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Abstract— This paper deals with the robust exact pole
placement problem in connection with the solvability of a
Sylvester equation. The main issue is to compute a well-
conditioned solution to this equation. The best candidate
solution must possess the minimal condition number. This
problem is cast as a global optimization under LMI constraints
for which a numerical convergent algorithm is provided and
compared with the most attractive methods in the literature.
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I. INTRODUCTION

The classical pole placement problem consists of de-
termining a state feedback such that the eigenvalues of
the closed-loop system are at a desired location in the
complex plan. This problem is deeply treated in the seminal
paper [25] (see also [26]). Since then, the pole placement
technique for designing suitable dynamic response of a
linear plant, becomes among the most important tools in
control theory.

It is well-known that the pole placement for the single-
input case has a unique solution which can be easily
computed by using Ackermann formula [1]. In contrast, the
multi-input case of this problem may have an infinite num-
ber of possible solutions. Moreover, it is not easy to come up
with a numerical solution to the multi-input case problem.
For example, the function place (from MATLAB control
toolbox) cannot assign poles with multiplicity greater than
the number of the inputs of the system. In this paper,
we provide an algorithm which seems to be numerically
efficient and can locate any desired poles (distinct, multiple
or overlapping with the open-loop spectra).

In real world problems, the dynamic of the system is not
exactly known and may be subject to possible perturbations.
Hence, the best pole placement strategy must take into
account the sensitivity of the located poles to possible errors
in the model of the plant or to external perturbations.

A numerical study of the conditioning of the pole place-
ment problem in terms of the perturbations in the data
of the system, can be found in [13], [14]: it is shown
that the sensitivity of the located poles depends on the
condition number of the closed-loop matrix, the norm of
the feedback and the distance to uncontrollability. An earlier
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result concerns the Bauer-Fike theorem [9]: assume that the
matrix A + BK is diagonalizable and X is the associated
eigenvector matrix. If Ay, is a pole of the perturbed matrix
A+ BK + A, then there exists a pole A of A+ BK such
that

A = Apere| < CX) | A,

where C'(X) is the condition number of the eigenvector
matrix X.

According to the above fact it is clear that one has to
achieve small condition number of the eigenvector matrix
to guarantee small variation of the assigned poles against
possible perturbations. This is what is called : Robust Pole
Placement problem (RPP). Many computational methods
are devoted to this problem: early work appeared in [10],
[18] which was followed by other approaches based on
the solvability of a Sylvester equation [2], [5]. The most
attractive computational methods seems to be [12], [4], [19],
[23]. A numerical treatment of RPP problem with state
constraints can be found in [6].

This paper treats the robust exact pole placement problem
in connection with the solvability of a Sylvester equation.
The problem of computing a well-conditioned solution to
this equation is addressed. Some equivalent formulations to
this problem are given. Especially, the robust pole place-
ment problem is formulated as a global optimization under
LMI constraints. Two LMI-based convergent algorithms are
provided. The conception of theses algorithm is based on
the same idea of Frank and Wolf algorithm [8], which
originally was designed for quadratic optimization under
linear constraints. A related LMI-based algorithm [7] has
been used for the solution to the static output feedback
stabilization problem. This algorithm has a great success
and seems to work efficiently for others non convex control
problems.

In this paper, some benchmark examples presented in [4]
are numerically treated. These examples come from many
industrial applications and are known to be ill-conditioned.
Numerical comparisons with some famous approaches [4],
[12], [19], [23] show the effectiveness of our proposed
algorithm.

The remainder of the paper is organized as follows. In
section 2, some preliminary results are given and the RPP
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problem is settled in terms of an optimization problem.
In section 3, a special and important case of the RPP
problem is treated. Also, a numerical convergent algorithm
is designed for this specific case. In section 4, we con-
sider the general case of the RPP problem in terms of a
global optimization under LMI constraints. A numerical
convergent algorithm is given. Finally, section 5 presents a
numerical comparison of the proposed LMI-based approach
with others numerical algorithms.

II. RPP PROBLEM AND PRELIMINARIES

Consider the following time-invariant system
&(t) = Ax(t) + Bu(t), (1)

where A € R™*", B € R™™ are given, (4, B) is
controllable.

If a state feedback control law v = Kz is used to locate
a desired poles A1, - - - , A, then the closed loop matrix A+
BK has the following real Jordan decomposition

A+BK =XxX !, 2

where X is the real Jordan matrix associated to the desired
poles and X is the corresponding eigenvector matrix.

It is well-known that a measure of the sensitivity of
the eigenvalues of the closed-loop system is the condition
number:

Cr(X) = X el X7 ||r,

where the norm || . || is the Frobenius norm:

| X 3= 1 X5 = Tr(XX7).
ij=1
Note that an arbitrary set of eigenvalues can be assigned
by solving equation (2) as follows. After constructing the
real Jordan matrix X in function of the desired poles, we
make the change of variable Y = K X in order to have the
following equivalent equation to (2)

AX +BY = X¥. 3)

So that the pole placement problem is solved by looking
for an invertible matrix X solution to the equation (3) and
consequently the feedback gain K = Y X ! is solution to
(2).

It is important to derive the solution to the pole placement
problem from an equation which does not involve the matrix
gain of the state feedback controller. This formulation is
numerically important since the number of variables is
reduced. Moreover, it will be shown that the gain matrix
K can be computed with a higher accuracy.

In the sequel, we derive an equivalent formulation to (3)
which involves less variables. For this purpose, we use the
following well-known Lemma.

Lemma 2.1: The matrix system M S = N has a solution
in the variable S if and only if

(I—-MM%)N =0.

Moreover, all the solutions are
S=M"N+ (I- M*M)Z,

where Z is an arbitrary matrix.
An immediate consequence of the above Lemma is the
following result.

Theorem 2.2: Let X be the real Jordan matrix associated
to a desired poles {\1,..., A\, }. Then there exists a state
feedback gain K such that 0(A + BK) = {\1,..., A, } if
and only if there exists a non singular matrix X satisfying

(I - BBT)(XY - AX) =0. “)
Moreover, the state feedback gain K is given by

K=B" (XY X !-A). (35)

Remark 2.3: In addition to the robustness interpretation
of the condition number of the matrix X solution to (4),
we can have an accurate numerical computation of the gain
matrix K by looking for a well-conditioned X satisfying
(4). This fact was also pointed out in [12].

Remark 2.4: Theorem 2.2 has an important consequence:
if the condition number of the matrix X is small, then we
may also have a controller with a small gain. Effectively,
the formula ( 5) leads to

| K ||p<|| B* |pl| Z|lr Cr(X)+ || BFA|r (6)
Remark 2.5: Throughout this paper the matrix ¥ and the
variable matrix X are implicitly considered as associated to
the Jordan real form of A + BK for some state feedback
gain K which, as we have seen can be computed by using
formula (5).

According to the preceding considerations we are now
able to formulate the robust pole placement problem as the
following global optimization problem.

Find X optimal solution to:

min Tr(X XT)Tr(X tX-T)
subject to : @)
(I - BBT)(AX — XX) =0.

(P1)

As matter of fact the optimization problem (P;) is dif-
ficult to solve numerically, since the objective function
Tr(XXT)Tr(X~1X~T) is highly nonlinear and noncon-
vex in the variable X.

In the sequel, we provide other equivalent formulations
to (Py) in order to design our LMI-based algorithm for the
numerical treatment of RPP problem.

III. IDEAL RPP PROBLEM

In this section, we treat an important special case of the
robust pole placement problem. It is shown that this problem
can be cast as a global optimization under LMI constraints.

With regard to the preceding analysis we want to mini-
mize the condition number of the matrix X associated to
the real Jordan matrix of A + BK. If X is orthogonal
(i.e: XXT = I), then the condition number achieves the
smallest value n (the size of the system). Consequently, we
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can guarantee small variations of the spectrum of the closed
loop system against possible perturbations. The problem
of finding an orthogonal eigenvector matrix is shown to
be equivalently formulated by the following optimization
problem.

Find X optimal solution to:

min —Tr(XX7T)

subject to:
(P){ ( (I-BBH)AX -X5)=0,  ®
I X
[ XTI } 2 0.

We have following result.

Theorem 3.1: The optimal value of the optimization
problem (P) is exactly —n if and only if there exists a
state feedback gain K such that

A+BK=XYX ! and XXT =1. 9)

Proof: Assume that the global optimum of problem

(P;) is m and achieved by X*. By Schur lemma the
following LMI

I Xr
xXT 7

E

is equivalent to X*X*T < I. since Tr(X*X*T) = n we
must necessarily have X*X*7 = I. By using the result of
Theorem 2.2, we see that condition (9) is satisfied. The rest
of the proof follows the same line of argument. |
In order to treat numerically the above optimization
problem (P), we introduce the following algorithm.
Algorithm 3.2:
Step 0: Set X, =1
Step 1: X;41 = argmin —Tr(X] X)

subject to :
(I - BBT)(AX —¥X) =0
I X
{ xt 1 |=Y

Step 2: If the sequence Tr(X7 X;) is stationnary stop,
else go to step 1.

Here it is shown that the algorithm 3.2 generates a
sequence (X;) such that Tr(X;X]) is increasing and con-
verges to a stationary value. In the case when the stationary
value is equal to n the problem (P) is solved.

Let us now prove our claim. The following trivial identity
holds for any <.

Tr((Xi — Xi11) (X — Xig1)") = Tr(Xia X [)
= —2’I‘r(XiXi:Cr1) + Tr(X; X7),

since Tr((X; — Xi11)(X; — Xi41)T) > 0, this implies

—’I‘r(XiHXiTJrl) < —2’I‘r(XiXiT+1) + Tr(X; XT).

(10)

At each step of the algorithm, the objective function
—Tr(X;XT) is minimized and since X, is the optimal
solution, we must have

Tr(X; X7) < Tr(X, XL ,).

Combining the above inequality with the inequality(10) it
follows

Tr(X; X)) < Tr(Xi1 X[ ,).

We conclude that the sequence Tr(X; X7') is increasing and
bounded by n (because of X; X! < I). Then the sequence
necessarily converges to a stationary value.

IV. GENERAL RPP PROBLEM

We have shown in section 2 that the robust pole place-
ment problem can be expressed equivalently as
Find X optimal solution to:

min Tr(X XT)Tr(X1X-T)

subject to :
(I - BBT)(AX — XX) =0.

(Pr) (1)

The following result provides a simple and equivalent
expression of problem (P ).

Lemma 4.1: Consider the following optimization prob-
lem

min Tr(X~1X~T)
subject to:
(I - BBT)(AX — XX) =0,

(Ps) (12)
{ Tr(XXT) < 1.

Then the optimal values of (P;) and (P;) are equal.
Moreover, any optimal solution to (P3) is also optimal for
(Pr).
Proof: Denote by X3 any optimal solution of (P3).

We show first that Tr(X3X7) = 1. Effectively, if
Tr(X3X7) < 1, this will contradicts the fact that X3 is an
optimum. To see this, let & = Tr(X3X7)~1 > 1 and define
X* = o!'/2X3. Then X* is feasible for (P;) and satisfies
Tr(X* ' X*T) < Tr(X; X5 7), which is impossible.

Now, denote by X; any optimal solution of (P;). Since
X3 is feasible for (P;) and Tr(X3XY) = 1, we have
necessarily

Tr(X;'X; ") > Te(X X)) Te(X X T).

Also, since (Tr(X;X7))~'/2X, is feasible for (Ps) we
also have

Tr(X;'X; ") < Tr(X X)) Tr(X ' X7T),

and the proof is complete. |
At this stage, we are in position to establish the following.
Theorem 4.2: The solution to the robust pole placement

problem is given by the following optimization problem

min Tr(X1XT)

subject to:
(I - BBT)(AX — XX) =0,
Tr(P) =1,

P X
AR

(Py) (13)
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Proof: It suffices to show that the constraint
Tr(XX7T) < 1 is equivalent to the LMIs

P X

Tr(P) = 1, [XT 1

E
then by using Lemma 4.1 the proof is straightforward.
|

A. LMI-based algorithm

To address numerically problem (P;), we consider the
following algorithm:
Algorithm 4.3:
Stepl: X; = arg min —Tr(X)
subject to constraints (13).

Step 2: Let X = argmin —Tr(X; ' X; 7 X; ' X)
subject to constraints (13).
Compute X;+1 = argmin Cp(aX; + (1 — o) X),
for a € [0, 1]

Step 3: If the sequence Cr(X;) is stationary, exit. Else
go to step 2.

In Algorithm 4.3 we minimize a linearization of
the function Tr(X 'X~T). Effectively, one can show
that the derivative of Tr(X 'X~7T) at X; is exactly
2T (X' X7 X X).

Algorithm 4.3 is based on the same idea of Frank and
Wolf algorithm [8], which originally was designed for
quadratic optimization under linear constraints. A related
LMI-based algorithm [7] has been used for the solution
to the static output feedback stabilization problem. This
algorithm has a great success and seems to work efficiently
for others non convex control problems.

B. Convergence and behavior of Algorithm 4.3

By conception Algorithm 4.3 provides a sequence with
decreasing condition numbers and then converges to a
stationary value.

Extensive numerical tests showed that this algorithm
exhibits a fast convergence and provides a big decrease
of the condition number. Its numerical effectiveness is
compared with many existing algorithms (see below the
numerical comparisons).

One of the limitation of some pole assignment algorithms
is that an arbitrary set of poles cannot be assigned. For
example, the function place (from MATLAB control tool-
box) cannot assign poles with multiplicity greater than the
number of the inputs of the system (rank(B)). Note that
place is based on the algorithm of [12]. This limitation also
applies to the improved algorithm in [19]. As mentioned
in [24], another possible limitation is when the closed and
open-loop spectra overlap.

Choosing any desired poles (distinct, multiple or overlap-
ping with the open-loop spectra), the proposed Algorithm
4.3 has a nice and same numerical behavior. By extensive
numerical tests we have found that the first iteration always
provides a nonsingular solution and since the condition

number of the iterates progressively decreases these iterates
remain nonsingular.

We stress out the proposed LMI formulation is very flex-
ible, for example, it can take into account other constraints
such as bound on the norm of the state feedback gain or
decoupling modes.

V. NUMERICAL RESULTS

For the numerical experiments we have used Matlab 6.0.
Our Algorithm 4.3 is implemented by using the Semidefi-
nite Programming code SP [21] interfaced with Matlab.

We have treated 11 benchmark examples presented in [4].
These examples come from different industrial applications
and are known to be ill-conditioned. Our numerical results
are compared with the following Algorithms: place from
the Matlab Control Toolbox based on the algorithm of [12],
robpole based on the algorithm proposed in [19], sylvpalce
proposed in [23] and the results of the algorithm proposed
in [4].

Our algorithm performs largely better than place for all
the examples. For the others algorithm, TABLE I, TABLE
I1 and TABLE 111 illustrate the fact that our algorithm per-
forms better for the minimization of the condition number
CF. Moreover, even if we are not minimizing the norm of
the gain K of the controller our algorithm performs almost
identically or even better for some examples.

The behaviour of our Algorithm 4.3 is exhibited in the
figures given below. Note that for all 11 examples, the
algorithm has a fast convergence and stabilizes in very few
iteration.

Examples place robpole
CoX) [CrX) [TKT2 [ Co(X) [TKT2
1 343 6.56 1.45 4.27 1.28
2 40.06 53.142 219.85 39.85 225.5
3 37.47 53.425 59.40 39.29 49.1
4 10.78 13.428 9.83 10.77 9.44
5 91.62 146.17 4.53 88.56 5.14
6 3.619 5.997 21.32 3.63 19.41
7 4.803 12.16 329.115 4.65 235.2
8 26.038 36.986 19.231 3.61 19.84
9 18.464 23.954 844.07 18.44 820.5
10 1.05 4.0029 1.33 1.00 1.41
11 12526 14618 6692 12443 6580
TABLE I
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Examples sylvplace Byers-Nash
CX) [TK | Co(X) TCrX) TITK T2
1 3.39 1.45 3.35 6.40 1.46
2 37.68 354.8 33.07 39.11 354.85
3 35.48 77.25 33.85 41.23 77.15
4 10.77 9.44 10.77 11.87 9.44
5 89.05 4.22 85.37 137.50 4.22
6 3.58 23.0 3.55 5.84 23.00
7 4.38 270.3 4,74 11.91 305.50
8 3.61 19.25 3.61 5.89 28.25
9 18.42 829.2 18.59 21.24 807.57
10 1.00 141 1.00 4.00 1.42
11 12443 6580 1.2E4 1.2E4 6.6E3
TABLE 11
Examples LMI-based approach
(%) [ Cr(X) [ TK T2
1 3.347 6.40 1.434
2 33.069 39.106 354.9
3 33.83 41.22 77.37
4 10.773 11.866 9.44
5 85.367 137.498 4.224
6 3.940 6.263 12.65
7 4.544 11.539 346.6
8 3.61 5.887 21.13
9 18.075 20.728 829.18
10 1.000 4.000 1.417
11 11670 11749 6582
TABLE IIT
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figurel: illustrates the evolution of the C'r(X)
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figure2: illustrates the evolution of the C'r(X)
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figure3: illustrates the evolution of the C'rp(X)
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figured: illustrates the evolution of the C'r(X)
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figureS: illustrates the evolution of the Cr(X)

VI. CONCLUSION

This paper treated the robust exact pole placement prob-
lem in connection with the solvability of a Sylvester equa-
tion. We have addressed the problem of computing a well-
conditioned solution to this equation. In other words, we
have seen that the problem reduces to the minimization of
the condition number. Some equivalent formulations to this
problem are given. Especially, the robust pole placement
problem is formulated as a global optimization under LMI
constraints. Two LMI-based convergent algorithms are pro-
vided. Numerical comparison with other approaches in the
literature, shows the effectiveness and the good behavior of
the proposed algorithm.
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