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Abstract— The area of bio-molecular computing has re-
cently witnessed a major paradigm shift. Rather then being
used only as simple calculating units capable of solving hard
combinatorial or numerical problems, DNA computers are
increasingly becoming more tailored to operate like intelli-
gent biological machines with unprecedented potentials. One
example of applying DNA computers in such a new setting
is in the area of logical control of gene expression levels.
For this purpose, DNA computers are designed in such a
way as to be able to diagnose some forms of cancer-related
irregularities in a cell and release biological strands acting
as inhibitors or activators of certain sets of genes. Such
a control action can also be seen as a form of intra-cell
cancer therapy, although it may also have other, more varied,
purposes and goals. There are several important problems
in the area of coding and network theory that arise in
the context of developing DNA computers for controlling
gene expressions. The two most important issues are that
of minimizing diagnostics failure and of increasing the
computational reliability of the system. The first question
is intimately related to analyzing the operational principles
of networks of gene interactions, while the second is con-
cerned with relating combinatorial characteristics of single-
stranded DNA sequences to their hybridization affinities
and secondary structures. In this paper, we will describe
the state-of-the-art results and present some new relevant
combinatorial and coding theoretic problems in this area.

I. INTRODUCTION

The last century was marked by the birth of two
major scientific and engineering disciplines: silicon-based
computing and the theory and technology of genetic data
analysis. The research field very likely to dominate the
area of scientific computing in the foreseeable future is the
merger of these two disciplines, leading to unprecedented
possibilities for applications in diverse areas of biological
and medical sciences. The first steps toward this goal were
made in 1994, when Leonard Adleman [1] experimentally
demonstrated the computational potential of biological
macromolecules. DNA computing introduced the possi-
bility of using genetic data to tackle computationally
hard classes of problems that are impossible to solve
efficiently using traditional computing methods. The bio-
logical properties that make DNA computers capable of
achieving these goals are massive parallelism of hybridiza-

tion and enzyme-based operations on nano-scale, low-
power molecular hardware and software systems. More
importantly, practical demonstrations of DNA computing
principles opened new venues for applications of bio-
devices for disease diagnostics and treatment. A landmark
development in this area was the construction of an
autonomous DNA machine for controlling the expression
levels of genes [2]. Control of gene expression profiles
appears in every biological system, either at the level
of the DNA sequence (in terms of nucleotide rearrange-
ments), the level of transcription or at the level of post-
transcription [6]. The key idea of such a control process
is that a gene is not active as long it is not transcribed
or as long as the result of its transcription is rendered
un-functional. Post-transcriptional silencing of genes, in
terms of RNA Interference (RNAi) is currently one of the
most outstanding research topic in molecular biology [24].

The principles underlying post-transcriptional expres-
sion regulation were implemented in the DNA computer
system described in [2]. The DNA automata used for
this purpose was designed to act like an RNA finger-
printing device. Here, fingerprinting refers to a set of
processes aimed at detecting the presence and concen-
tration of specific mRNA molecules in the cell. These
RNA molecules carry the information for protein encoding
and therefore serve as indicators of the activity of their
corresponding genes. If, for example, mRNA sequences
carrying the messages of genes PPAP2B and GSTP1 are
under-represented, while mRNA sequences carrying the
messages of genes PIM1 and HPN are over-represented
within a cell in the prostate, there exists a high probability
that the cell is undergoing cancerous changes. In this case,
the DNA computer is instructed to administer a short DNA
sequence – GTTGGTATTGGACATG – that inhibits the
generation of a protein (MDM2) and therefore changes
the interaction patterns between the genes involved [2].

Several coding theoretic issues are apparent when in-
vestigating the operation of DNA computers designed to
control gene expressions. One aspect is connected to the
functionality of the disease identifier block. This part of
the system architecture is in charge of estimating specific
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levels of a subset of mRNA molecules in a cell. In
order for this system to work reliably, one has to have
a sufficiently accurate set of disease indicators (i.e. a
sufficiently large and discriminatory list of genes that are
under- or over-expressed in the cell under investigation),
and a reliable estimate of what expression levels are
to be considered “low” and “high”. The situation is
further complicated by the fact that expression levels in
affected cells usually vary in time and are genuine random
variables, either due to the influence of external factors
or due to changes associated with normal cell cycle pro-
cesses. Another aspect is connected to the fact that single-
stranded DNA sequence operations are prone to various
types of hybridization and self-hybridization errors and
instabilities. DNA computers have to operate in a con-
trolled environment that allows for a set of single-stranded
DNA codewords to bind (hybridize) only with their exact
complements. Furthermore, for certain applications, DNA
strands may be required to avoid secondary structures -
i.e. folding back onto themselves. If such environment
cannot be established, as may be the case for in vivo
computations, unwanted, or non-selective, hybridization
may occur. Consequently, one has to carefully design
DNA sequences of appropriate length and structure in
order to ensure optimal operational conditions.

Undoubtedly, all the aforementioned problems have to
be first addressed at the level of (experimental) molecular
biology in order to find all necessary data needed for
devising the computer’s architecture. But it is also very
important to develop a mathematical approach for mod-
elling genetic data and representing it in a way that can
be used within DNA computers. The first task, concerned
with analyzing and modelling gene regulatory networks
in terms of random Boolean networks, neural networks
and/or stochastic automata was addressed in a series of
papers [9], [11], [19], [20] and the references therein.
On the other hand, the focus of error-control coding
research for DNA computing was so far directed mainly
towards constructing large sets of DNA codewords that
have a small probability of undesired hybridization; Two
design principles were put forward. The first principle
is based on the assumption that the backbone of DNA
strands is a perfectly rigid structure. Such an assumption
implies that fixed base frequency (constant GC-content)
and prescribed Hamming/reverse-complement Hamming
distance constraints can minimize hybridization-related
problems [8], [12]. The second approach is based on
the assumption that the backbone of DNA molecules is
perfectly elastic. In this setting, unwanted hybridization
can be minimized by using DNA codewords designed ac-
cording to principles that govern constructions of classical
deletion-correcting codes [7]. Under the two described
models, DNA codewords obeying the given constraints
are expected to very rarely hybridize in an erroneous

fashion. Unfortunately, such models may fail to predict
the correct hybridization pattern due to the fact that the
sugar-phosphate backbone of DNA strands has physical
and thermodynamical properties that are not adequately
captured by a completely rigid or elastic structural model,
and due to the fact that the stability of a DNA duplex
depends on the nearest neighbor interaction energies de-
scribed in [3]. Additionally, few attempts were made to
test codewords designed with respect to the hybridization
constraint for secondary structure formations, nor was the
folding constraint incorporated in any of the proposed
code construction methods directly. For the problem at
hand, the importance of the hybridization and secondary
structure constraint is even more apparent due to the fact
that time-varying folding properties of single-stranded and
double-stranded DNA or RNA molecules are important
pointers towards their time-changing function [22].

The two classes of problems described above have
been addressed using diverse approaches from statistical
physics [4], [16], computer science [18], biology and
mathematics. Gene regulatory systems were modelled in
terms of random Boolean networks, neural networks,
differential equations and stochastic equations [11]; DNA
hybridization and folding dynamics were analyzed compu-
tationally, by using specialized modifications of dynamic
programming algorithms [3]. Here, we will focus our
interest on the combinatorial and coding theoretic aspects
of such problems. More specifically, we will describe
techniques for modelling gene regulatory networks and
quantifying DNA hybridization and folding properties
based on ideas borrowed from coding theory. Our treat-
ment of the two problems is based on viewing regulatory
networks as iterative systems and analyzing the combi-
natorial aspects of DNA folding in terms of the nearest
neighbor results of [3] and some characteristic properties
of Nussinov’s algorithm [17].

The paper is organized as follows. Section II contains
a description of relevant concepts from the theory of
gene regulatory networks (GRNs) and and overview of
prior work on modelling such systems. The same section
also describes some alternative analytical techniques for
analyzing GRNs inspired by results from the theory of
iterative decoding [5]. Section III provides the necessary
background needed for analyzing the combinatorial as-
pects of DNA hybridization and folding and a sampling
of results regarding DNA codeword constructions.

II. GENE REGULATORY NETWORKS: DEFINITIONS

AND TERMINOLOGY

Although DNA molecules can be simplistically viewed
as (one-dimensional) sequences over a four-letter alpha-
bet, there exists many higher levels of interaction within
such strings. Consequently, DNA sequences should be
viewed as networks of interacting subunits. In this setting,
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it is often assumed that the main functional subunits are
genes. Genes are subsequences of DNA strands that code
for proteins that are essential for the development and
functioning of an organism. The central dogma of genetics
represents a set of rules according to which genes are
transcribed into mRNA molecules, subsequently used for
encoding of proteins during the process of translation. The
expression level of a gene is a measure of the frequency
with which it is being transcribed, and represents a crucial
parameter for quantifying its activity. Genes in regulatory
networks interact indirectly through enzymes and other
regulatory complexes, which are very often themselves
encoded by genes. There exist many techniques for mod-
elling the interaction patterns of genes in so-called gene
regulatory networks (GRN). Among the most frequently
used methods are differential equations for describing
positive and negative feedback actions [11], and random
Boolean and neural networks [19], [20]. In the former
case, the process of regulation is described in terms of
kinetic equations of the form:

ṡi = fi(s1, ..., sN ), i = 1, ..., N,

where fi is the expression-level law (equivalently, rate-
law), N denotes the number of genes Gi, i = 1, ..., N ,
and s1, ..., sN describe the concentrations of the gene
products. Although in such a formal set-up the equations
cannot be solved directly, there exist many numerical
methods that can be used for obtaining qualitative results
for gene activities. In the latter case, one defines a
regulatory message ri(t) for a gene Gi at time t as [20]:

ri(t) =
N∑

j=1

ωi,jsi(t) + ei, i = 1, ..., N,

where ωi,j denotes the strength of the influence of gene
Gj on gene Gi, while ei described the strength of the
influence of external factors on Gi. If gene Gj exhibits
no influence on Gi, then ωi,j = 0. Otherwise, ωi,j is either
positive or negative, according to the regulation being
responsible for increasing or decreasing the expression
level of gene Gi. The transcriptional response of Gi is
modelled in terms of the sigmoidal transfer function [20]
gi(t) = 1/(1 + e−ri(t)), while the expression level of
the gene is of the form si gi(t), where si stands for
the maximum achievable expression rate of Gi. Some
drawbacks of the described models are that they do not
capture the fact that interactions between genes occur
at random time intervals, and that the expression levels
of the genes themselves represent random variables [23].
For example, the expression levels of a gene within two
different cells of the same type, and in the same cell-cycle
stage, can be quite different. This can be attributed to the
probabilistic nature of biochemical reactions as well as
to random external conditions. This makes the regulatory

process stochastic in nature. Stochastic differential equa-
tion models for gene regulatory networks were considered
in [21]. There, stochastic equations were used to describe
the time evolution of a genetic systems in terms of the
updates of the state variable, S(T ) = [S1(T ), ..., SN (T )],
representing the stochastic expression levels of the genes
at time T . Let Pj(∆, S) denote the probability of the
j-th regulatory reaction occurring in the time interval
[T, T + ∆T ], provided that the network is in state S.
Similarly, let Pj(∆, S) denote the probability that the
terminal state of the network after completion of reaction
j will be S. Based on a set of plausible reactions, one
can obtain computationally the sequence of states through
which the genetic system goes through according to the
updating rule:

P{S(T + ∆T )} = P{S(T )}
(

1 −
m∑

i=1

Pj(∆, S)

)

+
m∑

i=1

Qj(∆, S).

The drawbacks of the differential equation models are
mainly connected to the their large computational com-
plexity, which itself is a consequence of the analytic
intractability of the model. This is why one of the most
commonly used models for gene regulatory interactions is
based on random Boolean networks or randomly perturbed
neural networks. There exist well-developed techniques
for the analysis of Boolean networks that are largely
taken from the theory of discrete dynamical systems.
In the next section we will describe how the theory of
message passing borrowed from coding theory can be used
to analytically approach the problem of neural network
modelling. Furthermore, we will describe how density
evolution [5] can be used to quantify iterative systems
for time-dependent average gene expression levels.

A. Gene Regulatory Networks as Iterative Message Pass-
ing Systems

We propose to analyze GRNs in terms of a Gaussian
neural network model. A model of this type was first
put forward in [20]. Here, we will add some new and
biologically relevant features into the model [23], and
determine its properties based on techniques borrowed
from the theory of iterative decoding. The underlying
connection between the biological and coding-theoretic
entities is the inherently dynamic (iterative) change of
state variables in the system. For a coding application,
such changes are aimed at determining the correct mes-
sage values. For biological systems, they are performed
in a manner that allows cell processes to proceed in a
correct manner. The key idea behind the analysis is based
on density evolution (DE) with Gaussian approximation
[5]. In a DE-type of analysis, one assumes that at each
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time instant, the expression level is a Gaussian variable.
Under this assumption, one can track only the time
changes of the first and second moment of the variables.
Accordingly, the time changing and asymptotic values of
the parameters of the variables can be easily determined.
Even in the case when the variables involved are not
Gaussian, the moment-tracking method may still provide
good predictions of the system’s dynamics. Consider the
following model of gene expression level updates (which
is a combination of the models in [20] and [23]):

ui,n+1 = ai,n · ui,n + gi,n · bi,n,

ai,n ∼ N (
µi,n,M2

i,n

)
, bi,n ∼ N (

βi,n,Σ2
i,n

)
,

gi,n = 1/
(
1 + e−

∑
ωi,juj,n−τ(j)+αi,n

)
,

αi,n ∼ N (
0,Γ2

i,n

)
, ωi,i = 0 ∀ i.

(1)

In the previous equation, the random variables ai,n,
bi,n and αi,n are assumed to be independent Gaussian
variables that are also independent from the variables
ui,n. They implicitly contain the information about the
degradation rate of a gene’s mRNA and about the max-
imal expression rate of a gene. The parameters ωi,j are
to be determined experimentally, for example by using
DNA microarray measurements. The correction term αi,n

accounts for external factors that influence the expression
levels of genes as well as possible stochastic changes
in the weighting factors ωi,j . Furthermore, it is assumed
that a gene cannot exhibit direct influence on itself, so
that ωi,i = 0. Finally, the integer time shifts τ(j) are
introduced in order to allow for different “propagation
times” of biochemical reactions initiated by gene Gj

and influencing gene Gi. For simplicity, these parameters
will be taken to be independent from the time (iteration)
variable n. The formula in (1) is reminiscent of the belief
propagation equation of iterative decoding. The major
difference between the two expressions comes from the
form of the function gi,n, which in the coding theoretic
setting is significantly more complicated. The expected
value mi,n and second moment θi,n of the expression
levels ui,n can be found as

mi,n+1 = µi,n mi,n + βi,n E[gi,n],

θi,n+1 =
(
M2

i,n + µ2
i,n

)
θi,n +

(
Σ2

i,n + β2
i,n

)
E[g2

i,n].

Using similar arguments as in the density-evolution ap-
proach of [5], one can obtain approximations for the
average expression levels in the following manner. First,
simple upper and lower bounds for the integrals involved
are computed, which are then used to find an approxima-
tion in terms of their weighted average. To find such tight
bounds, one can utilize the following representation of the
sigmoid function [10]

1
1 + e−x

= min
ζ∈[0,1]

eζ x−H(ζ),

where H(ζ) = −ζ log ζ−(1−ζ) log (1−ζ) is the binary
entropy function. As a result, one has

1
1 + e−x

≤ eζ x−H(ζ),

and
1

1 + e−x
≥ 1

1 + e−η
e(x−η)/2−F (η)(x2−η2),

where ζ is any number in [0, 1], η is arbitrary and

F (η) =
(

1
1 + e−η

− 1/2
)

/2η.

This implies that

E[gi,n] � 1
2

exp(Uiζ + ζ2V 2
i /2 − H(ζ))+

1
2

exp
(

(Ui + Vi/2)2 − U2
i (1 + 2V 2

i F (η))2

2V 2
i (1 + 2V 2

i F (η))

)
×

exp(η/2 + F (η)η2/2)
1 + e−η

,

Ui =
N∑

j=1

ωi,j mj,τ(j),

V 2
i = Γ2

i,n +
N∑

j=1

ω2
i,j

(
θj,τ(j) − m2

j,τ(j)

)
;

The parameters ζ and θ are to be chosen in such a
way as to minimize the approximation error. Note that
similar expressions can be derived for E[g2

i,n]. These
two approximations provides for a simple iterative system
for which convergence rates, activation levels and other
important features can be determined by using the density
evolution approach [5].

III. DNA CODING: DEFINITIONS AND TERMINOLOGY

DNA of higher species consists of two complementary
chains twisted around each other in the form a double
helix. Each chain consists of a backbone, composed of
sugar and phosphate units, and a linear sequence of
nucleotides, or bases. Two of the bases are of the purine-
type, namely adenine (A) and guanine (G), while the other
two are of the pyrimidine-type, namely thymine (T) and
cytosine (C). The purine bases and pyrimindine bases are
Watson-Crick (WC) complements of each other, in the
sense that

A = T, G = C, C = G, T = A. (2)

More specifically, in a DNA duplex (dDNA), the base
A on one strand pairs with T on the opposite strand by
means of two hydrogen bonds, while C pairs with G
by means of three hydrogen bonds (i.e. the strength of
the bond between G and C is stronger than the bond
between A and T). For DNA computing purposes, one
is usually concerned with single-stranded DNA (ssDNA)
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sequences. These sequences are formed by heating DNA
double helices to denaturation temperatures, at which
they break down into single strands. If the temperature
is subsequently reduced, strands with large regions of
sequence complementarity can bind back together in a
process called hybridization. Hybridization is assumed to
occur only between complementary base pairs, and this
process lies at the core of DNA computing.

As a first approximation, oligonucleotide DNA se-
quences can be simply viewed as words over a four-letter
alphabet Q = {A, C, G, T}, with a prescribed set of given
properties. The generic notation for such sequences will
be q = q1q2 . . . qn, with n indicating the length of the
sequences. The WC complement q of a DNA sequence is
defined as q1 q2 . . . qn, qi being the WC complement of qi

as given by (2). Let C be a collection of ssDNA strands.
The following definitions of distance measures are useful
in the context of DNA computing:

dH(C) = min
p �= q,

q, p ∈ C

dH(p, q),

dRC(C) = min
q, p ∈ C

dH(p, qRC),

dWC(p, q) = dH(p, q).

(3)

The first distance measure (the Hamming distance) is of
interest when evaluating (cross)hybridization properties of
DNA words under the assumption of a perfectly rigid
DNA backbone. For example, consider two words 3′ −
AAGCTA − 5′ and 3′ − ATGCTA − 5′ at Hamming
distance one from each other. For such two words, the
reverse complement of the first word, 3′−TAGCTT−5′,
would also have a very large affinity to bind to the
second word. In order to prevent such a possibility, one
has to impose a minimum Hamming distance constraint
(dH(C) ≥ d) on the sequences. On the other hand, in order
to prevent unwanted hybridization between two DNA
words, one needs to ensure that the reverse-complement
distance between words is larger then a prescribed thresh-
old (leading to the introduction of the second distance
measure, the reverse-complement Hamming distance). As
an example, consider two words 3′ − AAGCTA − 5′

and 3′ − TACCTT − 5′. The second word, read-out in
reverse order, matches the reverse-complement of the first
word in all but one position. Hence, under the given
model, the second word is very likely to pair up with the
reverse-complement of the first codeword. This introduces
the need for imposing a minimum reverse-complement
distance constraint (dRC(C) ≥ d), as given by (3). The
importance of the third measure, termed the Watson-Crick
distance, will become apparent after the description of
the notion of DNA folding (alternatively, DNA secondary
structure formation). The secondary structure of a DNA
codeword q1q2 . . . qn is a set, S, of disjoint pairings

between complementary bases (qi, qj) with i < j. A
secondary structure is formed by a chemically active
oligonucleotide sequence folding back onto itself due to
self-hybridization, i.e., hybridization between complemen-
tary base pairs belonging to the same sequence. As a
consequence of the bending, elaborate spatial structures
are formed, the most important components of which are
loops (including branching, internal, hairpin and bulge
loops), stem helical regions, as well as unstructured single
strands.

There exist simple computational techniques, based
on dynamic programming methods, that can be used to
determine the secondary structure of a DNA sequence.
Among these techniques, Nussinov’s folding algorithm is
the most straightforward scheme used [17]. Nussinov’s
algorithm is based on the assumption that in a DNA
sequence c = c1c2 . . . cn, the energy between a pair of
bases, α(ci, cj), is independent of all other pairs. For
simplicity, one can assume that α(ci, cj) = −1 if ci

and cj are Watson-Crick complements, and α(ci, cj) = 0
otherwise. Let Ei,j denote the minimum free energy of
the subsequence ci, . . . , cj . The independence assumption
allows us to compute the minimum free energy of the
sequence c1, c2, . . . , cn through the recursion

Ei,j = min
{

Ei+1,j−1 + α(ci, cj),
Ei,k−1 + Ek,j , i < k ≤ j,

(4)

where Ei,i = 0 for i = 1, 2, ..., n and Ei,i−1 = 0 for
i = 2, ..., n. The value of E1,n is the minimum free
energy of a secondary structure of c1, c2, ..., cn. Note that
E1,n ≤ 0. A very large negative value for the free energy
E1,n of a sequence is a good indicator of the presence of
stacked base pairs and loops, i.e., a secondary structure,
in the physical DNA sequence. Long loops are known to
exhibit destabilizing effects on the secondary structure,
leading to unfolding of the strand. The Watson-Crick
distance defined above is in some sense a measure of the
length of a hairpin loop: if it is equal to its maximum value
when evaluated for a sequence and a certain number of
its consecutive shifts (say N ), it indicates that a loop of
length N exists in the structure. The larger the value of
N , the more unlikely it is for the secondary structure to
remain stable - the more likely it is the sequence will not
exhibit a secondary structure.

A. Duplex Stability and mRNA Secondary Structures

The stability of a duplex formed by hybridization of
short ssDNA strands is usually assessed in terms of the
strands free energy. The free energy depends on the
particular ssDNA sequences involved - more precisely, it
depends on the nearest neighbor interaction energies but
not on the composition of the base pairs [3]. For a dDNA
with a single strand sequence given by c, the free energy
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Efree can be accurately approximated as

Efree = κ +
n−1∑
i=1

ε(ci, ci+1),

where ε(ci, ci+1) denotes the interaction energy between
ci and ci+1, while κ denoting a correction factor which
depends on the number of G and C bases in the sequence
c. A total number of ten different nearest neighbor inter-
actions are possible, and the stabilities of interactions are
listed in [3]. The nearest neighbor interaction energies can
be used to determine the stability of a specific hybridized
duplex, or the minimum length od a duplex required to
achieve a certain energy level etc. These problems are, of
course, of special interest for controlling gene expressions
through post-transcriptional silencing. But there exist very
specific constraints imposed in such a setting: hybridiza-
tion has to be performed with respect to sub-sequences
of some well-defined mRNA strand. In such a strand, one
has to identify the subsequence that gives the most stable
hybridization pattern. Furthermore, due to the affinity of
mRNA to self-hybridize (i.e. to allow for hybridization
between Watson-Crick complementary sub-sequences on
the same strand) one also has to know which subsequences
of an mRNA strand are un-hybridized. This introduces
the need to find simple methods for identifying secondary
structures of mRNA and ssDNA strands; these structures
also depend on the ordering of the base pairs in the strand.

In the former case, one can use the nearest-neighbor in-
teraction graph to identify: a) all sequences of some given
length, for which the duplex stability will be sufficiently
high (say, greater than a threshold T ); b) the smallest
length for which there exist at least a prescribed number
of sequences with stability larger than T . Clearly, such
sequences correspond to paths in the nearest-neighbor
graph that have vertex cost exceeding T . For example, if
the smallest stability level is 20 and the sequences are to
be of length five, then CGCAA, GGGGG, GGGGT etc.
would satisfy this requirement. But there is no guarantee
that the reverse complement of these sequences exist in
the targeted biological strand. Furthermore, there is no
indication that if such a sub-strand even exists, that it is
not “folded” and inaccessible for hybridization. For exam-
ple, the sequence TACGCAAAAATTGCGAA contains
the reverse-complement of CGCAA, but as part of a
stem (helix formation). In the latter case, one can use the
Watson-Crick distance metric to try to identify loops in the
secondary structure. For example, due to the well-known
no-sharp-turn constraint, one can focus on the Watson-
Crick distance of a targeted sequence and its 1-st,2-nd,. . .,
s-th shift. If all these distances are equal to the lengths of
the underlying sequences, then a hairpin loop of length s
is very likely to exist within the secondary structure. Bases
on the loop can be targeted for hybridization. More details

about these and other coding-theoretic problems arising in
DNA computing can be found in the companion papers
[13] and [14].
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