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Abstract— In this paper, we address the discrete time de-
terministic Kalman filtering within a behavioral setting. In
the continuous time case, Fagnani and Willems developed this
issue by using the novel idea based on two-variable polynomial
matrices and quadratic differential forms in [1] and [12].
We expand the Kalman filtering problem into the discrete
time case by using two-variable di-polynomial matrices and
quadratic difference forms studied in [3], [4] and [5]. Here
we derive a sufficient condition for the latent variables of the
filter to estimate the observed data and the state variable of
the system in the sense that the sum of squared error signals
between observed variables and estimated ones is minimized
deterministically. By using this condition, we then clarify the
structure of the optimal filter with respect to the notion of the
state. And then we also provide the procedure for implementing
the optimal filter as a real-time algorithm. Finally, we give an
illustrative example in order to show the validity of our results.

I. INTRODUCTION

In this paper, we address the discrete time deterministic
Kalman filtering within a behavioral setting. In [1] and [12],
Fagnani and Willems developed this issue by using the
novel idea based on two-variable polynomial matrices and
quadratic differential forms (cf. [13]) in continuous time.
From the practical points of view, the filtering problem
is deeply related to how to treat the sampled data, which
implies that it is meaningful to consider this issue in the
discrete time case. From the theoretical points of view,
there are some critical differences between the continuous
time and the discrete time case. One of such issues is that
polynomial matrices used in discrete time case consist of
terms of not only non-negative but also positive powers with
respect to the indeterminate (we refer to such polynomials
as “di-polynomials” or “Laurent polynomials” in this paper).
Since the dipolynomial matrix ring is peculiar to the discrete
time case, it is to be expected that the di-polynomials
may be useful tools to study essential features of discrete
time dynamical systems and to derive important theoretical
results. Thus, it is significant to study discrete time systems
on the dipolynomial ring. Another different point is on the
notion of the relationship between storage functions and state
variables. In [1] and [12], the fact that every storage function
is a quadratic function of the state ([10]) is used for the
derivation of the main theorem and the implementation issue.
In discrete time, as shown in [5], not every storage function is
a quadratic function of the state. This fact means that another
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strategies should be used to derive the important theoretical
results in discrete time Kalman filtering.

From these reasons, this paper addresses the discrete time
deterministic Kalman filtering within a behavioral setting.
Here, we approach to this problem on two-variable di-
polynomial matrices and quadratic difference forms. We also
derive a sufficient condition for the filter to estimate the
observed data and the state variable of the system in the
sense that the sum of squared error signals between the
observed data and estimated ones is minimized. By using
this condition, we then clarify the structure of the optimal
filter. We also provide the implementation procedure for
deterministic Kalman filtering.

II. PRELIMINARIES

A. Notation

In this paper we denote the set of real numbers with R

and the set of integers with Z. The space of n dimensional
real vectors is denoted by R

n, and the space of w × m real
matrices, by R

w×m. If A ∈ R
w×m, then AT ∈ R

m×w denotes
its transpose. Whenever the size of a matrix or a vector is not
specified, a bullet • is used. In order to enhance readability,
when dealing with a vector space R

• whose elements are
commonly denoted with w, we use the notation R

w; similar
considerations hold for matrices representing linear operators
on such spaces.

The set consisting of all sequences from Z to R
w is denoted

with (Rw)Z. For w ∈ (Rw)Z and T ∈ Z, w(T ) denotes the
value of w at time T . On (Rw)Z, we define the backwards
shift operator σ : (Rw)Z → (Rw)Z as (σw)(t) := w(t+1) for
all t ∈ Z. The set of square-summable w-dimensional vector
time series is denoted with l2(Z, Rw), i.e. w ∈ l2(Z, Rw)
if

∑∞
t=−∞ wT

(t)w(t) < ∞. For T ∈ Z, let lT2 (Z, Rw)
denote the set of w-dimensional vector time series which is
square summable from −∞ to T , i.e., w ∈ lT2 (Z, Rw) if∑T

t=−∞ wT
(t)w(t) < ∞.

The ring of polynomials with real coefficients in the
indeterminate ξ is denoted by R[ξ]; the ring of two-variable
polynomials with real coefficients in the indeterminates ζ
and η is denoted by R[ζ, η]. Similarly, the ring of “di-
polynomials” with both positive and negative powers of ξ
is denoted with R[ξ−1, ξ]. In addition, the ring of dipoly-
nomials with only nonpositive powers of ξ is denoted by
R[ξ−1]. Let R[ζ, ζ−1, η, η−1] denote the set of two-variable
di-polynomials with both positive and negative powers of
the indeterminates ζ and η. Similarly, we use the notations,
R[ζ−1, η], R[ζ, η−1], and so on. The matrix versions of these
rings of size w × m are denoted by R

w×m[ξ], R
w×m[ζ, η],
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R
w×m[ξ−1, ξ], R

w×m[ξ−1], and R
w×m[ζ, ζ−1, η, η−1] respec-

tively. Let R
w×w
s [ζ−1, ζ, η−1, η] denote the set of two-

variable di-polynomial matrices satisfying Φ(ζ−1, ζ, η−1, η)
= Φ(η−1, η, ζ−1, ζ)T.

B. Behavioral system theory ([2], [9], [11])

A discrete time dynamical system is defined as a triple
Σ = (Z, Rq, B), where Z is the discrete time axis, R

q

is the signal space, and B is the (manifest) behavior. A
dynamical system Σ = (Z, Rq, B) is linear, time-invariant
and complete if and only if Σ is representable by a kernel
representation R(σ)w = 0 with R(ξ) ∈ R

•×q[ξ] for all
w ∈ B. In addition to manifest variables w, there are many
cases in which some auxiliary variables, say �, are required
to describe a dynamics. It is called a latent variable and
a dynamical system with latent variables is defined as a
quadruple Σa = (Z, Rq, R•,Ba), where R

• is the signal
space of � and Ba ⊆ (Rq)Z × (R•)Z is the full behavior.

A linear time-invariant complete system Σ is controllable
(in a behavioral sense) if and only if it is representable
by an image representation w = M(σ)� with M(ξ) ∈
R
q×d[ξ] for all (w, �) ∈ Ba, where � is the latent variable.

In w = M(σ)�, if w = 0 implies � = 0, then � is
said to be observable from w, which is equivalent to that
M(λ) is full column rank for all nonzero λ ∈ C. In
such a case, w = M(σ)� is called an observable image
representation. A controllable system has many observable
image representations. If M(ξ) is full column rank, then
there exists an nonsingular matrix P ∈ R

q×q such that
PM(ξ) = col

[
U(ξ)T, Y (ξ)T

]T
, where det(U(ξ)) �= 0

and Y (ξ)U(ξ)−1 is proper. We can regard u := U(σ)� (y :=
Y (σ)�) as inputs (outputs, respectively). In this paper, we
assume that a system is discrete-time, linear, time-invariant,
complete and controllable.

Although it is enough to use the polynomial matrix ring for
describing difference equations in the discrete time systems,
there are some cases in which using the di-polynomial ring
enables us to take a comprehensive and panoramic view
of theoretical feature which is peculiar to discrete time
systems as stated in the introduction. In such cases, we often
use mathematical representations induced by di-polynomial
matrices, e.g., w = M(σ−1)� and so on.

Finally, we prepare the notions of state space sys-
tems. Let Σs = (Z, Rq, Rn,Bs) denote a system
with latent variables. Then Σs is said to be a state
space system if {(w1, x1), (w2, x2) ∈ Bs and x1(0) =
x2(0)}=⇒{(w1, x1) ∧0 (w2, x2) ∈ Bs}. Here, a latent
variable x is said to be a state variable of B. Let Σs =
(Z, Rq, Rn, Bs) denote a state space system whose man-
ifest behavior is B. For all state space systems Σ′

s =
(Z, Rq, Rn′ ,B′

s) inducing the same manifest behavior B, Σs

is said to be minimal if n ≤ n′ holds.
Consider the behavior B and the following map described

by x := X(σ)w for w ∈ B, induced by X(ξ) ∈ R
•×d[ξ].

If x is a (minimal) state variable, then X(σ)w is called a
(minimal) state map for B. We can also consider a (minimal)
state map acting on �.

Let F (ξ) ∈ R
•×d[ξ]. Then, F (ξ)U(ξ)−1 is strictly proper

if and only if there exist H ∈ R
•×d such that F (σ)� = Hx

with a minimal state variable x of B.

C. Two-variable di-polynomial matrices and quadratic dif-
ference forms ([3], [4], [13])

Here, we focus on two-variable di-polynomial matrices. As
for the set of two-variable polynomial matrices in discrete
time, we omit it here. See the details in [3].

Let Φ(ζ, η) =
∑Lk,Ll

k=−Mk,l=−Ml
Φklζ

kηl ∈ R
q×p[ζ−1, ζ,

η−1, η]. For w ∈ (Rq)Z and v ∈ (Rp)Z, Φ(ζ, η) induces a
bi-linear difference forms LΦ : (Rq)Z × (Rp)Z 	→ (R)Z as

LΦ(w, v)(t) :=
Lk,Ll∑

k=−Mk,l=−Ml

(σkw)TΦkl(σlv)(t). (1)

In the case of Φ = Iq, we use the standard notation < v, w >.
Next, consider

∑L
k,l=−M Φklζ

kηl ∈ R
q×q
s [ζ−1, ζ, η−1, η]

For w ∈ (Rq)Z, Φ(ζ, η) induces a quadratic difference forms
QΦ : (Rq)Z × (Rq)Z 	→ (R)Z as

QΦ(w, v)(t) :=
L∑

k,l=−M

(σkw)TΦkl(σlv)(t) (2)

If Φ = Iq, we use the standard notation ‖w‖2. The nonneg-
ativity of quadratic difference forms induced by Φ(ζ, η) ∈
R
q×q
s [ζ, η] are defined by

QΦ ≥ 0 :⇔ QΦ(w)(t) ≥ 0,∀ w ∈ (Rq)Z,∀ t ∈ Z. (3)

As for the ring R
q×p[ζ−1, η], R

q×p[ζ, η−1], the bi-linear
difference forms are introduced similarly.

Next lemma is a generalization of Lemma 3.1 in [3] for
the case of two-variable di-polynomial matrices.

Lemma 1: Let Φ(ζ−1, η) ∈ R
q×d[ζ−1, η]. The following

two statements are equivalent.

1. Φ((ξ−1)−1, ξ) = 0.
2. There exists Ψ(ζ−1, η) ∈ R

q×d[ζ−1, η] such that (ζη −
1)Ψ(ζ−1, η) = Φ(ζ−1, η).

D. Discrete time dissipativeness ([3], [4])

Let Φ(ζ−1, ζ, η−1, η) ∈ R
d×d
s [ζ−1, ζ, η−1, η] induce a

QΦ, which can be regarded as the quadratic supply rate
in the context of the dissipation theory. QΦ is said to be
dissipative if

∑∞
t=−∞ QΦ(�) ≥ 0 for all � ∈ l2(Z, Rd).

Next, we introduce the notion of storage- and of dissipation
function.

1. QΨ induced by Ψ(ζ−1, ζ, η−1, η) ∈ R
d×d
s [ζ−1, ζ, η−1,

η] is said to be a storage function with respect to QΦ

if QΨ(�)(t + 1) − QΨ(�)(t) ≤ QΦ(�)(t),∀ t ∈ Z and
∀� ∈ (Rw)Z.

2. Q∆ induced by ∆(ζ−1, ζ, η−1, η) ∈ R
d×d
s [ζ−1, ζ, η−1,

η] is said to be a dissipation function with respect to QΦ

if Q∆ ≥ 0 and
∑t=∞

t=−∞ QΦ(�)(t) =
∑t=∞

t=−∞ Q∆(�)(t),
∀� ∈ l2(Z, Rd).

Dissipativity is characterized in terms of storage- and of
dissipation functions as follows (See [4], [13]).

Proposition 2: The following conditions are equivalent:
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1)
∑∞

t=−∞ QΦ(�)(t) ≥ 0 for all � ∈ l2(Z, Rd);
2) QΦ admits a storage function;
3) QΦ admits a dissipation function.

Moreover, there is a one-one correspondence between storage
and dissipation functions, QΨ and Q∆, respectively, defined
by QΨ(σw) − QΨ(w) = QΦ(w) − Q∆(w).

These properties holds also in the case of two-variable
polynomial matrices in discrete time. See [3] for details.

III. PROBLEM FORMULATION

The problem we attack here is similar to the continuous
time case in the section 4 of [1]. Let w̄ ∈ lT2 (Z, Rq)
be the observed data of the system in (−∞, T ]. Let B
be the behavior of the “nominal” system. Since there are
perturbations, noises, and uncertainty in the real measured
data w̄, note that generally

w̄ /∈ B. (4)

Assume that B of the nominal system has an image
representation

w = M(σ)� (5)

where M(ξ) ∈ R
q×d[ξ] with full column rank for all complex

numbers. Then, we can assume that M(ξ) is described by
M(ξ) = [U(ξ)T Y (ξ)T]T such that U(ξ) ∈ R

d×d[ξ]
is nonsingular and Y (ξ)U(ξ)−1 is proper after possibly
permuting the components of the variable w. Moreover, we
assume that

det |U(0)| �= 0. (6)

Under this setting, our aim is to find � such that

T∑
t=−∞

‖w̄(t) − (M(σ)�)(t)‖2 (7)

is minimized for any time T ∈ Z deterministically. In this
setting, the optimal estimation, say w∗, depends on the past
of the observation w̄, so we refer to this problem as the
deterministic filtering problem. In the following, we focus
on how to compute w∗ from the past observation w̄ 1.

IV. THE OPTIMAL FILTERING

A. The new variable for the filter and some preliminaries of
dissipation theory

By using the observation w̄, consider the behavior Bfw

described by the following kernel representation

[
M(σ−1)T A(σ−1)T

] [
w̄
f

]
= 0 (8)

where, A(ξ) ∈ R
d×d[ξ] is an anti-Hurwitz spectral factor of

M(ξ−1)TM(ξ) = A(ξ−1)TA(ξ). (9)

1In [1], the smoothing problem in which the whole of the observed data is
used for the minimization of the error was also studied as the preparation of
the deterministic filter. In discrete time, we can also obtain the corresponding
result, however, we omit the detailed discussions here due to the limitations
of the space.

At this point, we prepare the following useful lemma for the
filtering equations.

Lemma 3: A(ξ−1)−TM(ξ−1) is proper.
Proof: First, we obtain

A(ξ−1)−TM(ξ−1)T

=A(ξ−1)−TU(ξ−1)TU(ξ−1)−TM(ξ−1)T. (10)

Let A(ξ) =: A0 + A1ξ + · · · . Note that we can obtain
an anti-Hurwitz spectral factor such that A0 is non-singular
(cf.[7]). Thus, we see that A(ξ−1)T = AT

0 + AT
1
ξ + · · · is bi-

proper, which implies A(ξ−1)−T is proper. Since we assume
that U(0) is non-singular, it follows the same reason from
that U(ξ−1)T is proper. On the other hand, it follows from
Theorem 5.2 in [5] that U(ξ−1)−TM(ξ−1)T is proper. Thus,
the left-hand side of Eq.(10) is also proper.

From the above lemma, we see that f is determined from
the observation w̄ uniquely as

f = A(σ−1)−TM(σ−1)Tw̄. (11)

Let n denote the dimension of the minimal state space of
B. Next, we introduce new polynomial matrices introduced
from M(ξ) and a minimal state map X(ξ) ∈ R

n×q[ξ] , which
corresponds to Proposition 5 in [1] (However, the proof we
provide here is different).

Proposition 4: There exist F (ξ) ∈ R
n×d[ξ] and W (ξ) ∈

R
n×q[ξ] such that

(ζη − 1)W (ζ−1)TX(η) = M(ζ−1) − M(η) (12)

(ζη − 1)F (ζ−1)TX(η) = −A(ζ−1) + A(η) (13)
Proof: Note that M((ξ−1)−1) − M(ξ) = 0. It

follows from Lemma 1 that there exists Ψ(ζ−1, η) ∈
R
q×d[ζ−1, η] such that (ζη − 1)Θ(ζ−1, η) = M(ζ−1) −

M(η). Moreover, we can obtain a canonical factoriza-
tion Θ(ζ−1, η) = W ′(ζ−1)TX(η) 2, where W ′(ξ) ∈
R

•×q[ξ]. Since M(η)U(η)−1 is proper with respect to η,
Θ(ζ−1, η)U(η)−1 is strictly proper, which enables us to
rewrite Θ(ζ−1, η) = W ′(ζ−1)TSX(η) by using an appro-
priate S ∈ R

•×n. Defining W (ξ) := STW ′(ξ) ∈ R
n×q[ξ]

complete the proof of the existence of W (ξ). Similar argu-
ment holds for F (ξ).

Eq.(12) and Eq.(13) induce〈
W (σ−1)w, X(σ)�

〉
(t+1)

− 〈
W (σ−1)w, X(σ)�

〉
(t)

=
〈
MT(σ−1)w, �

〉
(t)

− 〈w, M(σ)�〉(t) (14)

〈
F (σ−1)f, X(σ)�

〉
(t+1)

− 〈
F (σ−1)f, X(σ)�

〉
(t+1)

= − 〈
AT(σ−1)f, �

〉
(t)

+ 〈f,A(σ)�〉(t) (15)

on the latent variable � of B and f , respectively.
In the end of this subsection, we also give a proposition

on discrete time dissipative systems.
Proposition 5: Let Φ(ζ, η) := M(ζ)TM(η) induce the

supply rate QΦ. Let x be the minimal state of B. Then,
there exists a storage function for QΦ, say QΨ induced by

2As for canonical factorizations, see [13] and [3].
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Ψ(ζ, η) ∈ R
q×q[ζ, η], such that there exists a K = KT > 0

such that QΨ(w) = xTKx.
Proof: Since QΦ(�) > 0 holds for arbitrary � ∈ (Rd)Z,∑T

t=−∞ QΦ(�)(t) > 0 for any T ∈ Z and � ∈ lT2 (Z, Rd).
It follows from Theorem 6.1 of [5] that there exists a non-
negative storage function described by quadratic forms of the
state of B.

Next, by using the observability of M(ξ), it is easy to
see that Φ(e−jω, ejω) = M(e−jω)TM(ejω) > 0 on the unit
circle, which implies that the existence of an anti-Hurwitz
spectral factor, say A(ξ), of Φ(e−jω, ejω). Here, we can also
assume that A(0) is nonsingular. Noting that A(ζ)TA(η)
induces a dissipation rate, it follows from Theorem 4.2 of
[5] that the corresponding storage function is the maximum
storage function, say QΨ+ induced by Ψ+(ζ, η). Moreover,
it follows from Theorem 5.2 of [5] that QΨ+(�) can be
described by the quadratic non-negative function of the
minimal state of B as QΨ+(�) = xTKx, where K =
KT ≥ 0. At this point, the dissipation relation with respect
to QΨ+(�) = xTKx can be described by

(xTKx)(t+1)−(xTKx)(t)=‖M(σ)�‖2
(t) − ‖A(σ)�‖2

(t), (16)

for all t ∈ Z. In the following, we show the positivity of K.
Suppose that there exists T ∈ Z and nonzero a ∈ R

n such
that aTKa = 0 at time T . Note that a can be described
by using the minimal state map X(ξ) =

∑µ
i=0 Xiξ

i ∈
R
n×d[ξ] as a =

∑µ
i=0 Xi�(T+1+i) for appropriate finite

time series �(T+1), · · · , �(T+µ+1). By the way, due to the
nonsingularity of A0, we can find �(0) such that �(0) =
−A−1

0 (A1�(T+1)+ · · ·+Aν�(T+ν)) for arbitrary �(T+1), · · · ,
�(T+ν). Repeating this procedure until t = −∞ enables us
to obtain the solution � in lT+ν

2 (Z, Rd) of (A(σ)�) = 0 for
arbitrary �(T+1), · · · , �(T+ν). In the case of ν ≤ µ + 1,
we can also take arbitrary �(T+1), · · · , �(T+µ+1). Define
h := max(ν, µ+1). Thus, for a, there exists � ∈ lT+h

2 (Z, Rd)
such that A(σ)�(t) = 0 in t ∈ (−∞, T + h] and a =∑µ

i=0 Xi�(T+1+i). By using this � ∈ lT+h
2 (Z, Rd), and

summing Eq.(16) from T to −∞, we obtain xTKx(T+1) =
aTKa =

∑T
t=−∞ ‖M(σ)�‖2

(t) = 0, which implies

w(t) = ‖M(σ)�‖(t) = 0,∀ t ∈ (−∞, T ]. (17)

Since X(ξ) induces one of the minimal state maps for B,
X(ξ)U(ξ)−1 is strictly proper. This enables us to describe
this rational function as the following Laurent expansion
X(ξ)U(ξ)−1 =

∑∞
i=1

H−i

ξi , H−i ∈ R
n×d. This means

that the state x(T+1) is determined uniquely from the input
u(t) := (U(σ)�)(t) in t ∈ (−∞, T ], in other words,

x(T+1) =
T∑

t=−∞
H−iu(t) (18)

On the other hand, Eq.(17) implies that the right hand side
of Eq.(18) is equal to zero, which yields x(T+1) = a = 0.
Hence, we conclude K > 0.

From the above theorem, we can assume that the max-
imum storage function is described by ‖X(σ)�‖2 (i.e., we
can assume K = I) without loss of generality.

B. A sufficient condition for the optimal filter

By introducing the new variable f as in Eq.(8) or Eq.(11),
we give a sufficient condition for the latent variables of the
nominal model to minimize the cost function as follows.

Theorem 6: Let f be Eq.(8) or Eq.(11) Then, if � in the
nominal model w = M(σ)� satisfies

f(t) = (A(σ)�)(t), ∀t ∈ (−∞, T ] (19)

(W (σ−1)w̄ + F (σ−1)f + X(σ)�)(T+1) = 0, (20)

Eq.(7) is minimized.
Proof: First, calculate Eq.(7) as follows.

T∑
t=−∞

‖w − M(σ)�‖2
(t)

=
T∑

t=−∞

(‖w‖2−‖f‖2 + ‖f‖2−2 〈w,M(σ)�〉 + ‖M(σ)�‖2
)
(t)

=
T∑

t=−∞

(‖w‖2−‖f‖2+‖f‖2
)
(t)

+ 2
〈
W (σ−1)w,X(σ)�

〉
(T+1)

−2
T∑

t=−∞

〈
M(σ−1)Tw, �

〉
(t)+

T∑
t=−∞

‖A(σ)�‖2
(t)+‖X(σ)�‖2

(T+1)

=
T∑

t=−∞
(‖w‖2 − ‖f‖2)(t) +

T∑
t=−∞

‖f − A(σ)�‖2
(t)

+2
〈
W (σ−1)w, X(σ)�

〉
(T+1)

− 2
T∑

t=−∞

〈
M(σ−1)Tw, �

〉
(t)

+2
T∑

t=−∞
〈f,A(σ)�〉(t) + ‖(X(σ)�)‖2

(T+1)

=
T∑

t=−∞
(‖w‖2 − ‖f‖2)(t) +

T∑
t=−∞

‖f − A(σ)�‖2
(t)

+2
〈
W (σ−1)w,X(σ)�

〉
(T+1)

− 2
T∑

t=−∞

〈
A(σ−1)T f, �

〉
(t)

+2
T∑

t=−∞
〈f, A(σ)�〉(t) + ‖(X(σ)�)‖2

(T+1)

=
T∑

t=−∞
(‖w‖2 − ‖f‖2)(t) +

T∑
t=−∞

‖f − A(σ)�‖2
(t)

+2
〈
W (σ−1)w, X(σ)�

〉
(T+1)

+ ‖X(σ)�‖2
(T+1)

+2
〈
F (σ−1)f,X(σ)�)

〉
(T+1)

=
T∑

t=∞
(‖w‖2 − ‖f‖2)(t) +

T∑
t=−∞

‖f − A(σ)�‖2
(t)

+‖W (σ−1)w + F (σ−1)f + X(σ)�‖2
(T+1)

−‖W (σ−1)w + F (σ−1)f‖2
(T+1) (21)

In the above manipulations, we use Eq.(14) and Eq.(16) in
the second equation, complete the square of

∑T
t=−∞ ‖f −

A(σ)�‖2
(t) in the third equation, use Eq.(8) and Eq.(15) in the

fourth and fifth equation respectively, and finally complete
the square of ‖W (σ−1)w̄ + F (σ−1)f + X(σ)�‖2

(T+1) in
the last equation. Since the problem is to minimize the
cost function described by Eq.(7) with respect to the latent
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variable �, we see that Eq.(7) is minimized if Eq.(19) and
Eq.(20) holds .

From Theorem 6, the optimal estimated variable w∗ is
described by using the latent variable �∗ satisfying Eq.(19)
and Eq.(20) as

w∗
(T ) = (M(σ)�∗)(T ). (22)

V. THE STRUCTURE OF THE OPTIMAL FILTER

Focusing on Eq.(20) enables us to obtain the following ob-
servation which plays a crucial roles in the implementation of
the deterministic filter (Of course, this theorem corresponds
to Proposition 7 of [1] in the continuous time, however the
proof here in the discrete time case is quite different from
the continuous time).

Theorem 7: Let W (ξ−1) and F (ξ−1) be di-polynomial
matrices induced by (12) and (13), respectively. Then

z := −W (σ−1)w̄ − F (σ−1)f (23)

is the minimal state variable of the behavior Bfw described
by Eq.(8).

Proof: First, it is easy to see that

X ′(ξ) :=
[

Id ξId · · · ξL−1Id
]T ∈ R

Ld×d[ξ] (24)

is one of the (not necessarily minimal) state maps of B. Let
X(ξ) ∈ R

n×d[ξ] be the minimal state map for B acting on
�. Then, it is easy to show that there exists a full row rank
matrix V ∈ R

n×Ld such that X(ξ) = V X ′(ξ). Applying this
relation to Eq.(12) and Eq.(13) yields

(ζη − 1)W (ζ−1)TV X ′(η) = M(ζ−1) − M(η) (25)

(ζη − 1)F (ζ−1)TV X ′(η) = −A(ζ−1) + A(η) (26)

Substituting Eq. (24) into Eq.(25) and Eq.(26) yields

V TW (ξ−1) = −

⎡
⎢⎢⎢⎣

MT
L ξ−L + · · · + MT

1 ξ−1

MT
L ξ−L+1 + · · · + MT

2 ξ−1

...
MT

L ξ−1

⎤
⎥⎥⎥⎦ (27)

V TF (ξ−1) =

⎡
⎢⎢⎢⎣

AT
Lξ−L + · · · + AT

1 ξ−1

AT
Lξ−L+1 + · · · + AT

2 ξ−1

...
AT

Lξ−1

⎤
⎥⎥⎥⎦ . (28)

From Eq. (27) and Eq.(28), we obtain

V T
[

W (σ−1) F (σ−1)
] [

w̄
f

]
(t)

=

⎡
⎢⎢⎢⎣

MT
0 w̄(t)

MT
0 w̄(t+1) + MT

1 w̄(t)

...
MT

0 w̄(t+L−1) + · · · + MT
L−1w̄(t)

⎤
⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎣

AT
0 f(t)

AT
0 f(t+1) + AT

1 f(t)

...
AT

0 f(t+L−1) + · · · + AT
L−1f(t)

⎤
⎥⎥⎥⎦ (29)

along (w̄, f) ∈ Bfw for any time t ∈ Z. Now, by using the
result on discrete time state map of [8], we see that the right
hand side of Eq.(29) is the state map of the behavior Bfw.
Moreover, by applying Theorem 6.2 of [9] to the discrete
time case and noting that V T is full column rank, we also
see that the

[
W (ξ−1) F (ξ−1)

]
induces the minimal state

map on Bfw.
From Theorem 6, the latent variable � satisfying Eq.(20)

must also satisfy Eq.(19) and (22), that is,[
w∗

f

]
=

[
M(σ)
A(σ)

]
�. (30)

Let B∗
wf be the behavior of a system described by Eq.(30).

Then, we also obtain the following theorem, which also plays
a crucial role in the implementation of the optimal filter
deterministically.

Theorem 8: The minimal state map X(ξ) for B is also
the minimal state map of the behavior B∗

wf described by
Eq.(30).

Proof: First, from the spectral factorization, we obtain

U(ξ−1)TU(ξ) + Y (ξ−1)TY (ξ) = A(ξ−1)TA(ξ). (31)

Note the assumption that Y (ξ)U(ξ)−1 is proper and U(0) is
nonsingular. Rewrite Eq.(31) as

U(ξ−1)T+Y (ξ−1)TY (ξ)U(ξ)−1=A(ξ−1)TA(ξ)U(ξ)−1. (32)

From the properness of Y (ξ)U(ξ)−1 and Y (ξ−1), we see
Y (ξ−1)TY (ξ)U(ξ)−1 is also proper. Moreover, it follows
from the nonsingularities of A(0) and U(0) that the left hand
side of Eq.(32) is proper and A(ξ−1)T is bi-proper. This
implies that A(ξ)U(ξ)−1 is also proper. By using this fact
and applying Section 8 in [9] to the discrete time case, X(ξ)
is also the minimal state map for B∗

wf . (We omit the detailed
proof here).

Combined with Theorem 7 and Theorem 8, the optimal
condition described by Eq.(20) shows that the equivalence
between the minimal state variable for Bfw described by
Eq.(8) and that for B∗

wf described by Eq.(30) is required.

VI. IMPLEMENTATION OF THE OPTIMAL FILTER

Similarly to [1], Theorem 7 and Theorem 8 enables us to
obtain one of the minimal state space representation of Bfw

by using Eq.(20)

z(T+1) = (X(σ)�)(T+1) = −(W (σ−1w̄ + F (σ−1)f)(T+1)

= Afwz(T ) + Bfww̄(T ) (33)

f(T ) = Cfwz(T ) + D′w̄(T ) (34)

where Afw ∈ R
n×n, Bfw ∈ R

n×q, Cfw ∈ R
d×n and Cfw ∈

R
d×q are appropriate matrices. From Theorem 8, X(ξ) is

also a minimal state map for B∗
wf , so we see that there exist

appropriate constant matrices C∗
wf ∈ R

q×n, D∗
wf ∈ R

q×d

such that

w∗
(T ) = C∗

wf (X(σ)�)(T ) + D∗
wff(T ) (35)

obeying Eq.(30).
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Summing up the above discussions, the optimal filter
can be implemented by using the recursive state space
representation Eq.(33) and Eq.(34) in order to estimate the
minimal state of the system and f . Then, substituting this
f(T ) and x(T ) := (X(σ)�)(T ) into Eq.(35) yields the optimal
estimated variable w∗

(T ) at time T .

VII. EXAMPLE

Consider B described by

w :=
[

w1

w2

]
:=

[
σ2 + 5

6σ + 1
6

σ2 + 5
2σ + 1

]
�. (36)

Suppose that the observation w̄ = [w1 + n1 w2 + n2],
where n1(t) = sin(0.01t) + sin(0.5t) + 0.05v1(t), n2(t) =
2 sin(0.1t) + 0.02v2(t), and v1 and v2 are white noise with
the maximal amplitude 0.05 (they has no correlation each
other). Thus, the observation w̄ does not obey Eq.(36). For
B described by Eq.(36), we choose one of the minimal state
maps for B as X(ξ) =

[
1 ξ

]T
which implies that the

minimal state is described by

x(t) :=
[

x1(t)

x2(t)

]
:= (X(σ)�)(t) =

[
�(t)

�(t+1)

]
(37)

by using the latent variable � of Eq.(36). Next, we com-
pute the spectral factorization and then we obtain the anti-
Hurwitz spectral factor A(ξ) of M(ξ−1)TM(ξ) as A(ξ) =
0.5203ξ2 + 2.1618ξ + 2.2424. By applying M(ξ) and A(ξ)
to Eq.(12) and Eq.(13) respectively, we obtain W (ξ−1) ∈
R
2×2[ξ−1] F (ξ−1) ∈ R

2×1[ξ−1], respectively. In this exam-
ple, note that the projection matrix V used in the previous
section is I . By using the above polynomial matrices, we
can calculate constant matrices required in Eq.(33), Eq.(34),
and Eq.(35). In Figure 1, we show the observation w̄ :=
[w1 w2]T and the estimation w∗. As shown in these figures,
the deterministic filtering proposed here can be almost com-
pletely estimate the manifest variable of the system via the
observation. Next, in Figure 2, we also show the real state

Fig. 1. The estimated manifest variables (the solid lines) and the real ones
(the broken lines)

variables and the estimated state variables implemented by
using Eq.(33) recursively. This figure also illustrates that the
filter estimates optimally the state variables.

Fig. 2. The estimated state variables (the solid lines) and the real ones
(the broken lines)

VIII. CONCLUSIONS

In this paper, we have studied the discrete-time determin-
istic filtering in the behavioral setting . Future works are to
eliminate the assumptions imposed to derive our results in
this paper and to exploit the H∞ filtering problem.
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