
A sufficient condition for a triple of linear systems to be
simultaneously stabilizable in a behavioral framework

Osamu Kaneko and Takao Fujii

Abstract— In this paper, we address simultaneous stabi-
lization problem for a triple of linear systems within a
behavioral framework. First, we provide a necessary and
sufficient condition for a given pair of linear systems to
be simultaneously stabilizable in a behavioral framework.
Next, we show that a simultaneous stabilizer has a symmetric
structure, which is also a self-standing interesting result from
the theoretical points of view. By using these results, we give a
new necessary and sufficient condition for a given pair of linear
systems to be simultaneously stabilizable. This new condition
is described in terms of the solvability of polynomial matrix
equations consisting of polynomial matrices inducing kernel or
image representations of the behaviors of given two behaviors.
Finally, by using this new condition, we give a sufficient
condition for a triple of linear systems to be simultaneously
stabilizable in terms of the behaviors.

I. INTRODUCTION

Simultaneous stabilization is to stabilize two or more
plants by using one controller, which is one of the inter-
esting and important issues in control and system theory.
This problem was formulated and studied in [19], [20], and
[21]. In these studies, a complete necessary and sufficient
condition for a pair of given two systems to be simultaneous
stabilizable was derived as the strong stabilizability (cf.
[24]), which is the stabilizability of a plant by using a
stable controller, of the augmented plant constructed by
using given two plants. In [15] and [20], it was shown
that the simultaneous stabilizability of two plants can be
represented by using the condition on the poles and the
zeros of transfer functions of given plants. In [16], a
characterization of simultaneous stabilizers for two plants
was given. For the case of that the number of given systems
is three or more, it is well known that it is difficult to solve
the simultaneous stabilization problem. Since this issue
is deeply concerned with an interesting and meaningful
nature on the notion of the stabilization from the system
theoretic points of view (cf. [4] [5]), the simultaneous
stabilization of three systems has attracted many attentions
of researchers in the control and system theory from not
only practical but also theoretical points of view. In the
standard system theory, there are many studies related to
the simultaneous stabilization problem. As representative
works on this issue, we can cite the references [1], [2],
[3], [4], [5], [7], [8], [9], [17], [19]. Particularly, as stated
in [2], it was shown that the simultaneous stabilizability
of three linear systems is rationally undecidable, that is
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to say, it is not possible to find necessary and sufficient
conditions for the simultaneous stabilization of three linear
systems in the sense that there exist no ways for checking
the simultaneous stabilizability by algebraic, logical, and
sign test operations. In [3], the difficulty of the simultaneous
stabilization of three systems was deeply investigated with
respect to interpolation problem. Although an important
problem related to simultaneous stabilization stated in [2]
and [3] has been solved in [17], it is still difficult to obtain a
condition for a triple of linear systems to be simultaneously
stabilizable.

By the way, J.C. Willems has proposed the behavioral
approach, which provides a new viewpoint for dynamical
system theory(cf. [22]). In this approach, a control is
regarded as an “interconnection”(cf.[23], [14]) which is a
generalization of the concept of “control” from a broader
perspective. Thus, it is to be expected that the behavioral
approach provides new and meaningful insights for an im-
portant theoretical issue like the simultaneous stabilization
problem.

From these reasons, this paper addresses the simultaneous
stabilization problem for a triple of linear systems within
a behavioral framework. First, we review the simultaneous
stabilization problem for a pair of linear systems and clarify
the symmetric structures of simultaneous stabilizers in a
behavioral framework as stated in [11] and [12]. And then
we give a new necessary and sufficient condition for a pair
of linear systems to be simultaneous stabilizable, and also
give a new sufficient condition. The later is completely
described in terms of the behaviors independently from the
mathematical representations. Next, by using this sufficient
condition, we characterize the simultaneous stabilizers for a
pair of linear systems satisfying some assumptions. Finally,
by using these results, we give a sufficient condition for a
triple of linear systems to be a simultaneously stabilizable
with in a behavioral framework. The sufficient condition
presented here depends on not mathematical models but the
behaviors. We also provide a representation of simultaneous
stabilizers for a triple of linear systems satisfying this
sufficient condition.

[Notations]: Let R and C denote the set of real numbers
and complex numbers, respectively. Let R

q and R
p×q denote

the set of real vectors of size q and the set of real matrices
of size p × q, respectively. Let R[ξ] denote the set of
polynomials of real coefficients and R

p×q[ξ] denote the
matrix version of them of size p × q. In the case of p ≥ q
(p ≤ q), let R

p×q
C

[ξ] denote the set of polynomial matrices
satisfying {A(ξ) ∈ R

p×q[ξ] s.t. A(λ) is full column (row,
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respectively) rank for all λ ∈ C}. Let R
q×q
H

[ξ] denote the
set of polynomial matrices whose determinants have no
roots on the closed right half-plane. We call an element of
R
q×q
H

[ξ] Hurwitz. Note that a unimodular matrix on R
q×q[ξ]

is also Hurwitz. We denote the set of the trajectories such
that limt→∞ w(t) = 0 (i.e., the set of asymptotic stable
trajectories) of size q with Sq. Finally, we assume that the
solution of a differential equation appearing in this paper is
included in the infinitely differentiable functions.

II. PRELIMINARIES

In this section, we prepare notions and definitions re-
quired in the following sections, briefly. For more details,
see the references [22], [23], [18] and so on.

A. The basics of behavioral system theory

A dynamical system Σ is defined as a triple Σ =
(T, W, B), with the time axis T, the signal space W and the
behavior B. Consider a dynamical system Σ = (R, Rq, B).
Moreover, assume that Σ is linear, time-invariant and dif-
ferentiable. Then, a dynamical system Σ is representable
by

RN
dNw

dtN
+ · · · + R1

dw

dt
+ R0w = 0 (1)

where Ri ∈ R
•×q, i = 0, · · · , N . This is called a kernel

representation of Σ and the variable w is called a manifest
variable. A kernel representation is written as R( d

dt )w = 0
by using a polynomial matrix R := R0 + R1ξ + · · · +
RNξN ∈ R

•×q[ξ]. Throughout this paper, we assume that
a system is linear, time-invariant and differentiable.

There are many kernel representations for the behavior
of a system Σ. Particularly, we call a kernel representation
R( d

dt )w = 0 minimal if R has normal full row rank.
Let ρ(B) denote the size of rows of a minimal kernel
representation of B and note that ρ(B) is independent from
representations of B. ρ(B) is called the output cardinality
of B.

A dynamical system Σ = (R, Rq, B) is said to be
controllable if for all w1, w2 ∈ B there exist w ∈ B
and T1, T2(∈ R) such that w(t) = w1(t) for t ≤ T1 and
w(t) = w2(t) for t > T2. Σ is controllable if and only if a
minimal kernel representation is induced by an element of
R

ρ(B)×q

C
[ξ]. The controllability of a system Σ = (R, Rq, B)

is also equivalent to saying that B can be described by

w = ML
dL�

dtL
+ · · · + M1

d�

dt
+ M0� (2)

where Mi ∈ R
q×•, i = 0, · · · , L. This is called an image

representation of Σ and � is called a latent variable.
Similarly to kernel representations, we use the notation
w = M( d

dt )� by using a polynomial matrix M := M0 +
M1ξ + · · · + MLξL ∈ R

q×•[ξ]. Moreover, there are many
image representations for the behavior of a controllable
system Σ. In addition, � is said to be observable from w if
w = 0 implies � = 0. A latent variable � in w = M( d

dt )�
is observable from w if and only if M ∈ R

q×(q−ρ(B))
C

[ξ].

A dynamical system is said to be autonomous if for
w1 and w2 ∈ B w1(t) = w2(t)(∀t < 0) ⇒ w1(t) =
w2(t)(∀t ≥ 0). A system Σ = (R, Rq, B) is autonomous if
and only if a minimal kernel representation of B is induced
by a non-singular polynomial matrix R ∈ R

q×q[ξ]. We also
refer to the roots of det(R) as the pole of B in this paper.

A dynamical system is said to be stable if w ∈ B implies
w(t)→0 as t→∞. As easily seen, the autonomy of a system
is a necessary condition for the system to be stable. A
system Σ = (R, Rq, B) is stable if and only if a minimal
kernel representation of B is induced by a non-singular
Hurwitz polynomial matrix R ∈ R

q×q
H

[ξ].

B. Behavioral system synthesis

Consider controllable systems ΣP = (R, Rq,BP ) and
ΣC = (R, Rq,BC). Each of the behaviors BP and BC

are described by minimal kernel representations induced
by polynomials R ∈ R

ρ(BP)×q[ξ] and C ∈ R
ρ(BC)×q[ξ],

respectively. Then, the behavior of the interconnection of
ΣP and ΣC , say BP ∩ BC , is described by[

R
(

d
dt

)
C

(
d
dt

)
]

w = 0. (3)

The interconnection of ΣP and ΣC is said to be a regular
if ρ(BP ) + ρ(BC) is equal to ρ(BP ∩ BC). The set
of the behavior of systems interconnecting to a plant are
described by not only proper- but also non proper rational
functions. Thus, the set of the achievable behaviors via
regular interconnection is broader than that via well-known
(regular) feedback interconnection driven by CPU.

In order to stabilize the plant, the controller must be
designed so as to satisfy that

[
RT CT

]T
must be an

element of R
q×q
H

[ξ]. Then, Σc is said to be a stabilizer for
Σp. Throughout this paper, let Ωr(BP ) ⊆ R

(q−ρ(BP))×q[ξ]
denote the set of polynomial matrices inducing minimal ker-
nel representations of the stabilizers for ΣP = (R, Rq, BP )
via regular interconnections.

Concerned with stabilization, we cite the following lem-
mas obtained in [14] by Kuijper. The first lemma is a gen-
eralization of doubly coprime factorizations of polynomial
matrices (cf. Lemma 6.3.9 in [10]).

Lemma 1: Consider R ∈ R
p×q
C

[ξ]. Then there exist M ∈
R
q×(q−p)
C

[ξ], N ∈ R
q×p
C

[ξ], Q ∈ R
(q−p)×q

C
[ξ] such that[

R
Q

] [
N M

]
=

[
Ip 0
0 Iq−p

]
(4)

holds. �
The next lemma is a parameterization of all stabilizers in

a behavioral sense.
Lemma 2: Let ΣP = (R, Rq, BP ) be a controllable

plant. Let R(ξ) ∈ R
ρ(BP)×q

C
[ξ] induce a minimal kernel

representation of BP . Then, all of the elements of Ωr(BP )
can be parameterized by

C :=
[

F B
] [

R
Q

]
(5)
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where B ∈ R
(q−ρ(BP))×(q−ρ(BP))
H

[ξ] and F ∈
R

(q−ρ(BP))×ρ(Bp)[ξ] are free parameters.�
The next lemma is one of the equivalent conditions for

the system described by C( d
dt )w = 0 to be a stabilizer for

the plant.
Lemma 3: Assume that ΣP = (R, Rq, BP ) is control-

lable. Let M induce an observable image representation for
B. Consider C ∈ R

(q−ρ(B)×q[ξ]. Then C ∈ Ωr(BP ) if and
only if CM ∈ R

(q−ρ(BP))×(q−ρ(BP))
H

[ξ].�
The next lemma is a straightforward application of

Lemma 3, which is used to describe the statements in our
main theorems.

Lemma 4: Consider two controllable plants Σ1 =
(R, Rq, B1) and Σ2 = (R, Rq, B2). Let R1 and M2 induce
a minimal kernel representation of B1 and an observable
image representation of B2, respectively. Assume that the
output cardinalities of both behaviors are the same, i.e.,
ρ(B1) = ρ(B2) =:p. Then B1 ∩ B2 ⊆Sq if and only if
R1M2 ∈ R

p×p
H

[ξ]. �
In order to state the final main result of this paper, we

introduce the notion of complementary behavior B⊥ such
that

B ⊕ B⊥ = (Rq)R. (6)

It is easy to see that Q and N induce a minimal kernel- and
an observable image- representations of B⊥, respectively.

C. The simultaneous stabilizability of two systems

As for the simultaneous stabilization problem for a pair
of linear systems, a necessary and sufficient condition and
a parameterization has already been studied by the author
in the behavioral setting in [11] and [12]. Particularly, the
next theorem obtained in these references is a necessary
and sufficient condition for the simultaneous stabilizability,
which also plays a crucial role in this paper.

Theorem 5: Consider two controllable systems Σ1 =
(R, Rq, B1) and Σ2 = (R, Rq, B2). Assume that the
output cardinality of B1 and B2 are the same. Define B12

described by the following new kernel representation

R2( d
dt

)
[

N1( d
dt ) M1( d

dt )
]
w = 0. (7)

Then, Σ1 and Σ2 are simultaneously stabilizable if and
only if there exists C

(12)
n ∈ R

(q−p)×q[ξ] and C
(12)
d ∈

R
(q−p)×(q−p)
H

[ξ] such that[
C

(12)
n C

(12)
d

]
∈ Ωr(B12). (8)

Proof: See [12].
From this theorem, we can see that the simultaneous

stabilizability of two plants is equivalent to the stabiliz-
ability of an augmented plant with a certain class of the
stabilizers. Roughly speaking, C

(12)
d (ξ) corresponds to the

“denominator” of the controller, so the above condition is
equivalent to the stabilizability by using a “stable” (in the
sense that the denominator is Hurwitz) controller. Thus, the
above condition is also equivalent to the strong stabilizabil-
ity of the augmented plant, which is a generalization of the

well-known result obtained in [20] in the standard system
theory.

III. PROBLEM FORMULATION

Let Ri ∈ R
ρ(Bi)×q

C
[ξ] and Mi ∈ R

q×(q−ρ(Bi))
C

[ξ] induce
a minimal kernel- and an observable image- representations
of Bi (i = 1, 2, 3), respectively. Moreover, let Ni ∈
R
q×ρ(Bi)
C

[ξ] and Qi ∈ R
(q−ρ(Bi))×q

C
[ξ] denote polynomial

matrices satisfies Eq.(4), for Ri and Mi, i = 1, 2, 3
throughout this paper.

Now we are ready to state the problem we attack here in
the following.

Problem 6: First, let Σi = (T, Rq, Bi) (i = 1, 2, 3)
denote three controllable plants. Assume that ρ(B1) =
ρ(B2) = ρ(B3) (=: p). Moreover, we assume that 2p = q.

(a). Find a sufficient condition for the existence of a
controller that stabilizes three plants Σi (i = 1, 2, 3)
via regular interconnection.

(b). Find a representation of the controllers stabilizing three
plants Σi (i = 1, 2, 3) that satisfy the above sufficient
condition .�

Throughout this paper, we call ΣC = (R, Rq, BC) with
BC = Ker(C) induced by C(ξ) ∈ R

p×q[ξ] a simultaneous
stabilizer for B1 B2 and B3 if[

R1

C

]
,

[
R2

C

]
,

[
R3

C

]
∈ R

q×q
H

[ξ] (9)

hold. The set of polynomial matrices inducing minimal
kernel representations of simultaneous stabilizers is denoted
with Ωr(B1, B2, B3). Similarly, let Ωr(Bi, Bj) denote
the set of polynomial matrices inducing minimal kernel
representations of simultaneous stabilizers for Bi and Bj ,
i �= j.

IV. MAIN RESULTS

In order to find the answers for the above questions
in Problem 6, we start with reviewing the simultaneous
stabilizability of two plants.

A. Symmetric structure of simultaneous stabilizers for two
systems

First, we can see that the following corollary can be
derived from Theorem 5 directly.

Corollary 7: Consider B1 and B2. Define B21 de-
scribed by the following new kernel representation

R1( d
dt

)
[

N2( d
dt ) M2( d

dt )
]
w = 0. (10)

Then, Σ1 and Σ2 are simultaneously stabilizable if and
only if there exists C

(21)
n (ξ) ∈ R

(q−p)×q[ξ] and C
(21)
d (ξ) ∈

R
(q−p)×(q−p)
H

[ξ] such that[
C

(21)
n C

(21)
d

]
∈ Ωr(B21). (11)

By using Theorem 5 and Corollary 7, we show that
simultaneous stabilizers for two plants has a symmetric
structure between Ωr(B12) and Ωr(B21) as follows.
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Theorem 8: Let B12 and B21 denote the behaviors de-
scribed by Theorem 5 and Corollary 7, respectively. Let
[C(12)

n C
(12)
d ] and [C(21)

n C
(21)
d ] induce stabilizers for B12

and B21 with Hurwitz C
(12)
d and C

(21)
d , respectively. Then,

[
C

(12)
n C

(12)
d

][ R1

Q1

]
M2=C

(21)
d (12)

[
C

(21)
n C

(21)
d

][ R2

Q2

]
M1=C

(12)
d . (13)

Proof: The arguments for these two relations are
analogous, so we focus on Eq.(12) here. The outline of the
proof is the following. Since [C(12)

n C
(12)
d ] ∈ Ωr(B12), it

follows from Lemma 3 that

[C(12)
n C

(12)
d ]

[
R1

Q1

]
M2=:B(12) (14)

is Hurwitz. Define

[C(12)
n C

(12)
d ]

[
R1

Q1

]
N2=:F (12). (15)

Apposing Eq.(14) and Eq.(15) yields

[C(12)
n C

(12)
d ]

[
R1

Q1

]
[N2 M2] = [F (12) B(12)], (16)

which implies

[C(12)
n C

(12)
d ] = [F (12) B(12)]

[
R2

Q2

]
[N1 M1]. (17)

On the other hand, C
(12)
d is Hurwitz, thus

[F (12) B(12)]
[

R2

Q2

]
M1 ∈ R

(q−p)×(q−p)
H

[ξ]. (18)

It follows from Lemma 3 that this fact implies that
[F (12) B(12)] is included in Ωr(B21). Moreover, note that
B(12) ∈ R

(q−p)×(q−p)
H

[ξ]. This means that [F (12) B(12)]
induces also a strong stabilizer for B21. By regarding B(12)

as the “denominator” C
(21)
d of the strong stabilizer for B21,

we see that Eq.(12) holds.
We can regard the roots of the determinant of each left

hand side in Eq.(13) and Eq.(12) as the pole of the intercon-
nected systems (See Lemma 3). We can also regard C

(12)
d

and C
(21)
d as the ‘denominators’ of the strong stabilizers for

B12 and B21, respectively. That is, the above theorem says
that the roots of the denominator of the strong stabilizer for
B12 and the mode of the interconnected systems consisting
B21 and its strong stabilizer are the same (vice versa).

By using Theorem 5 and the above interpretation, we can
see that

[C(12)
n C

(12)
d ] = [C(21)

n C
(21)
d ]

[
R2

Q2

]
[N1 M1]. (19)

where [C(12)
n C

(12)
d ] and [C(21)

n C
(21)
d ] are strong stabiliz-

ers for B12 and B21, respectively. These relations can be
also written by

[C(12)
n C

(12)
d ]

[
R1

Q1

]
= [C(21)

n C
(21)
d ]

[
R2

Q2

]
. (20)

From the observations stated above, both of the left and the
right hand side of Eq.(20) are included in Ωr(B1,B2).

Theorem 8 and Eq.(20), we obtain the following new
necessary and sufficient condition for a pair of linear
systems to be simultaneously stabilizable.

Theorem 9: The following three statements are equiva-
lent.

1. B1 and B2 are simultaneously stabilizable.
2. There exist Ha, Hb ∈ R

(q−p)×(q−p)
H

[ξ], and Fa, Fb

∈ R
(q−p)×p[ξ] such that

[
Ha Hb

] [
Q1M2 −I
−I Q2M1

]

=
[

Fa Fb

] [ −R1M2 0
0 −R2M1

]
.(21)

3. There exist Ha, Hb ∈ R
(q−p)×(q−p)
H

[ξ], and Fa, Fb

∈ R
(q−p)×p[ξ] such that

[
Ha Hb

] [ −Q1N2 0
0 −Q2N1

]

=
[

Fa Fb

] [
R1N2 −I
−I R2N1

]
. (22)

Proof: (2 ⇒ 1): Assume that Eq.(21) is solvable,
which is equivalently to saying that

HaQ1M2 + FaR1M2 = Hb

HbQ2M1 + FaR2M1 = Ha
(23)

are solvable. The first equation of Eq.(23) is also equivalent
to

[
Fa Ha

] [
R1

Q1

]
M2 = Hb. (24)

It follows from Hb ∈ R
(q−p)×(q−p)
H

[ξ] and Theorem 5 that
B1 and B2 are simultaneously stabilizable. (Of course,
using the second equation of Eq.(23) yields the same
conseqence.)

(1 ⇒ 2): Assume that B1 and B2 are simultaneously
stabilizable. Then, from Theorem 8, putting C

(12)
d = Ha,

C
(21)
d = Hb, C

(12)
n = Fa and C

(21)
n = Fb yield the

solvability of Eq.(21).
The proof of the equivalence of 1 and 3 is analogous with

the above argument, so we omit it here.
It is easy to see that Theorem 9 provides alternative

representations of the strong stabilizability of B12, or
equivalently, that of B21. In the simultaneous stabilization
problem, we require the stability of the interconnected sys-
tem and the “denominator” of the stabilizer. Thus, for any
Ha and Hb ∈ R

(q−p)×(q−p)
H

[ξ], if there exist Fa and Fb ∈
R

(q−p)×p[ξ] satisfying Eq.(21) or equivalently Eq.(22), then
the pair of B1 and B2 is simultaneously stabilizable. From
this points of view, consider the condition under which
Eq.(21) is solvable for any Ha and Hb ∈ R

(q−p)×(q−p)
H

[ξ].
Then we obtain the following sufficient condition for a pair
of linear systems to be simultaneously stabilizable.
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Theorem 10: Consider B1 and B2. Assume that

B1 ∩ B2 = {0}. (25)

Then the pair of B1 and B2 is simultaneously stabilizable.
Moreover, for any Ha and Hb ∈ R

(q−p)×(q−p)
H

[ξ], the
following polynomial matrix

[
(HaQ1M2 − Hb)(R1M2)−1 Ha

] [
R1

Q1

]
(26)

or equivalently,

[
(HbQ2M1 − Ha)(R2M1)−1 Hb

] [
R2

Q2

]
(27)

is included in Ω(B1, B2).
Proof: The outline of the proof is the following. First,

from Lemma 4, it is easy to see that B1 ∩ B2 = {0} is
equivalent to the unimodularity of R1M2, or equivalently,
that of R2M1. This implies that (R1M2)−1 and (R2M1)−1

are also polynomial matrices. From these facts , for arbitrary
Ha and Hb ∈ R

(q−p)×(q−p)
H

[ξ], there exist polynomial
matrices Fa and Fb satisfying Eq.(21). Thus, from Theorem
9, the pair of B1 and B2 is simultaneously stabilizable.
Moreover, Fa and Fb satisfying Eq.(21) for arbitrary Ha

and Hb ∈ R
(q−p)×(q−p)
H

[ξ] can be described by

Fa = (HaQ1M2 − Hb)(R1M2)−1

Fb = (HbQ2M1 − Ha)(R2M1)−1.
(28)

Notice that [Fa Ha] ([Fb Hb]) inducing the strong stabilizer
for B12 (B21, respectively). Thus Eq.(26) or equivalently,
Eq.(27) is included in Ωr(B1, B2).

The above theorem says that if there exists no trajectory
except trivial zero trajectory in the interconnected behavior
then these two systems are simultaneously stabilizable.

Another possibility for Eq.(21) to be solvable happens in
the case of that R1M2 and R2M1 are scalar polynomials,
which requires that B1 and B2 can be described by single-
input single-output scalar transfer functions. By using this
observation, we also obtain the following theorem.

Theorem 11: Assume

B1 ∩ B2 ⊆ S2 (29)

Then the pair of B1 and B2 is simultaneously stabilizable.
Moreover, for any Ha and Hb ∈ RH[ξ], the following
polynomial matrix

[
HaQ1M2 − Hb R1M2Ha

] [
R1

Q1

]
(30)

or equivalently,

[
HbQ2M1 − Ha R2M1Hb

] [
R2

Q2

]
(31)

is included in Ωr(B1, B2).
Proof: The outline of the proof is the following. First,

from Lemma 4, we see that Eq.(29) implies R1M2 and

R2M1 are Hurwitz. Moreover, we see that R1M2 = R2M1.
Define B := R1M2 = R2M1. Thus, Eq.(21) is rewritten by

[
Ha Hb

] [
Q1M2 −I
−I Q2M1

]
= B

[
Fa Fb

]
. (32)

Since the right hand side of Eq.(32) has the left coprime
factor B, the left hand side also has to include B as the
left coprime factor. For Ha and Hb ∈ RH[ξ] described
by Ha = BH ′

a and Hb = BH ′
b for any H ′

a and H ′
b ∈

RH[ξ], there exist polynomial matrices Fa and Fb satisfying
Eq.(21). Thus, from Theorem 9, the pair of B1 and B2 is
simultaneously stabilizable. Then Eq.(32) is described by

B
[

H ′
a H ′

b

] [
Q1M2 −I
−I Q2M1

]
=B

[
Fa Fb

]
. (33)

and we see that Fa = H ′
aQ1M2−H ′

b and Fb = H ′
bQ2M1−

H ′
a is a solution of Eq.(21) for arbitrary H ′

a and H ′
b. Regard

the above H ′
a and H ′

b as Ha and Hb in the statement of the
theorem, respectively. From Theorem 9, we conclude that
Eq.(30) or equivalently Eq.(31) is included in Ωr(B1, B2).

B. A sufficient condition for a triple of linear systems to be
simultaneously stabilizable

Now we are ready to provide a sufficient condition of the
simultaneous stabilizability of three plants. The results we
present here is based on the previous subsection.

Assume that B1 ∩B2 ⊆S2. It follows from Theorem 11
that for any H

(12)
a and H

(12)
b ∈ RH[ξ],

[
H

(12)
a Q1M2 − H

(12)
b R1M2H

(12)
a

] [
R1

Q1

]
(34)

or equivalently,
[

H
(12)
b Q2M1 − H

(12)
a R2M1H

(12)
b

] [
R2

Q2

]
(35)

is included in Ωr(B1, B2). Moreover, assume also that
B1 ∩ B3 ⊆S2. Similarly to the case of B1 and B2, for
any H

(13)
a and H

(13)
b ∈ RH[ξ],

[
H

(13)
a Q1M3 − H

(13)
b R1M3H

(13)
a

] [
R1

Q1

]
(36)

or equivalently,
[

H
(13)
b Q3M1 − H

(13)
a R3M1H

(13)
b

] [
R3

Q3

]
(37)

is included in Ωr(B1, B3).
Now, consider the situation under which a stabilizer

described by Eq.(34) for B1 and B2 also stabilizes B3.
Note that we can choose arbitrary Hurwitz polynomials
H

(12)
a , H

(12)
b , H

(13)
a ,H(13)

b . Thus, it is possible to take

R1M2H
(12)
a = R1M3H

(13)
a (38)

from the assumption that R1M2 and R1M3 are Hurwitz
polynomials. At the current point, H

(12)
b and H

(13)
b can be

still assigned arbitrarily.
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Next, assume that Q1M2 and Q1M3 are also Hurwitz
polynomials, which are equivalent to B⊥

1 ∩ B2 ⊆S2 and
B⊥

1 ∩B3 ⊆S2, respectively. Under this additional assump-
tions, we can also take

H
(13)
b = −H(12)

a Q1M2, H
(12)
b = −H(13)

a Q1M3 (39)

which implies that

H(12)
a Q1M2 − H

(12)
b = H(13)

a Q1M3 − H
(13)
b .

Of course, even if the role of B1 is replaced with that of
B2 or B3 in the above argument, we can apply the similar
argument. Consequently, we have the following result.

Theorem 12: If at least one of the following conditions
holds

{B1 ∩ Bj ⊆ S2} ∧ {B⊥
1 ∩ Bj ⊆ S2} j = 2, 3 (40)

{B2 ∩ Bj ⊆ S2} ∧ {B⊥
2 ∩ Bj ⊆ S2} j = 1, 3 (41)

{B3 ∩ Bj ⊆ S2} ∧ {B⊥
3 ∩ Bj ⊆ S2} j = 1, 2 (42)

then, B1,B2 and B3 are simultaneously stabilizable. More-
over, the following polynomial matrices induces simultane-
ous stabilizers in each cases for arbitrary B ∈ RH;

a. Eq.(40):

BR1

[
M3Q1M2 + M2Q3M1 M3R1M2

] [
R1

Q1

]

b. Eq.(41):

BR2

[
M1Q2M3 + M3Q1M2 M1R2M3

] [
R2

Q2

]

c. Eq.(42):

BR3

[
M2Q3M1 + M1Q2M3 M2R3M1

] [
R3

Q3

]

Proof: From the previous discussions, it is easy to
see that the above representations induces simultaneous
stabilizers in each cases by using algebraic manipulations,
so we omit the detailed proof here.

Although the above result is a sufficient condition for the
simultaneous stabilizability of three systems, it is worth-
while to notice that the condition can be characterized in
terms of the behaviors.

V. CONCLUDING REMARKS

In this paper, we have studied simultaneous stabilization
problem for a triple of linear systems in a behavioral frame-
work. We have provided some new results on simultaneous
stabilization of two systems. By using these results, we have
derived a sufficient condition for a triple of linear systems
to be simultaneously stabilizable in a behavioral framework.
More detailed discussions and observations will be shown
in the recent works by the authors in [13].

One of the further studies is to consider the system
theoretic interpretation of the obtained result here. More-
over, we derive a less conservative sufficient condition of
the simultaneous stabilizability of three plants within a
behavioral framework. The other direction is to consider
the simultaneous stabilizability for more than three plants.
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