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Abstract. Symmetric inner rational functions naturally
arise in the description of physical systems which satisfy
the conservation and reciprocity laws. Inner matrix functions
can be parametrized by a sequence of interpolation vectors
obtained from a tangential Schur algorithm. In this paper,
we present a Schur type algorithm which allows to describe
symmetric inner functions, based on a two-sided Nudelman
interpolation problem. This Schur algorithm gives rise to an
interesting interpretation in the context of surface acoustic
wave filters.

I. INTRODUCTION.

Symmetric inner functions naturally arise in the descrip-
tion of physical systems which satisfy the conservation and
reciprocity laws. This study was initially motivated by an
application to the synthesis of SAW (surface acoustic wave)
filters. A SAW filter can be viewed as composed by a finite
number of cells, each cell containing a reflection center with
reflection coefficient ri, ri ∈]− 1, 1[, and an electroacoustic
center [3]. The acoustic matrix which relates ingoing waves
to outgoing waves can be computed from the sequence of
reflection coefficients r1, r2, . . . , rN . Put

tn =
√

1 − r2
n, Pn = t1t2 . . . tn,

and define Schur polynomials φn and ψn of degree (n− 1)
satisfying the Levinson recursions{

φn(z) = zφn−1(z) + rnψn−1(z)
ψn(z) = zrnφn−1(z) + ψn−1(z),

with {
φ1(z) = 1
ψ1(z) = r1.

Note that these polynomials have real coefficients. Also
define the reciprocal polynomial of a polynomial p(z) of
formal degree n as

p̃(z) = znp̄(1/z) = znp(1/z̄). (1)

The acoustic matrix associated with the first n-cells of the
filter is thus given by

Qn(z) = z

[ −jψn(z2) Pnzn−1

Pnzn−1 −jψ̃n(z2)

]
/φ̃n(z2), (2)
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in which j denotes the square root of −1. Note that,
φ̃n(z2) = z2(n−1) φn(1/z2), ψ̃n(z2) = z2(n−1) ψn(1/z2).
The matrices Qn(z) are symmetric inner matrices, of McMil-
lan degree 2n, with complex coefficients. In this example, the
complex structure is very particular, but it can be much more
complicated if one considers a combination of filters. Ratio-
nal complex matrices which are both inner and symmetric
seem to be relevant objects in physics and electrical engineer-
ing. However, while there exists an important literature on
inner functions and some papers on real symmetric rational
matrix functions [6], [7], to our knowledge symmetric inner
matrices have not been studied.

Tangential Schur algorithms provide interesting tools to
parametrize inner functions by means of interpolation values
[1], [5], [10]. The object of this paper is to present a Schur al-
gorithm which allows to describe symmetric inner functions.
In order to take into account symmetry, the usual Nevanlinna-
Pick interpolation problem underlying the Schur algorithm
will be replaced by a two-sided Nudelman interpolation
problem.

II. SCHUR ALGORITHMS, INTERPOLATION AND

PARAMETRIZATION.

The Schur algorithm was originally a nice recursive test
for checking the boundedness of an analytic function S(z)
in the disk: define a sequence of functions by S0 = S and

Si+1(z) =
Si(z) − Si(0)

z(1 − Si(0)∗Si(z))
;

then, |S(z)| < 1 for |z| < 1 if and only if |Si(0)| < 1
for all i ≥ 0. Such an analytic function is called a Schur
function and it is completely characterize by the sequence of
numbers γi = Si(0). Then, Schur type algorithms were used
to approach interpolation problems with metric constraints
(Nevanlinna-Pick problems): find a Schur function which
takes certain specified values at certain points inside the unit
disk.

Generalizations of Nevanlinna-Pick problems to the matrix
case were considered, often motivated by some sample prob-
lems in control and system theory: sensitivity minimization,
robust stabilization and model reduction. For these questions
we refer the reader to [2] and the bibliography therein. An
interpolation condition for a rational matrix function can take

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThC11.2

0-7803-9568-9/05/$20.00 ©2005 IEEE 8064



several forms, namely

S(w)u = v, (3)

xT S(w) = yT , (4)

xT S(w)u = ρ, (5)

S(w) = M, (6)

in which w is a complex scalar, u, v, x, y, are vectors and
M is a complex matrix. The solutions of such interpolation
problems can be usually parametrized via a linear fractional
transformation, that is a transformation of the form

TΘ(R) = (Θ1 R + Θ2)(Θ3 R + Θ4)−1, (7)

associated with some rational matrix function Θ(z) with
block decomposition

Θ =
[

Θ1 Θ2

Θ3 Θ4

]
.

The most popular interpolation problem, also called
Nevanlinna-Pick problem consists of a set of directional
interpolation conditions of the form (3). Schur algorithms to
solve this problem were presented among others in [1], [10].
In [1] a Schur algorithm is used to provide parameters for
the set of rational inner functions of fixed McMillan degree.
We briefly recall this result.

Let

J =
[

Ip 0
0 −Ip

]
, K =

[
0 Ip

Ip 0

]
. (8)

For any matrix function F (z), we define

F �(z) = F (z̄)∗, F̄ (z) = F (z̄). (9)

A 2p× 2p rational matrix function Θ(z) is called J-inner
if, at every point of analyticity z of Θ it satisfies

Θ(z)JΘ(z)∗ ≤ J, |z| < 1, (10)

Θ(z)JΘ(z)∗ = J, |z| = 1. (11)

The linear fractional transformation (7) possesses the fol-
lowing useful properties: if Q = TΘ(R) where R and Q are
invertible, then

Q−1 = TKΘK(R−1), (12)

QT = TKΘ̄(1/z)K(RT ). (13)

A p × p rational matrix function S(z) is Schur if it is
analytic and contractive in the disk

S(z)S(z)∗ ≤ Ip, |z| < 1 , (14)

and inner if in addition it takes unitary values on the circle

S(z)S(z)∗ = Ip, |z| = 1 . (15)

A linear fractional transformation (7) associated with a J-
inner matrix function Θ transforms inner functions into inner
functions.

Let Q(z) be a p × p inner function of McMillan degree
n, then

(i) w ∈ C, |w| < 1 being given, we can always find
some direction u ∈ C

p, ‖u‖ = 1 such that v given by the
interpolation condition

Q(w)u = v,

has norm strictly less than 1.
(ii) in that case (‖v‖ < 1), a J-inner matrix function can

be built from the interpolation data w, u, v, namely

Θw,u,v(z) = I2p +(z−1)
1 − |w|2
1 − ‖v‖2

[
v
u

] [
v
u

]∗

(z − w)(1 − w̄)
J (16)

such that the function Q(z) can be represented by the linear
fractional transformation (7) associated with Θw,u,v , for
some inner function Qn−1(z) of degree (n − 1).

The tangential Schur algorithm consists of repeating this
process, and thus provides a sequence of inner functions,

Qn = Q, Qn−1, . . . , Q1, Q0,

in which for k = n, n − 1, . . . , 1, Qk has degree k and
satisfies the interpolation condition

Qk(wk)uk = vk, ‖vk‖ < 1,

and Q0 is a constant unitary matrix.
A local parametrization (or chart) for the set of inner

functions of McMillan degree n can be associated with
a sequence of interpolation points (w1, w2, . . . , wn) and
interpolation directions (u1, u2, . . . , un). An inner function
of McMillan degree n can be parametrized in this chart,
if the Schur algorithm can be run until Q0 (i.e. for k =
n, . . . , 1, the interpolation values vk = Qk(wk)uk satisfy
‖vk‖ < 1). Note that, by (i), for any Q(z), we can find a
sequence of interpolation values and interpolation directions
such that this condition is satisfied. The interpolation values
vn = v, vn−1, . . . , v1, are then the parameters of Q in the
chart, together with the unitary matrix Q0.

Recall that a linear fractional transformation TH associated
with such a J-unitary matrix H is a bijection on the set of
inner functions which preserves the McMillan degree [8].
Moreover, if Θ is a J-inner function, we have that

TΘH(R) = TΘ (TH(R)) .

This leads to the following remark.
Remark 1: The function Θw,u,v satisfies the condition

Θw,u,v(1) = I2p. This implies that the constant unitary
matrix Q0 in the Schur algorithm is such that Q0 = Q(1).
This choice naturally arises in a function space approach [4].
The matrix Θw,u,v also has the nice factorization (obtained
from [8, Lemma 5.1] applied to KΘ�

w,u,vK)

Θw,u,v(z)

= H(vu∗)−1

[
Ip 0
0 Ip + (β�

w(z) − 1)uu∗

]
H(vu∗),

in which βw and H(vu∗) are defined by (18) and (21) respec-
tively. However, assertion (ii) is still true if we replace Θw,u,v
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in the linear fractional transformation by any Θw,u,v,H =
Θw,u,vH , where H is a constant J-unitary matrix. This
matrix H may depend (smoothly) on the interpolation data.
The corresponding Schur algorithm will provide from Q a
different sequence of inner matrices Qk. Such a choice may
be more convenient in some context. In [10], a similar Schur
algorithm is presented which gives rise to a circuit theoretical
interpretation. It is described in the case of continuous-time
transfer functions, but it corresponds in our discrete-time
setting to the choice of Θw,u,vH(vu∗)−1. In [8], the freedom
in the choice of the matrix H has been used to associate with
the Schur algorithm a nice recursive construction of balanced
realizations. This is possible with the J-inner matrix

Θ̂w,u,v = H(wvu∗)
[

Ip 0
0 Ip + ( 1−w̄z

z−w − 1)uu∗

]
H(vu∗).

Now, we turn to the case of symmetric functions. In view
of (13) we have the following preliminary result:

Lemma 1: Let Θ(z) be a J-unitary function such that

Θ̄ (1/z) = KΘ(z)K.

Then, the linear fractional transformation TΘ preserves sym-
metry.

III. ELEMENTARY SYMMETRIC INNER FUNCTIONS.

The Schur algorithm we shall describe in the next section
produces a sequence of symmetric inner functions whose
McMillan degree decreases by 2 at each step. Thus, it
ends either on a symmetric unitary matrix or on an inner
function of McMillan degree 1. In this section, we shall
characterize these elementary symmetric inner functions. As
mentioned previously, constant J-unitary functions also play
an important role in these questions. We shall also char-
acterize J-unitary matrices H which satisfies the condition
H̄ = KHK, so that TH preserves symmetry.

Symmetric complex matrices have been studied in [9]. We
recall the following result.

Lemma 2: A complex matrix X is both symmetric
and unitary if and only if it can be written as X =
OΛOT where O is a real orthogonal matrix and Λ =
diag(λ1, λ2, . . . , λn), |λk| = 1.

Every inner function of McMillan degree 1 can be written
in the form (see [4, th.1.4.])

B(z) = (Ip + (βζ(z) − 1)xx∗) X, (17)

where βζ(z) is the Blaschke factor

βζ(z) =
(z − ζ)(1 − ζ̄)
(1 − ζ̄z)(1 − ζ)

, |ζ| < 1 (18)

X is a unitary matrix uniquely determined by X = B(1)
and x∗ is a left kernel vector of B(ζ) such that ‖x‖ = 1.

If B(z) is symmetric, then the matrix X = B(1) is
symmetric too. Since it is unitary, there exists a unitary
matrix Y such that (see Lemma 2)

X = Y Y T .

Consider the matrix

B̂(z) = Y ∗B(z)Ȳ = Ip + (βζ(z) − 1)yy∗, (19)

where y = Y ∗x. The matrix B̂(z) will be symmetric if and
only if εy is real, for some unit complex number ε.

Lemma 3: The inner function B(z) given by (17) is
symmetric if and only if it can be written in the form

B(z) = Y
(
Ip + (βζ(z) − 1)yyT

)
Y T ,

in which y is a unit real p-vector and Y a unitary matrix.
It is known [4, Th.1.2] that every 2p×2p J-unitary matrix

can be expressed in the form

H = H(E)
[

P 0
0 Q

]
, (20)

where P and Q are p × p unitary matrices, and H(E) the
Halmos extension of a strictly contractive p × p matrix E,
that is

H(E) =
[

(Ip − EE∗)−1/2 E(Ip − E∗E)−1/2

E∗(Ip − EE∗)−1/2 (Ip − E∗E)−1/2

]
.

(21)
Lemma 4: The J-unitary matrix H(E) satisfies

H(E) = KH(E)K if and only if E is symmetric.

IV. A SCHUR ALGORITHM FOR SYMMETRIC INNER

FUNCTIONS.

Let Q be a p × p symmetric inner function of McMillan
degree n ≥ 2 and assume it satisfies the Nevanlinna-Pick
interpolation condition

Q(w)u = v, (22)

where w belongs to the open unit disk, u and v are complex
p-vectors, ‖u‖ = 1 and ‖v‖ < 1. In order to take into account
the symmetry of Q(z), we shall consider simultaneously the
symmetric interpolation condition

uT Q(w) = vT . (23)

The interpolation problem: find Q which satisfies (22) and
(23), is a special case of the two-sided Nevanlinna-Pick
problem in which the interpolation points coincide. It can
be viewed as a two-sided Carathéodory-Fejér problem [4,
th.6.3.] or as a particular case of a the two-sided Nudelman
interpolation problem considered in [2, ex.18.5.3]. For this
problem to be well-posed, an extra interpolation condition
of the form

uT Q′(w)u = ρ, (24)

in which Q′ denotes the derivative of Q, must be added to
the previous ones.

Put

σ =
1 − ‖v‖2

1 − |w|2 , (25)

and associate with the set of interpolation data

δ = (w, u, v, ρ), (26)
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the Pick matrix

Λδ =
[

σ ρ̄
ρ σ

]
, (27)

and the J-inner matrix function

Θδ(z) = I2p+ (z − 1)C
[

(z − w)−1 0
0 (1 − zw̄)−1

]
Λ−1

δ

[
(1 − w̄)−1 0

0 (1 − w)−1

]
C∗J

(28)
with

C =
[

v −ū
u −v̄

]
. (29)

Remark 2: Note that Θδ(1) = I2p and that Θ̄δ(1/z) =
KΘδ(z)K, so that by Lemma 1 the linear fractional trans-
formation TΘδ

preserves symmetry.
It is proved in [2] that there exists a Schur function satisfying
the interpolation conditions (22), (23) and (24) if and only if
the Pick matrix Λδ is positive definite. In the case of a sym-
metric inner function we have the following representation
theorem.

Proposition 1: Let Q(z) be a p × p symmetric inner
function of McMillan degree n ≥ 2 which satisfies (22),
(23) and (24) and such that Λδ is positive definite. Then,
Q(z) can be represented as

Q = TΘδ
(R),

where Θδ is given by (28) and R is a p×p symmetric inner
function of McMillan degree (n − 2).

Proof. We give a constructive proof of this result which
follows the approach developed by Potapov to describe the
multiplicative structure of J-inner functions [11]. We first
consider the case where the interpolation data are of the form
δ0 = (0, u, 0, ρ), so that (22) takes the simpler form

Q(0)u = 0.

From δ0 we construct the positive definite matrix Λδ0 given
by

Λδ0 =
[

1 ρ̄
ρ 1

]
, |ρ| < 1,

and the matrix Θδ0(z) can be easily computed as

Θδ0(z) =

[
Ip + z−1

1−|ρ|2 ūuT −ρ(z−1)
1−|ρ|2 ūu∗

ρ̄(z−1)
(1−|ρ|2)z uuT Ip − z−1

(1−|ρ|2)z uu∗

]
.

Then, we write the Taylor series of Q(z) about 0:

Q(z) = Q(0) + zQ′(0) + . . . .

and the singular value decomposition of Q(0)

Q(0) = V diag(0, . . . , 0, λ1, . . . , λr)U∗, 0 < λ1 ≤ . . . ≤ λr,

for some unitary matrices U and V . From (22) we may
choose the vector u as first column vector of U . Now, let

B(z) = Ip + (z − 1)uu∗ = Udiag(z, 1, . . . , 1)U∗,

then Q(z) = Q1(z)B(z) for some inner function Q1(z) of
McMillan degree (n − 1), and

Q1(z) = Q(z)B(z)−1 = Q′(0)(zIp +(1−z)uu∗)+z× . . . .

We then have the following interpolation condition for Q1(z)

uT Q1(0) = uT Q′(0)uu∗ = ρu∗.

This interpolation condition differs from (3) but can be
approached in a similar way [5]. Since ‖ρu‖ = |ρ| < 1,
its solutions can be represented by a linear fractional trans-
formation Q1 = TΘ1(R1) for some inner matrix function R1

of McMillan degree (n− 2) (since Q1 has McMillan degree
(n − 1)), and where Θ1 is the J-inner function

Θ1(z) = I2p + (z − 1)

[
ū
ρ̄u

] [
ū
ρ̄u

]∗
J

1 − |ρ|2 .

Thus

Q1(z) =
(
(Ip + (z−1)

(1−|ρ|2) ūū∗)R1(z) − (z−1)
(1−|ρ|2)ρūu∗

)
(

(z−1)
(1−|ρ|2) ρ̄uū∗R1(z) + Ip − (z−1)

(1−|ρ|2) |ρ|2uu∗
)−1

and

Q(z) =
(
(Ip + (z−1)

(1−|ρ|2) ūū∗)R1(z) − (z−1)
(1−|ρ|2)ρūu∗

)
(

(z−1)
z(1−|ρ|2) ρ̄uū∗R1(z) + Ip − (z−1)

z(1−|ρ|2)uu∗
)−1

,

which is precisely Q = TΘδ0
(R1). Moreover, by Lemma 1

R1 is symmetric which proves the result in this case.
Then, we assume that the interpolation data are of the form

δ1 = (w, u, 0, ρ), so that (22) has the form

Q(w)u = 0,

and that the associated Pick matrix

Λδ1 =

[
1

1−|w|2 ρ̄

ρ 1
1−|w|2

]
is positive definite. Consider the inner function Qw defined
by

Qw(βw(z)) = Q(z),

where βw(z) is the Blaschke factor defined in (18). The
matrix Qw is symmetric, has same McMillan degree as Q(z)
and satisfies the interpolation conditions

Qw(0)u = 0, uT Q′
w(0)u = ρ(1 − |w|2)1 − w

1 − w̄
,

associated with the interpolation data

δ′1 =
(

0, u, 0, ρ(1 − |w|2)1 − w

1 − w̄

)
.

The Pick matrix associated with these data

Λδ′
1

=
[

1 ρ̄(1 − |w|2) 1−w̄
1−w

ρ(1 − |w|2) 1−w
1−w̄ 1

]
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is positive definite since Λδ1 is. The previous result thus
applies to the matrix Qw, so that

Qw = TΘδ′1
(Rw),

for some symmetric inner function Rw of McMillan degree
(n − 2). It is then easily verified that

Θδ′
1
(βw(z)) = Θδ1(z),

so that
Q(z) = Qw(βw(z)) = TΘδ1

(R),

in which R(z) = Rw(βw(z)) is symmetric and has degree
(n − 2).

Now, we come to some general data δ = (w, u, v, ρ) for
which v is a nonzero vector. We first assume that E = Q(w)
is a strictly contractive matrix and we consider the function
Q̂ = TH(−E)(Q)

= (Ip−EE∗)−1/2(Q−E)(Ip−E∗Q)−1(Ip−E∗E)1/2

where H(E) is the Halmos extension (21) associated with
the symmetric matrix E. This ensures that Q̂ is symmetric.
Moreover, we have that

Q̂′(w) = (I − EE∗)−1/2Q′(w)(I − E∗E)−1/2,

so that Q̂ satisfies the set of interpolations conditions

Q̂(w)û = 0, ûT Q̂′(w)û =
ρ

1 − ‖v‖2
,

where û = (I − E∗E)1/2 u√
1−‖v‖2

. The Pick matrix Λδ̂

associated with the interpolation data δ̂ = (w, û, 0, ρ
1−‖v‖2 )

is again strictly positive since Λδ is. Thus, by what precedes,

Q̂ = TΘδ̂
(R̂),

for some symmetric inner function R of McMillan degree
(n − 2). We then have (note that H(E)−1 = H(−E))

Q = TH(E)Θδ̂H(−E)(R),

in which R = TH(E)(R̂) is again symmetric of McMillan
degree (n − 2). It remains to prove that

H(E)Θδ̂H(−E) = Θδ.

This follows immediately from the fact that

H(E)
[

0 −¯̂u
û 0

]
=

1√
1 − ‖v‖2

[
v −ū
u −v̄

]
.

In the case where Q(w) is not strictly contractive, we can
write the Takagi’s factorization ([9, Cor.4.4.4] for Q(w)

Q(w) = Udiag(σ1, σ2, . . . , σn)UT ,

where U is a unitary matrix and the σk’s are real nonnegative
numbers of modulus less than or equal to one, since Q(w)
is contractive. Assume that |σ1| = |σ2| = · · · = |σl| = 1
while |σk| < 1, for k > l, and choose

E = Udiag(0, . . . , 0, σl+1, . . . , σn)UT .

It is not difficult to prove that Eu = v and the previous proof
can be adapted to this case. �

Remark 3: If both v and ρ are zero in the interpolation
conditions (22), (23) and (24), the linear fractional represen-
tation Q = TΘδ

(R) is a symmetric Potapov factorization

Q(z) = (Ip + (βw(z)− 1)ūuT )R(z)(Ip + (βw(z)− 1)uu∗).
The Schur algorithm: let Q(z) be an inner function of

McMillan degree n ≥ 2. Then,
(i) we can find a set of interpolation data δ = (w, u, v, ρ)

such that Q(z) satisfies (22), (23), (24) and the Pick matrix
Λδ given by (27) is positive definite.

Indeed, we can take for example a zero w of Q(z) and an
associated direction u, so that

Q(w)u = 0.

Then, let ρ = uT Q′(w)u. By Schwartz lemma [12, chap.12]
applied to the Schur analytic function uT Q(z)u, we have

|ρ| ≤ 1
1 − ‖w‖2

.

The equality is strict and thus the Pick matrix Λδ positive
definite unless if uT Q(z)u = ξβw, ξ unit complex number.
In this case, the matrix Q(z) is of the form

Q(z) = X diag(βω(z), Q1(z))XT ,

and it is not difficult to find a unit vector u such that
uT Q′(ω)u = ρ = 0 and Q(ω)u = v, with ‖v‖ < 1. The
Pick matrix Λδ is again positive definite.

(ii) given a set of interpolation data δ such that the
associated Pick matrix Λδ is positive definite, any matrix
Q satisfying (22), (23), (24) can be represented by a linear
fractional transformation of the form

Q = TΘδ
(R),

for some symmetric inner function R of McMillan degree
(n − 2).

Repeating this process we construct a sequence of sym-
metric inner function

Qn = Q, Qn−2, . . . , Qn−2i, . . . Qf ,

in which Qn−2i has McMillan degree (n − 2i). The Schur
algorithm stops when the degree is 1 or 0. If n is odd, then
Qf is a symmetric inner function of McMillan degree 1
while if n is even, then Qf is a symmetric unitary matrix.
These elementary symmetric inner functions were described
in section III.

V. SCHUR PARAMETERS FOR A SAW FILTER.
NORMALIZATION ISSUES.

We return to the example proposed in the introduction.
Let Mn(z) = Qn(z)/z where Qn(z) is the acoustic matrix
given by (2). It satisfies the interpolation condition (22) with

w = 0, u =
[

0
1

]
, v =

[
0

−jrn

]
.
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It can be verified that uT Q′
n(0)u = 0, so that the associated

Pick matrix Λ = t2n I2 is clearly positive definite. The
associated J-inner matrix can be computed as

Θn(z) =

⎡⎢⎢⎢⎣
1 0 0 0
0 z2−r2

n

zt2n
0 jrn(z2−1)

zt2n
0 0 1 0
0 jrn(z2−1)

zt2n
0 1−r2

nz2

zt2n

⎤⎥⎥⎥⎦ .

We may also run two steps of the classical tangential Schur
algorithm described in section II, with

wn = 0, un =
[

0
1

]
, vn =

[
0
0

]
,

wn−1 = 0, un−1 =
[

0
1

]
, vn−1 =

[
0

−jrn

]
.

We get
Mn = TΦn(Mn−1),

with

Φn(z) =

⎡⎢⎢⎣
1 0 0 0
0 z

tn
0 −jrn

ztn

0 0 1 0
0 jrnz

tn
0 1

ztn

⎤⎥⎥⎦ .

Note that this matrix doesn’t satisfy the condition Φn(1) =
I2p that was imposed to the J-inner functions Θδ in the
symmetric Schur algorithm. The matrix Φn(1) is in fact
equal to H(vu∗). Note that, in this particular case,

vu∗ =
[

0 0
0 −jrn

]
,

is symmetric, so that by Lemma 4 and Lemma 1 the
linear fractional transformation TH(vu∗) preserves symmetry.
Moreover, we have that

Φn = ΘnΦn(1).

It appears that the sequence of acoustic matrices Mn corre-
sponds to a symmetric Schur algorithm in which the J-inner
function ΘδH(vu∗) has been chosen instead of Θδ .

This leads us to some considerations on the choice of
the J-inner function in a Schur algorithm. Concerning the
tangential Schur algorithm described in section II, we have
already mentioned that several choices have been made in the
literature (see remark 1) and in particular, that of [10] which
allows for a nice circuit interpretation, and that of [8] which
leads to a recursive construction of balanced realizations. In
the context of SAW filters, the Schur algorithm associated
with the matrices Φn has a nice physical interpretation: it
gives the sequence of acoustic matrices Mn corresponding
to the first n-cells of the filter. Moreover, it can be proved that
it allows for a recursive construction of balanced realizations
as described in [8]. This is not very surprising since, when
the interpolation point w is zero, the choices in [10] and
[8] for the matrix Θ agree. In general, the matrix vu∗ is
not symmetric. It is symmetric only if v = λū for some

complex number λ. This raises the question of the choice
of a symmetric contractive matrix E, such that the Schur
algorithm associated with ΘδH(E) allows for a recursive
construction of balanced realizations.
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