

A prediction can be as simple as assuming the person will

continue to move in its current direction and at its current

speed. The prediction could be more sophisticated and use

a traffic model developed from the history of trajectories.

Generally, the accuracy of the predictions decreases as the

horizon of the prediction increases. To represent the uncer-

tainty in the deadlines, we define d̃j,i(t) as the predicted

deadline of person j at time t for camera i.
We have chosen to investigate heuristic scheduling ap-

proaches to this problem because of its complexity due to

reliance on predicted deadlines and the spatial nature of the

problem. If the solution of the scheduling problem did not

depend on these predictions and the spatial dependencies

between machines, the problem would be very similar to

the ones considered by Bar-Noy et al. in [13]. They present

constant factor approximation algorithms for four different

variants of the online problem of scheduling jobs on multiple

machines. An optimal offline algorithm must be developed

for our problem if competitive analysis is to be used for eval-

uation. How best to develop this offline algorithm when the

set of machines to which a job can be assigned is unknown

a priori is an open question. Instead, we present heuristic

scheduling algorithms and evaluate them empirically. These

algorithms only use a person’s deadline for the camera that

can currently view the person rather than considering the

global deadline that may be very inaccurate.

IV. SCHEDULING POLICIES

In this section, we describe two scheduling policies for

scheduling active cameras for person identification. The

first is a local policy that schedules jobs for each machine

based on the estimated deadline of the jobs released to it.

The job with the earliest deadline is scheduled first. The

second policy uses a small amount of neighbor to neighbor

communication in order to improve performance. This policy

seeks to balance the load on the machines to achieve a higher

system throughput. It will generally outperform the local

scheduling policy when there is a congested area present

in the surveillance network.

As mentioned, we have assumed the cameras have little or

no overlap between their regions of coverage. This is done

to remove the problem of coordinating which camera should

identify a person that is available to two or more cameras at

the same time. Either of the presented algorithms could be
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extended to involve an additional step of coordination to han-

dle this. This would increase the amount of communication,

but this communication would only be between neighbors.

A. Local Scheduling Policy

Earliest Deadline First (EDF) scheduling is a well-studied

computationally efficient policy that performs well under

varying traffic conditions when preemption is not allowed.

Jackson showed in [14] that EDF is optimal for deadline

scheduling without preemption on a single machine. For this

problem, each machine (camera) runs this policy on the

jobs currently available to it in Jt. The deadline used is

the estimated local deadline d̃j,i(t). This is a local policy

because the decision of which job to schedule is made

independent of the other machines. No communication is

required between the cameras to perform the scheduling.

Predicting the deadlines requires basic knowledge of the

physical extent of the camera’s region of coverage.

Local EDF Scheduling Algorithm

Input: set of jobs Jt.

Sort Jt by d̃j,i(t)

Output: the first element of the sorted set, Jt

As the reader will note, the algorithm has time complexity

O(n log n) where n is the number of jobs in Jt. The EDF

algorithm does not consider how the decision of which

person to schedule affects other active cameras in the future.

B. Distributed Scheduling Policy

In the design of a distributed scheduling policy, we

consider the question of what gain in performance can be

realized over local scheduling with the addition of a small

amount of communication between cameras. Communication

between neighbor nodes is preferred to other types of com-

munication due to its lower cost in most wireless networks.

The distributed scheduling policy that we devised is based

on load balancing. In a traditional online load balancing

problem, there are m parallel machines with jobs arriving

at arbitrary times. A centralized controller is responsible for

immediately assigning the incoming jobs to machines. The

typical objective is to minimize the maximum load over the

machines (see [15] for a survey of online load balancing

problems). The choice of a load balancing approach is mo-

tivated by the realization that congested areas will decrease

the throughput of the entire surveillance system. Relieving

the active cameras in the congested area of some of their

load should positively affect performance.

In this distributed load balancing (DLB) policy, local

decisions are made by each camera to decrease the load of

its neighbor with the highest load. Load is a measure of how

many people are available for a camera to view. Load could

be measured as the current number of people in a camera’s

region of coverage that have not been identified or by a time

average. The concept of reducing the load of neighbors is

relevant for this problem because of the underlying spatial

configuration of the video surveillance network. An active

camera can identify people headed towards an overloaded

camera creating a more uniform distribution of the total load

over the network. Maximum throughput is achieved when

all the machines are busy, not when a few machines are

overloaded.

A multi-class framework is used to encode load infor-

mation for scheduling. Each camera periodically queries its

neighbors for load information. For each available person,

the camera predicts which neighbor node the person is most

likely to visit next. That neighbor’s load is used to assign the

person to a prioritized class. The higher the load, the higher

the priority of the class is. If a person is headed out of the

surveillance network, it is considered to be moving towards

a camera with infinite load and so is placed in the highest

priority class. The rest of the classes are distributed over the

remaining load levels.

Distributed Load Balancing Scheduling Algorithm

Input: set of jobs Jt.

Request load from neighboring nodes

For each j ∈ Jt

Assign j to a class based on load of next

predicted machine

Set Kt = all jobs of Jt belonging to highest

priority class

Sort Kt by d̃j,i(t)

Output: the first element of the sorted set, Kt

The step of determining which jobs of Jt belong to

the highest priority class has complexity O(2n) where n
is the size of Jt. Selecting the job from Kt to schedule

has complexity O(|Kt| log |Kt|). If a traffic pattern causes

congestion, DLB will generally be more computationally

efficient than EDF since |Kt| would be smaller than |Jt|.
The only communication required to implement this policy

is neighbor to neighbor communication. Each camera trans-

mits its load to all of its neighbors at specified intervals.

Little bandwidth is used for coordination since the size of

load information is small and the number of neighbors should

not be large.

If the load is distributed relatively evenly over the network,

DLB reduces to the EDF policy. If an active camera’s

neighbors all have a similar load, the people in that camera’s

region of coverage will be assigned to the same class. In

this case, scheduling reduces to sorting by the local deadline

just as in EDF. This will depend on the number of classes

and how they are distributed over the load levels. Having too

many classes will result in distinctions being created between

load levels that should be considered equivalent.
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Fig. 3. Comparison of EDF and distributed load balancing for traffic with
a congested area.

V. EMPIRICAL RESULTS

In this section, we provide quantitative results of the

performance of the EDF and DLB scheduling policies. Our

results support the hypothesis that DLB achieves a higher

throughput when there is congestion in an area of the surveil-

lance network. This is the expected result because of the

design of that algorithm. As noted by others [16], it can be

difficult to randomly generate traffic for scheduling problems

that is interesting. Often the traffic will be easily scheduled

by almost any algorithm without loss of jobs or on the other

extreme, cannot be scheduled without many jobs being lost.

Meaningful analysis can occur when the traffic patterns are

close to being schedulable without loss of jobs, but yet can

cause scheduling algorithms to exhibit poor performance. We

focus on high traffic experiments since there is little need for

coordination in low traffic environments for this problem.

In our experiments, people are introduced into a simulated

surveillance network according to a stochastic process. We

use either a Poisson process model or a Markov-modulated

Poisson process (MMPP). The MMPP provides more realis-

tic traffic arrival patterns since it could model the burstiness

one might expect in certain environments. The people move

in a 2D plane among the cameras. The trajectories are

determined by a mobility model. Mobility models are fre-

quently used in ad-hoc networking research. [17] provides an

overview of the different types of mobility models commonly

used for simulation. For our experiments, a waypoint model

is used for mobility. Initially, random waypoints were used,

but this did not create interesting traffic patterns for analyzing

these algorithms. The traffic was uniformly distributed over

the surveillance network so the two algorithms exhibited the

same performance as was explained in the previous section.

Instead, we arbitrarily define paths through the surveillance

network that could result in an area of congestion. The

congestion resembled something similar to what would be

expected if two or three sidewalks or roads crossed each

other.

The active cameras are distributed according to a grid
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Fig. 4. Example cumulative loss plot for a single realization.

structure. Each camera has at most eight neighbors because

of this structure. A person that completes its path through the

surveillance network without being identified is considered

lost. The cameras collect their neighbors’ load after each

time step of the simulation. This load information is used to

partition the people in a camera’s region of coverage into 4

classes for the DLB algorithm. This algorithm is not very

sensitive to the number of classes as long as it is not on

either extreme.

We tested the two scheduling algorithms against a series

of arrival sequences. As a measure of performance, we

used the percentage of people that the cameras observed.

Figure 3 demonstrates the performance of EDF and DLB

for 200 traffic sequences that exhibited a single area of

congestion. While DLB provides better average performance,

it should be noted that DLB does not dominate EDF. There

exists arrival sequences such that EDF will have superior

performance though these were rare in our experiments. In

this experiment, the total amount of traffic is slightly below

what the maximum load of the entire network would be if it

were uniformly distributed. It is the congestion that causes

less than 100% of the people to be identified.

The performance of the DLB algorithm partially depends

on the accuracy of the prediction of the next camera a

person will be passing by. As a person gets closer to leaving

a camera’s region of coverage, the prediction of which

camera is next will generally become more reliable. If these

predictions are consistently and significantly incorrect, it is

possible for EDF to outperform DLB.

A single realization of the above experiment was used

in creating Figure 4. This figures shows the number of jobs

dropped over time. These dropped jobs correspond to people

that have made their way through the surveillance without

being identified. The overall shape of the two curves mirror

each other. This is because the changes in slope are due

to the arrival process switching from low to high traffic

rates as determined by the Markov chain. For this particular

realization, the DLB algorithm identified over 3000 more

people than EDF did.
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One limitation of our distributed approach is that each

active camera only considers the load level of its neighbors

when selecting a person to observe. Only the cameras that

have neighbors in the congested area will make decisions

to reduce this overload. The existence of a congested area

is not communicated to the rest of the cameras. We believe

that the approach presented in this paper can be extended

to address this deficiency. Instead of a camera sharing its

load with just its neighbors, the camera could maintain the

average load of each neighbor. By computing a weighted

average of its neighbors and itself and then sharing that

as its load to it neighbors, areas of high congestion will

affect more than just its neighbors. In doing this, a type of

gradient field can be calculated that encodes where areas

of congestion are in the surveillance network. Instead of

predicting which neighbor a person is going to visit next,

a camera would use the heading of the person to determine

whether the person could contribute to an overloaded area

in the future by using the load gradient in that direction.

Deadlines could also be implicitly encoded in this gradient

field since cameras on the edge of the surveillance network

would have a large load under this scheme. Combining a

traffic model with this gradient approach could have some

benefits. A person’s contribution to a congested area could

be estimated by integrating over the different directions he or

she may be headed weighted by the probability of heading

in that direction derived from the traffic model. We have not

had the opportunity to test this extension with an experiment.

One factor not consider in this paper is the orientation of

the person to the camera. If the active cameras are seeking

to capture high resolution images of people’s faces, then

the person needs to be facing the camera. For vehicles, the

system might try to capture pictures of a vehicle’s license

plate. It is possible to encode the probability of capturing

images that can be used for identification with the multi-

class framework of the distributed load balancing algorithm.

The classes would be determined by both the load of the

predicted neighbor and the probability that an exploitable

image is obtained. This is an interesting problem that needs

further investigation.

VI. CONCLUSIONS

In this work, we have described a new distributed schedul-

ing algorithm for the coordinated identification of people

by a network of active cameras. This algorithm scales

well as the size of the surveillance network increases. It

uses only neighbor to neighbor communication and can

be easily implemented to provide real-time performance.

As our empirical results demonstrate, DLB will generally

outperform EDF when congestion is present in an area in

the surveillance network. There is some dependence on the

reliability of the next predicted camera. The DLB algorithm

is useful for situations when high traffic is expected in

the surveillance network. It would be valuable to evaluate

these algorithms on traffic sequences derived from real world

observed traffic that exhibits congestion. A future extension

under consideration is integrating the expected perspective

of the person into the scheduling algorithm since this affects

identification performance.
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