
Abstract— Speed governors are key elements in the dynamic 
performance of electric power systems. Therefore, accurate 
governor models are of great importance in simulating and 
investigating the power system transient phenomena. Model 
parameters of such devices are, however, usually unavailable 
or inaccurate, especially when old generators are involved. 
Most methods for speed governor parameter estimation are 
based on measurements of frequency and active power 
variations during transient operation. This paper proposes a 
genetic algorithm based optimization technique for parameter 
estimation, which makes use of such measurements. The 
proposed methodology uses a real-coded genetic algorithm. The 
paper estimates the parameters of all system generators 
simultaneously, instead of every machine independently, which 
is fully in line with the interest to treat the electric power 
system as a whole and study its comprehensive behaviour. 
Moreover, the methodology is not model-dependent and, 
therefore, it is readily applicable to a variety of model types 
and for many different test procedures. The proposed 
methodology is applied to the electric power system of Crete 
and the results demonstrate the feasibility and practicality of 
this approach. 

I. INTRODUCTION
OWER system simulation results depend greatly on the 
accuracy of system model parameters. This is especially 

true for synchronous generators and their control 
subsystems, such as governors, exciters, limiters and 
stabilizers. Dynamic data of generating units are, however, 
usually inaccurate, incomplete, or even unavailable, 
especially when old generators are involved. Therefore, 
typical parameters are frequently used, leading to results of 
reduced credibility. Thus, the estimation and verification of 
these parameters are necessary for acquiring accurate system 
models.  

Most techniques employed for the estimation of the 
unknown parameters are based on processing suitable actual 
measurements of the system dynamic behavior, recorded 
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during appropriate tests [1-11]. These measurements are 
used as input to an identification procedure to estimate the 
model parameters. However, as noticed in literature [1], 
many of the existing methods may not be adequate. For 
example, several methods are based on linear system 
techniques (like transfer function identification), therefore, 
have limited applicability when nonlinearities are present 
[4,10]. Many methods require cumbersome symbolic 
manipulations of dynamic models and therefore may be 
limited mainly to simpler models [10]. Furthermore, several 
of the existing approaches are model-specific [11]. 

This paper presents a methodology for estimating the 
dynamic data of generating units that is based on genetic 
algorithms and makes use of measurements of transient 
system response. It should be emphasized that the 
methodology is not model-dependent and, therefore, it is 
readily applicable to a variety of model types and different 
test procedures. The work presented in the paper estimates 
the governor and the electromechanical dynamic parameters 
of a generating unit; however the methodology can be easily 
expanded to any dynamic model, provided that appropriate 
measurements are available. 

Evolutionary computation techniques and particularly 
genetic algorithms (GAs) are computational-intelligence-
based optimization methods. They are used in several 
scientific fields, mainly in hard, large-scale optimization 
problems, where other classical analytical optimization 
techniques may prove inadequate. In the power engineering 
area, such problems include operation optimization (unit 
commitment [12], economic dispatch [13], optimal power 
flow, optimal allocation of reactive resources [15]) [12-15], 
parameter estimation [8-9], etc. A comprehensive literature 
survey on such applications is presented in [16]. 

The paper investigates the parameter identification 
problem from a power system point of view, rather than 
from the electric machinery side. This means that the 
identification procedure is not applied to every machine 
independently, but it attempts the simultaneous parameter 
estimation of all system generators. This is because it is of 
interest to study the comprehensive behaviour of the system 
as a whole, rather than of a single machine. It should be 
noted that the methodology can be readily applied in a 
machine-oriented approach, if appropriate measurements are 
available.

The paper is organized as follows. Section II presents a 
general overview of the parameter estimation framework. 
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Section III describes the genetic-algorithm-based 
identification procedure of generator parameters. Section IV 
presents results from the application of the proposed 
methodology to a single-machine test system. Section V 
describes the application of the proposed methodology to the 
electric power system of Crete. Section VI concludes the 
paper.

II. ESTIMATION FRAMEWORK

The proposed identification procedure is a simulation-
based process that uses a genetic algorithm as optimization 
tool, as presented in Fig. 1. The physical system and the 
mathematical model of the system are excited by the same 
input. The output of the physical system, which is the set of 
available measurements, is compared to the simulated output 
of the model. The error between the two outputs is used as 
input to a genetic algorithm optimization module, which 
updates the model parameters in such a way that this error is 
minimized. 

The output )(ˆ ty  of the system model is a function of the 
system state, the input and the model parameters, as 
described by the set of differential-algebraic equations (1): 
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where ŷ  is the vector of the system model outputs, x  is the 
vector of the dynamical states of the system, z  is the vector 
of the algebraic states, u  is the vector of the system inputs, 
and a  is the vector of the model parameters. The global 

state vector is denoted by TTT tztxtX )()()(  and 

0X denotes the initial condition vector. 
The identification procedure estimates the unknown 

vector of model parameters, a , so that the deviation 
between the model and the real system responses to the same 
input u  is minimized. The error to be minimized is the 
square error between the measured and the simulated output 
waveforms defined as (assuming discrete-time signals): 
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where )( kty  and ),(ˆ aty k  are the measured and simulated 

values of the outputs at time instant kt , respectively; kt  is 
the time sample ),...,1( Tk , given that T discrete 
observations are made on the real system, and i  is the 
output index ),...,1( Ni , N  being the number of outputs. 
The vector of the unknown, constant, system parameters is 
denoted by a . The values of these parameters are 
constrained in some specific intervals. 

A key feature of the approach is that the estimation 

process is not model-specific and it is therefore 
straightforward to switch between a large variety of models. 
This advantage results from the fact that the simulation-
based optimization method uses only the model output. It 
does not require any knowledge of the specific model 
structure.  The use of GAs as optimization tool enhances this 
feature, since one of the main attributes of genetic 
algorithms is that they do not require any auxiliary 
knowledge on the objective function, such as gradient 
information. Therefore, the proposed method is, in fact, a 
black-box identification method, which automatically 
adjusts the parameters of the model until the model output 
matches the measurements. 

III. GENETIC ALGORITHM FOR GENERATOR PARAMETER
IDENTIFICATION

A. Fundamentals of Genetic Algorithms 
Genetic algorithms are optimization methods inspired by 

natural genetics and biological evolution. They manipulate 
strings of data, each of which represents a possible problem 
solution. These strings can be binary strings, floating-point 
strings, or integer strings, depending on the way the problem 
parameters are coded into chromosomes. The strength of 
each chromosome is measured using fitness values, which 
depend only on the value of the problem objective function 
for the possible solution represented by the chromosome. 
The stronger strings are retained in the population and 
recombined with other strong strings to produce offspring. 
Weaker ones are gradually discarded from the population. 
The processing of strings and the evolution of the population 
of candidate solutions are performed based on probabilistic 
rules. References [17-19] provide a comprehensive 
description of genetic algorithms. 

B.  Chromosome Representation 
Two types of representations have been investigated in 

this work, binary and real (floating-point).  

C. Creation of Initial Population 
The initial population of candidate solutions is created 

randomly. 

D. Evaluation of Candidate Solutions 
Each candidate solution represents a parameter vector, a .
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ŷ

Fig. 1.  Block diagram of estimation procedure. 
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The evaluation of each candidate solution is based on the 
objective function value, )(ae . Note that the objective 
function value is obtained after system simulation. The 
purpose of the process is to solve a minimization problem, 
or equivalently, a maximization problem that maximizes a 
transformed objective function. In this paper, the objective 
function to be maximized is defined as 

Kae
aF

)(
1)( ,  (3) 

where K  is a small positive real number used as scaling 
coefficient, in order to avoid problems that may arise as 

)(ae  approaches zero, and to control problems like 
premature convergence. 

E. Reproduction 
Reproduction refers to the process of selecting the best 

individuals of the population and copying them into a 
“mating pool.” These individuals form an intermediate 
population. Three types of the reproduction process are 
implemented in this work: 
1) Roulette-wheel selection,
2) Tournament selection with user-defined window, 
3) Deterministic sampling based on the fitness-
proportionate selection scheme. 

No significant differences in the results were observed 
between the different types of reproduction in this problem. 
The reported results are obtained using deterministic 
sampling, i.e. each individual is assigned an expected 
number of appearances in the “mating pool,” according to its 
calculated fitness. Subsequently, the individuals in the 
“mating pool” are randomly grouped in pairs, each of which 
produces two offspring. 

F. Crossover Operation 
In binary representation the following four types of 

crossover are used: 
1) 1-point crossover,
2) 2-point crossover,
3) Uniform crossover, which is a crossover operator that 
swaps only single bits between the two parent binary strings.
4) Multi-point crossover, in which one crossover point is 
selected, randomly, for each parameter represented in the 
chromosome, and, thereafter, 1-point crossover is performed 
in each parameter. 

In floating-point representation the crossover types used 
are:
1) 1-point crossover,
2) 2-point crossover,
3) Uniform crossover,
4) Arithmetical crossover.
The arithmetical crossover operator creates offspring with 
new parameters values, defined as a linear combination of 
the two parents. If us  and ws  are to be crossed, the 

resulting offspring are uwu sasas )1('  and 

wuw sasas )1(' , where a  is a random number of the 
interval [0, 1] [18].

G. Mutation Operation 
When binary coding is used, the genetic algorithm 

mutation simply changes a bit from "0" to "1" or vice versa. 
The bits that undergo mutation are chosen based on a 
probability test. The probability of mutation is generally set 
to a small value, about 0.001 to 0.01. 

In real representation, two mutation operators are 
implemented: uniform and non-uniform mutation.  
1) Uniform mutation: This operator is analogous to the 
binary operator, but it applies to real values instead of binary 
bits; it randomly replaces the parameter value with another 
one from the appropriate interval; 
2) Non-Uniform mutation: This mutation type is described 
in [18] and it is responsible for the fine-tuning capabilities of 
the real-coded GA. If a parameter k  of value ku  of a 
candidate solution is selected for mutation, its value is 
changed to '

ku , where

LButu
uUBtu

u
kk

kk
k ,

,'    (4) 

depending on whether a random binary digit is 0 or 1. LB
and UB  are the lower and upper bounds of the interval 
parameter k  belongs to. The function ),( yt  returns a 
value in the range y,0  such that the probability of ),( yt
being close to 0 increases as the current generation number, 
t , increases. This property causes this operator to uniformly 
search the space at initial stages, when t  is small, and very 
locally at later stages. The function used is 

)1(),(
)1( b

T
t

ryyt  ,  (5) 
where r  is a random number in [0, 1], T  is the maximal 
generation number, and b  is a parameter determining the 
degree of non-uniformity [18]. 

In real representation, since parameters do not change 
during crossover, but are just recombined differently (except 
for the arithmetical crossover), the only way of affecting 
their values is by the mutation operator. So, the mutation 
probabilities used are greater than the ones in binary 
representation and may reach up to 5%. 

H. Creation of the Next Generation 
After mutation is completed, the children population is 

created and the previous population is replaced by the new 
generation. Children are evaluated and the fitness function 
for each individual is calculated. The procedure is repeated 
until the termination criterion is met, defined by a maximum 
number of generations.  

As an option, an elitist operator is also used. If this option 
is selected, the new population is not the children 
population, but is created by the best N  individuals from 

1290



the children and the previous population, where N  is the 
population size. The aim of this elitist strategy is to 
eliminate the possibility of destruction of good solutions that 
may appear in early generations and to aid in achieving good 
solutions quite fast and to subsequently be able to fine-tune 
them. Additionally, it is expected that the best individuals 
will provide the best offspring after crossover. The risk of 
premature convergence to a sub-optimal solution is 
increased with this operation, but this can be controlled with 
the parameter K  of the fitness function and with a slightly 
increased mutation probability. 

IV. TEST CASES

A. Problem Formulation 
The identification procedure was tested using a single-

machine test-system, to investigate the feasibility of the 
approach and to configure the genetic algorithm parameters 
for the specific problem. The model used for the governor-
turbine subsystem representation is shown in Fig. 2.   

The following values are assumed for the five parameters 
of the model that are to be estimated: 

05.0R , sTG 2.0 , sTt 7.0 , sM 10 , 0D

A step input 
eP  of 0.2 per unit (p.u.), i.e. 20% change of 

the pre-disturbance power demand, is applied at st 0 ,
representing a load increase. The system is simulated in the 
time interval from -2s to 10s. The frequency variation (in 
Hz) and the mechanical power deviation (in p.u.) are 
calculated every 0.05s, and these results are assumed to 
represent the measured input data for the identification 
procedure. This way the estimated parameters obtained can 
be directly compared with the actual ones.  

The optimization problem is defined as 

Minimize
T

k
kk atytyae

1

2
),(ˆ)()( , (6) 

subject :to

,20,1001.0
,26.0

,5.005.0,2.001.0
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where T
m tPtfty )()()(  is the assumed system 

measured output, )(ˆ ty  is the simulated output, 
)()( tPtu e  is the system scalar input, and 

TDMTtTGRa is the unknown parameter 
vector.

B. Numerical Experiment Results 
A number of numerical experiments were conducted on 

this problem, testing the effect of the various parameters of 
the genetic algorithm on the results. Results, using binary 
and real representation, are presented in Tables I and II. 
They reveal the fact that the proposed methodology for 
model identification can provide satisfactorily accurate 
results. Furthermore, by comparing Tables I and II, it is 
concluded that real-coded GA performs better than the 
binary-coded GA 

C. Determination of Method Parameters 
Results obtained using floating-point coding were 

repeatedly much closer to the optimal solution compared to 
binary coding. Furthermore, the floating-point 
representation was faster and more consistent from run to 
run.

A population size of one to two hundred, and about one 
thousand generations proved to be sufficient for this 
problem, providing very good or even excellent results. 
Uniform and two point crossover provided better results 
compared to other crossover types and the use of the non-
uniform mutation operator proved to be an important factor 
when floating-point representation was used. Finally, results 
obtained using the elitist operator were superior compared to 
cases where no elitism was used.  

The described floating-point configuration provides 
results with an error less than 3% for every parameter. The 
largest errors appear in the estimation of the time constants, 
especially the governor time constant, while the other 
parameters are estimated with a much higher precision. 
However, simulation tests proved that simulation results are 
much less sensitive to the values of the time constants 
compared to the droop values, therefore, less accuracy for 

TABLE I
TYPICAL RESULTS OF BINARY CODING

Binary coding with 20 bits per parameter 
Population size: 200,  Number of generations: 1000  

Uniform crossover with probability 0.6
pm = 0.05,  K = 0.01,  Elitist operator: On 

Mean error of final population  = 9.21e-4, Best solution error = 9.21e-4 
Real Values Estimated Values % Error 

R 0.05 0.0499 0.20% 
TG 0.20 0.1806 9.70% 
Tt 0.70 0.7313 4.47% 
M 10.00 9.8237 1.76% 
D 0.00 0.0000 - 
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Fig. 2.  Unit speed control and turbine (engine) dynamic model.  

TABLE II
TYPICAL RESULTS OF FLOATING-POINT CODING

Population size: 200,  Number of generations: 1000  
Uniform crossover with probability 0.6 

Non-uniform mutation (b=4) pm = 0.05, K = 0.01, Elitist operator: On 
Mean error of final population  = 7.16e-4, Best solution error = 7.16e-4 

Real Values Estimated Values % Error 
R 0.05 0.0501 0.20% 

TG 0.20 0.1948 2.60% 
Tt 0.70 0.7081 1.16% 
M 10.00 9.8940 1.06% 
D 0.00 0.0587 - 
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these parameters can be tolerated. 

D. Effects of Measurement Noise 
The work presented so far tested the capability of the GA 

based estimation methodology in an ideal situation, where 
the mathematical model was able to describe precisely the 
actual system. This is not the case, when actual field 
measurements are used. In a realistic situation the model 
output cannot match precisely the actual system output, 
especially if simplified models are used to facilitate 
calculations. Moreover, field measurements may be severely 
corrupted by noise, or unmodeled dynamics may be present, 
having similar effects as noise. 

In order to investigate the behavior of the methodology 
under such conditions, numerical experiments were carried 
out assuming the presence of random noise in the 
measurements. The assumed noise was zero-mean, 
uniformly or normally distributed.  

Results obtained from a case with noise uniformly 
distributed in )15.0,15.0(  for the frequency and in 

)04.0,04.0(  for the power deviation are presented in Fig. 3 
and Table III, assuming the same real-coded GA 
configuration as in Table II. The “measured” waveform in 
Fig. 3 refers to the simulated results that are assumed to 
represent the measurements as described in section IV.A  

 These numerical experiments reveal that, even with 
heavily corrupted measurements from random noise, the 
methodology provides results of satisfactory accuracy. 
Furthermore, the maximum errors appear in the parameters 
that least affect the outputs of the model, therefore, the error 
in simulation studies using these parameter values is 
minimal. 

In several cases, the measurement noise may not be 
completely random, but it may follow some deterministic 
pattern. Such a situation may arise if unmodeled dynamics 
are present. To investigate this condition, numerical 
experiments were carried out assuming the presence of 
additive deterministic noise in the measurements of the form 
of one or two sinusoidal signals. The total amplitude of the 
disturbance was up to 0.15 Hz for the frequency and 0.02 
p.u. for the power deviation. The numerical test showed that 
the GA could filter out the deterministic noise almost 
perfectly. Results from a test with a 2 Hz sinusoidal noise 
are presented in Table IV and in Fig. 4, assuming the same 
real-coded GA configuration as in Tables II and III. 

V. CRETE SYSTEM TEST CASE AND ESTIMATION RESULTS

A. Test-Case System of Crete 
The estimation methodology was applied to the 

autonomous power system of the Greek island of Crete. The 
power system of Crete is a relatively large, isolated system 
consisting mainly of oil-fired generators. It consists of 52 
buses, 66 branches and 18 thermal units. Six of them are 
steam units, four are diesel engines, seven are gas turbines 
and there is a combined cycle plant. The total installed 
capacity is about 400MW, while the system peak load is 
approximately 360MW. The Greek public power 
corporation has conducted real time measurements of 
frequency and unit active power variations during 
intentional machine trip tests; these data were used for the 
identification of the governor and the unit electromechanical 
dynamic model parameters of each conventional generating 
unit. 
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Fig. 3.  Comparison of “measured” and simulated waveforms (using 
estimation results), with additive stochastic noise in the measurements. 
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TABLE IV
TYPICAL RESULTS USING MEASUREMENTS WITH DETERMINISTIC NOISE

Real Values Estimated Values % Error 
R 0.05 0.0502 0.40% 

TG 0.20 0.1931 3.45% 
Tt 0.70 0.7096 1.37% 
M 10.00 9.8791 1.21% 
D 0.00 0.0406 - 

TABLE III
TYPICAL RESULTS USING MEASUREMENTS WITH STOCHASTIC NOISE

Real Values Estimated Values % Error 
R 0.05 0.0495 1.00% 

TG 0.20 0.1715 14.25% 
Tt 0.70 0.7643 9.19% 
M 10.00 9.1287 8.71% 
D 0.00 0.0001 - 
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B. Transient-Response Measurements 
Field tests involved a conventional machine rejection 

under different operating conditions. Two outages were 
performed of 10 MW and 19 MW, at a total load of 159 
MW and 208 MW, respectively. The transient behavior of 
the system was recorded in computers equipped with A/D 
converter cards. The sampling rate was 20 Hz. Recordings 
involved the active power response of the remaining thermal 
units and the system frequency deviation, which was 
measured at four points in the system. The total duration of 
each recording was 3min, including some pre-disturbance 
time. Data up to 10s after the disturbance were used for 
estimation procedure, since the dynamics of interest had 
reached steady state after 10s. Some typical recording are 
shown in Fig. 5 and 6. 

It is of interest to observe the active power oscillations in 
Fig. 6. Such oscillations of frequency around 5 Hz were 
observed in the output of all the diesel and steam units, even 
in steady-state operation. They exist because the mechanical 
system of the diesel units produces a pulsating torque on 
their shaft. The steam units are physically installed on the 
same power plant as the diesel units, and, therefore, they 
also produce a pulsating active power to compensate for the 
oscillations of the diesel units. Fig. 6 shows that the diesel 
and steam unit oscillations are in fact in opposite phase. 

Since modeling such oscillations would not provide any 
additional information for the governor-model estimation 
procedure, these oscillations are considered unmodeled 

dynamics and are treated as noise. However, based on the 
discussion on measurement noise, in section IV, the GA is 
expected to be able to filter out the noise very adequately. 
This was, indeed, observed in the estimation procedure 
results. 

C. Estimation Results 
The identification procedure is applied to both sets of 

available measurements performing two independent 
estimation procedures, for the different disturbances and 
under different loading conditions.

The power system of Crete was modeled in the 
EUROSTAG dynamic simulation program. Static network 
data and pre-disturbance operating conditions were provided 
by electric utility, along with any available generator 
dynamic data. These data allowed a three-winding 
representation of the synchronous generators [20]. A 
standard IEEE Type 1 voltage regulator-exciter model was 
used for all units [20]. The three parameter governor-turbine 
model shown in Fig. 2 was used. Governor limits were set 
based on the utility provided values of minimum and 
maximum power output for each unit. The parameters to be 
identified were constrained as follows: 

2.001.0 iR , sTGi 5.005.0 ,

sTt jsteam 31 )( , (8) 

sTDk 21 , sTt mgas 5.15.0 )( ,

where
iR  is the droop of each unit, 

iTG  the governor time 
constant of each unit, )( jsteamTt  the turbine time constant of 

each steam unit, 
kTD  the mechanical time constant of each 

diesel engine, and )(mgasTt  the turbine time constant of each 

gas turbine. 
Comparative graphs of the measured transients and the 

simulated dynamic responses using the estimated parameters 
are presented in Fig. 7 through 9. The results show a 
considerably good agreement between the measured 
response and the simulated waveforms using the estimated 
model parameters. 
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VI. CONCLUSION

This paper investigates the application of genetic 
algorithms for the identification of dynamic models of 
generating units in power systems. The paper proposes the 
use of a real-coded genetic algorithm as optimization tool 
for the estimation procedure. The main advantages of the 
proposed methodology are the few input data required, its 
flexibility, and the simplicity of its mechanism.  

The methodology proved to be able to provide accurate 
results, even in the presence of measurement noise or 
unmodeled dynamics. It is shown that the simulated system 
response using the estimated parameter values can correctly 
represent measurements, even if they are significantly 
corrupted by noise. It was also shown that the simulated 
system response using the estimated parameter values can 
correctly capture the main features of the measurement even 
with some deviation present in the parameter values.  

The proposed method has been successfully applied to the 
simultaneous identification of the turbine–governor models 
of the units of the medium size, isolated power system of 
Crete. The obtained results demonstrate the feasibility and 
practicality of the proposed GA approach. 
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