
Abstract—In this paper we propose a novel method for 
tracking of partials in music signals based on a robust Kalman 
filter. This tracker is based on a regularized least-squares 
approach that is designed to minimize the worst-possible 
regularized residual norm over the class of admissible 
uncertainties at each iteration. This method promises improved 
tracking capabilities, compared with the conventional Kalman 
filter, which was proposed before.  The model parameters that 
have been estimated for different frequencies are now 
considered as bounded uncertainties. Unlike the conventional 
Kalman tracker, the performance of this tracker is not 
influenced by the magnified track variations in higher 
frequencies.  

I. INTRODUCTION

ARTIAL tracking has been widely used in different 
areas of music signal analysis where prominent features 

of these signals, such as pitch and frequency-amplitude of 
harmonics are extracted. The role of partial tracking in all 
these areas (e.g. music analysis/synthesis  [1], automatic 
music transcription  [2], audio restoration  [3], etc.) can be 
boiled down to an attempt for tracking time-varying features 
in separate analysis frames of a continuous-time music 
event. These features are captured from estimated spectrum 
for small frames of the temporal data that can be assumed to 
be stationary.   

 There are various methodologies for tracking of partials 
in audio signals, all of which are based on a model of 
pseudo-stationary sinusoidal plus noise  [1]. Partial tracking 
was first used in analysis and synthesis of speech signals  [4] 
and then adopted for the case of music signals  [1], where it 
was based on a heuristic approach. In a more recent 
approach  [5] and as an extension to  [4], linear prediction 
was used to enhance the tracking of frequency components 
in music signals. In all these approaches peaks from 
successive frames are connected to each other based on their 
proximity in frequency, and the behaviour of peaks' 
amplitude is not taken into account while performing the 
tracking. Another approach  [2], which was inspired by a 
similar technique in radar tracking and also a frequency 
tracker for avalanche signals  [6], takes the advantage of 
Kalman filter by constructing a state-space model for the 
behaviour of peaks' power (i.e. amplitude in dB scale) and 
frequency. In this approach peaks are not matched based on 
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how close they look like in frequency, rather they are 
matched based on the future behaviour of a peak's frequency 
and power. 

We proposed a partial tracking technique before  [7], 
which was based on the conventional Kalman filter. 
Parameters of the evolution models for this system were 
estimated through a statistical analysis of a large database of 
musical sounds and by averaging over varying estimates. 
This inaccuracy in model parameters, which is unavoidable 
when dealing with real world models, degraded the 
performance of our tracker in certain situations. This 
sensitivity of Kalman filter to model parameters has also 
been studied before  [8].  

A feasible solution to this problem can be the use of a 
robust Kalman tracker which deals with model parameters 
as bounded uncertainties. This can be especially rewarding 
since we do not need to tediously estimate these parameters 
for different situations where they can never be accurate 
enough, and, on the other hand, our robust tracker can 
perform a significantly better job in critical situations (as 
will be shown in the results section). 

This paper will proceed with an introduction to automatic 
music transcription as a main application area for our partial 
tracker. In section  III we will discuss the problem of music 
signal modeling and introduce a set of state-space models. 
The formulation of our robust tracker, which is based on the 
approach of  [9], will be discussed in section  IV. In section  V 
we will include some results and compare the performance 
of this tracker with the conventional Kalman tracker.  

II. BACKGROUND ON MUSIC SIGNAL ANALYSIS

A. Automatic Music Transcription 
Music transcription is the process of un-making or 

documenting music. Un-making in the sense that the process 
of reading from score and playing music is reversed  [2], and 
documenting in the context of substantiating musical 
sounds, whether it has been played from score, memory, or 
just improvised.  

A music transcription system, in its perfection, should be 
able to detect all attributes as written in the score, such as 
loudness and tempo, as well as performance gestures 
intended by the performer. However, at the fundamental 
level it is the problem of recognizing which note is played 
and when. This process has been done by human listener 
with trained ears, but developing a music transcription 
system, which replaces the human listener with a computer, 
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even at the basic level, requires sophisticated signal 
processing techniques. For polyphonic music, where more 
than one musical note is present at a time, keeping track of 
individual notes and producing the simple score is a more 
challenging matter. 

Each musical note contains a fundamental frequency and 
integer multiples of this frequency, which are called 
harmonics of the note. To identify a note we need to know 
its fundamental frequency or pitch. For transcribing a piece 
of music, the identity of each note and its time duration are 
required. Since in a real scenario we can have more than one 
note being played at a time, we need to distinguish between 
these notes. This can be done by identifying all the partials 
and their initiation and termination times first. The 
fundamental and all the harmonics related to each note and 
their time length are then extracted, which can be directly 
interpreted into musical score. 

A general music transcription system takes the waveform 
of recorded music and finds the behavior of frequencies 
within small time frames using spectral estimation tools and 
assuming that the signal is a combination of sinusoids and 
noise. In fact, we are dealing with pseudo-stationary signals 
for which amplitude and frequencies vary slowly with time, 
and we choose small time frames to preserve the stationarity 
which is required for the estimation of spectrum. This 
process results in a representation with power concentrated 
at specific frequencies. These frequencies, which are the 
local maxima within the spectral representation, are 
indications of partials of existing musical notes in that time 
frame. Identified peaks from adjacent frame which belong to 
the same partial must be connected to each other using data 
association techniques. One possible approach is to use 
Kalman filtering technique for tracking partials through 
neighboring time frames based on a pre-estimated state-
space model for evolution of frequency and power in time. 
This idea is pretty much equivalent to the use of Kalman 
filtering in the area of radar tracking  [10]. 

In the process of music signal analysis, detection of peaks 
plays an important role. We need to collect all possible 
peaks pertaining to existing partials and reject all those that 
are most likely related to noise or imperfections in 
estimating the spectrum. Optimum number of peaks will 
optimize the computational load of the tracking process. On 
the other hand, a large number of inaccurate peaks can result 
in formation of false partial tracks from randomly successive 
sets of spurious peaks. Having this in mind we proposed a 
novel and improved technique for detection of peaks, which 
was introduced before Error! Reference source not 
found..

The output of the peak detector is power and frequency 
information of each peak which is stored in two vectors for 
each time frame. 

III. STATE-SPACE MODELING

A. Time Varying Partials 
A well-known approach to modeling of music signals for 

the purpose of statistical analysis/synthesis assumes a model 
of additive sinusoidal plus residuals that can be formulated 
as  [1] 

( ) ( ) ( )y t s t e t                (1) 

with 

1

( ) ( ) cos ( ) ( )
N

n n n

n

s t A t t t         (2)   

Here, s(t) reflects the pure musical part of the signal and 
e(t) can be modeled as a stationary autoregressive process. 
In the musical portion, An(t) and n(t) are representatives of 
time-varying amplitude and frequency of partials, and N is 
the number of partials. Quantity n(t) represents timbral 
variations and performance effects. Since we do not 
consider such effects in our music signals, n(t) will be 
considered as a noise process.  

B. Evolution Models 
What we have as observation is discrete sets of peaks 

from successive time frames. An(t) and n(t) can be 
estimated by making connections between those peaks from 
adjacent frames that look like being the continuation of the 
same partial.    

Kalman filtering, in fact, takes the noisy observations and 
based on a model for evolution of certain states finds the 
optimal estimate of the process behavior. Here, the noise 
corrupted observations are the identified peaks and system 
model is a state-space model for evolution of frequency and 
power. This model can be represented as 

( 1) ( ) ( )
( ) ( ) ( )

x k Ax k Bv k
y k Cx k w k

           (3) 

where

1

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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T

m

T

m

x k f k p k n k n k

v k u k u k

y k f k p k

     (4) 

Here, f(k) and p(k) are frequency and power for a detected 
peak respectively. v(k) and w(k) are process noise and 
observation noise, and ni(k), i=1,…,m are states for as many 
shaping filters for which the uncorrelated noise processes 
ui(k), i=1,…,m are white. The matrix A is the transition 
matrix, the matrix B describes coupling of the process noise 
v(k) into the system states, and C is the observation matrix. 
In this model, v(k) and w(k) are zero-mean and jointly 
uncorrelated Gaussian processes with covariance matrices Q
and R, respectively. 
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For specifying matrices and number of states needed for 
our modeling, prior information about the power and 
frequency partials is needed. This can help us to specify the 
model by a piecewise-linear fit to p(t)=20log An(t) and 
f(t)= n(t)/2 .

Based on the overall shape of frequency and power partial 
in different classes of instruments, we introduced two 
groups of models for the purpose of Kalman tracking before 
 [12]. For the class of instruments with nearly constant 
frequency and power partials, which are called the class of 
Continued Energy Injection (CEI), the sate-space model is 
as follows: 

1

1 1 1 1 1

2

2 2 2 2 2

1 2

1 2

1 0 0 0

0 1 0 0

( 1) ( ) ( )

( 1) ( ) ( )

( 1) ( ) ( )
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T

T

f k f k n k
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y k x k w k

x

v

      (5) 

For the instruments with constant frequency partials and 
linearly decaying power partials, which are in the class of 
Discontinued Energy Injection (DEI), the state-space model 
will be in the from of 
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     (6) 

We can estimate the parameters of each model, e.g. a1, b1,
a2, and b2, by performing a statistical analysis on a large 
number of musical sounds with known identities in a 
forward-problem setting. The details of this procedure are 
presented in  [12].  

Based on our experience, these parameters are frequency 
dependant. Therefore, in each class and for different 
frequency bins we have different sets of parameters. 
Estimated parameters for both CEI and DEI classes are 
shown in fig. 1. In section  V, where we transform our model 
to a form appropriate for robust Kalman tracker, these 
parameters are treated as bounded uncertainties. 

IV. ROBUST KALMAN TRACKER

A. Motivation and Possibilities 
As mentioned earlier, in practical applications, where 

parameters of the evolution model are not guaranteed to be 
accurate enough, the performance of Kalman filter can be 
poor. Our conventional Kalman tracker is not exempt from 
this limitation. With the same model parameters for different 
instruments in one class, we ended up with more false tracks 
where we were dealing with smoother partials, and we got 
more missing tracks where we had partials with larger 
variations.  

In addition to the inaccuracy of these parameters, a large 
amount of effort is needed for their estimation. By a close 
look at the estimated values for our parameters in fig. 1, one 
can realize that pole radii for both frequency and power vary 
arbitrarily and are bounded in small intervals. This 
motivated us to look for robust trackers where these 
frequency-varying parameters can be treated as bounded 
uncertainties. Some possible solutions in the field of robust 
filtering are as follows: 
1) Discrete-Time Quadratic Guaranteed Cost Filtering 

This class of filtering is applicable to systems that are 
quadratically stable  [13]. However, our transition matrices in 
both systems of (5) and (6) have two poles on the unit circle. 
This means that our systems are not Schur stable and do not 
satisfy the conditions for quadratic stability. 
2) Discrete-Time Set-Valued State Estimation  [13], Robust 
H-infinity Filtering  [8], etc.  

For these classes of robust filtering we face the same 
limitation as the first option: our system must by Schur 
stable. Therefore, we can not employ these methods either. 
3) Regularized Least Squares Approach  [9].  

This class of robust Kalman filtering, which is motivated 
by estimation techniques for solution of regularized least-
squares problems, does not need the stability condition. In 
the next subsection we formulate a robust Kalman tracker 
based on this approach. 

Figure 1: Estimated parameters for both CEI (dashed) and DEI 
(solid) models. 
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B. Regularized Least Squares Kalman Tracker 
Compared with the standard Kalman filter, which 

minimizes the regularized residual norm at each iteration, 
this filter is designed to minimize the worst-possible 
regularized residual norm over the class of admissible 
uncertainties at each iteration  [9].  

Consider a state-space description of the form  
( 1) ( ) ( )

( ) ( ) ( )

x k A A x k Bv k

y k Cx k w k
              (7)

Where {x(0), v(k), w(k)} are uncorrelated zero-mean random 
variables with covariance matrices , Q and R respectively. 
The perturbation of A is modeled as 

A D E                  (8) 
for some known matrices {D, E} and for an arbitrary ,

1. Then the recursive formulation for our robust 
tracker can be written as 

1
( ) ( / 1) ( / 1)

ˆ ˆ ˆ( / ) ( / 1) ( ) ( ) ( / 1)

( / ) ( ) ( / 1)

ˆ ˆ( 1/ ) ( / )

( 1/ ) ( / )

T T

T T

M k P k k C R CP k k C

x k k x k k M k y k Cx k k

P k k I M k C P k k

x k k Ax k k

P k k AP k k A BQB
 (9) 
where

1

11

ˆ

ˆ( / 1) ( / 1)

ˆ ( / 1)

T T

T

T

R R CDD C

P k k P k k E E

A A I P k k E E

       (10) 

Here, ˆ  is a nonnegative scalar parameter that can be 
determined from optimization 

ˆ arg min ( )
TH WH

G               (11) 

where the function G( ) is defined as 
2ˆ( ) ( ) ( ) ( ) ( / 1)

( ) ( ) ( )

T

f

T
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1
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The relation between new parameters in (11)-(13) and 
those in (9) and (10) is as follows: 

1 1

1

ˆ( 1) ( / 1)

( / 1)
f

b y k CAx k k

F C A B

Q P k k Q

W R

H CD

              (14) 

Here, the notation ( )a b  denotes a block diagonal 
matrix with entries a and b. The minimization of (11) will 
always yield a unique solution for ˆ , since G( )  will always 
have a global minimum in the interval [ HTWH , )  [14]. 
For convenience we can denote the lower bound of  by l,
where

T

l
H WH                     (15) 

Based on observations from our simulations and others 
 [9], the function ( )G  usually reaches its minimum at 
values that are very close to l. This useful observation 
suggests that instead of lengthy calculations for finding 
minimum of G( ), we can use a practical approximation for 
finding ˆ . This approximation can be of the form 

ˆ (1 ) l                     (16) 
This discussion is further elaborated in section  V. For 

now we use (11) to find ˆ .

C. Tracking Procedure 
Our robust tracker is initiated with peak data from the first 

frame, with the initial values (in the forth order model) 

11 1

(0) (0)ˆ(1/ 0) 0 0

(1/ 0)

T
i i

T

f px

P C R C
          (17) 

and

2

2

0
0

f

p

Q I

R
                    (18) 

where 2

f
and 2

p
are the variances of observation noise 

processes and take values close to one. At the next step we 
calculate ˆ  by minimizing G( ) over the interval 
[ HTWH , ) and this process is repeated for every 
iteration. After finding ˆ  we use modifications of (10) and 
Kalman tracker of (9) to estimate noise-free values for 
power and frequency in the following frame. If the 
following frame contains a peak that is close enough to the 
estimated peak, that peak is added to the track and is used to 
update the tracker. This process is continued through 
successive frames until there is no peak close enough to the 
last estimated peak. Here, the track is terminated or 
considered as "dead" and a new track is initiated in the next 
frame. The process starts with all peaks in the first frame 
and also with all peaks from other frames that have not been 
used in any previous track.
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D. Adaptive Acceptance Gate 
 A peak is close enough to our estimated peak if it falls 
into the acceptance gate of the track. We use the distance 
function or Mahalanobis distance to define the closeness of 
peaks to the estimated values as follows  [10]: 

12 ( ) ( ) ( / ) ( )T Td k e k CP k k C R e k       (19) 

Here, ˆ( ) ( ) ( / )e k y k Cx k k is the error between current 

observation and the predicted values, and ( / ) TCP k k C R is
the covariance matrix of this error. A peak falls into the 
acceptance gate of an estimated peak if the value of its 
distance function is less that the gate value. If more than one 
peak is in the acceptance gate, the one with less distance is 
selected.

Based on our experience, if we set a universal value for 
our acceptance gate, the tracking result will be poor. The 
nature of our frequency tracks is suggestive of an adaptive 
acceptance gate with different values at different 
frequencies. As mentioned earlier, we are dealing with 
pseudo-stationary signals. Frequencies of our partials vary 
with time but these variations are magnified when we move 
from lower harmonics to the higher harmonics. So, if we 
consider the same value for our acceptance gate in all 
frequencies, we have the risk of missing tracks in higher 
frequencies or loosely accept false partial tracks in lower 
frequencies. To cope with these variations we set the gate 
value as a function of frequency, which is 

( ) 10 0.01g f f                 (20) 
In fact, we increase the chance of continuing a track 

where the peaks are sparser and less likely to join a track 
with lower variations. 

E. Missing Peaks 
Due to imperfections in estimating the spectrum and also 

because partials with low power can get buried in noise, we 
might face the problem of missing peaks. This can result in 
discontinuities in parts of a partial. To overcome this 
problem, it is proposed in  [1] to add "zombie" states to the 
end of a track where we cannot find any peak within the 
acceptance gate. In our algorithm we update the track with 
estimated states in such situation, and continue this process 
for a maximum of three frames. If during these attempts no 
peak falls into the acceptance gate, we consider that track as 
dead and extract the fake updates from the track. If we find a 
peak during this process, the track is updated with this peak 
and we keep the fake updates or zombies. 

V. RESULTS

To use our tracker we first need to put our models in (5) 
and (6) into an appropriate form considered in (7) and (8). 
This process is presented for the forth order model in (7) 
only. Intending to move uncertainties in the input matrix 
into the transition matrix, we write 

1

2

11

22

0 01 0 0
0 00 1 0

, ˆ 00 0 0
ˆ00 0 0

b

b
A D E B

ba

ba

        (21) 

where

1 1 1

2 2 2

ˆ

ˆ
b b b

b b b

For isolating bounded uncertainties, which appear in fig. 
1, into , we can write 

1 1 1

1 1

2 2 2

2 2

1 3

2 4

ˆ ˆ[2, 20], 5

[0.4, 4] 2.2 1.8 [ 1,1] 2.2 1.8
ˆ ˆ[1.5, 4.5], 3

[0.5,1.5] 1 0.5 [ 1,1] 1 0.5

[0.36, 0.5] 0.43 0.07 [ 1,1] 0.43 0.07

[0.43, 0.61] 0.52 0.09 [ 1,1] 0.52 0.09

b b b

b

b b b

b

a

a

which results in
1 0 2.2 0 0 0 1.8 0

0 1 0 1 0 0 0 0.5
,

0 0 0.43 0 0 0 0.07 0

0 0 0 0.52 0 0 0 0.09

A E (22)

4 ), 1, ..., 4, ( i iD I diag           (23) 
Considering (14), (15), (18), and (23) we have: 

2 2max( , )
l f p

               (24) 

If 2
f = 2

p=0.97 then we get l=1.031. In concurrence 
with the observations of  [9], through all of our simulations 
the calculated values of  ˆ  in (11) were very close to the 
lower bound l. This observation suggests using an 
approximation for this parameter as indicated in (16), which 
can reduce the computational expense of our algorithm 
significantly. The study of this case is left for future work. 

The robust tracker is proposed as an improvement to our 
earlier tracker, which was based on conventional Kalman 
filter. To compare the performance of these two trackers we 
use the accuracy factors introduced in  [7], which are 

100, 100ftdt
dt ft

et et

nn
R R

n n
         (25) 

where Rdt is the detection rate, Rft is the false rate, ndt is the 
number of detected tracks, nft is the number of false tracks, 
and net is the number of expected tracks. We computed these 
factors for 32 musical notes (about 450 partials) from all 
classes of melodic instruments. Table 1 contains accuracy 
rates for these two trackers. 
 The superior performance of the robust tracker is evident 
in its higher detection rate and significantly lower false rate, 
compared with the conventional tracker. This is mostly due 
to robustness of the new method and its improved tracking 
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capabilities. This improvement can be further observed in 
fig. 3, where our robust estimates track the frequency partial 
more closely than the conventional estimates. Since we used 
estimated and averaged values for parameters of the 
evolution models in our conventional tracker, the deviation 
of estimates can be randomly high and divertive. This 
deviations increase the risk of forming false partial tracks. 

 In polyphonic settings, where we can have more than one 
musical note at a time, harmonics of different notes can get 
very close to each other. In this situation, estimates with 
higher deviations can follow the wrong trajectory (see fig. 
4). In the conventional tracker this is due to the more weight 
given to noise power in higher frequencies (see the right 
side of fig. 1) for coping with magnified frequency 

variations in higher frequencies. On the contrary, the 
tracking properties of our robust tracker are not influenced 
by these variations.  

VI. CONCLUSION

We presented a new partial tracking method based on a 
robust Kalman filter. This tracker promises an improved 
performance over our conventional Kalman tracker while 
preserving its good properties and superiority over existing 
methodologies. As the continuation of this work we can 
further investigate the possibility of using a universal 
evolution model for all classes of melodic instruments.  
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Method Rdt Rft
Conventional Kalman Tracker 98.2 18.2 

Robust Kalman Tracker 98.3 9.4 

Table1: Tracking accuracy rates 

Figure 3: Performance of the two trackers. Upper: Robust tracker 
with estimated track (dashed) and observed track (solid). Lower: 

conventional tracker with estimated track (dashed) and observed track 
(solid) 

Figure 4: Tracking in the presence of closely spaced partials:  
Robust tracker (upper) and conventional tracker (lower); with observed 
track for higher harmonic (solid), its estimates (asterisk), observed track 

for lower harmonic (dashed) and its estimates (circle).
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