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Abstract— We study the LQG control of scalar systems
under communication constraints by naturally extending
the LQG cost to include a quadratic penalty for commu-
nication. We show that the resulting optimization problem
is quasiconvex in the communications parameter so that it
can be solved in a computationally efficient manner.

I. INTRODUCTION

The issue of control under communication con-
straints has recently been an active area of research.
While most traditional analysis of control systems as-
sume that the observation is readily available in uncor-
rupted form, the situation in real engineering systems
is often quite different [4]. With networked systems
becoming more ubiquitous, there is a pressing need to
understand the impact of system performance due to
various communication schemes and/or constraints.

Most of the recent works in this area have adopted,
more or less, an information theoretic point of view by
studying the performance/rate tradeoff. For example,
[9], [10], [26], [27], [7], [14], [15], [28], and [20] stud-
ied the stabilization of linear systems with quantized
state feedback. In addition to rate constraints many
researchers have also looked at system performance
under various noisy channel models (see, for example,
[13], [8], and [19]), and much progress has been made in
addressing the fundamental limits of performance for
feedback systems, in the presence of a communication
channel (see, for example, [22], [17], [11], and [16]).

In the spirit of the traditional linear quadratic
Gaussian (LQG) framework, we would like approach
the problem of controlling a system under commu-
nication constraints from an optimization perspective.
Building on the classic LQG framework is not a new
concept: Borkar and Mitter [4] examined the LQG prob-
lem with finite alphabet codewords being transmitted
to the controller with ensuing delay and distortion;
Tatikonda et al. [21] [23] examined LQG performance in
the presence of a noisy analog feedback channel using
sequential rate distortion; Gupta et al. [12] studied
LQG control across a packet dropping link. Instead of
explicitly introducing communication constraints such
as a power-constrained Gaussian channel, an erasure
channel, or a rate-constrained channel, we would like
the communication constraint to be reflected in the cost
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formulation. That is, the aim of this work is to naturally
extend the traditional LQG problem to account for
communication constraints by adding a quadratic com-
munication cost into the LQG problem formulation.
We show that the resulting optimization problem is
quasiconvex in C, the communications parameter. This
allows us to easily compute the optimal solution.

This paper is organized as follows. In Section II,
we formulate the problem. In Section III, we review
results from traditional LQG control theory. In section
IV, we examine the LQG problem with the new cost
constraint and show that the solution can be obtained
efficiently by proving that the resulting optimization is
quasiconvex.

II. PROBLEM STATEMENT

Here, we describe the different components of our
problem.

A. Plant

Consider the canonical scalar discrete-time, stochas-
tic, linear system:{

xk+1 = Axk + Buk + wk, k ≥ 0
yk = Cxk + vk

(1)

where A ∈ R, B ∈ R are known nonzero values,
{xk ∈ R} is the state sequence, {uk ∈ R} is the
control sequence, and {yk ∈ R} is the observed sys-
tem output, and C ∈ R++ is the observation gain.1

Disturbances {wk ∈ R} and {vk ∈ R} are uncorrelated
white Gaussian noise processes with zero mean and
covariances W ∈ R++ and V ∈ R++, respectively.
The initial condition, x0, is zero mean, has covariance
Π0 ∈ R++, and is uncorrelated with the processes {wk}

1
R++ denotes the strictly positive reals.
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and {vk}. In symbols,

E

⎡
⎣wi

vi

x0

⎤
⎦ [

wj vj x0 1
]

=

⎡
⎣Wδij 0 0 0

0 V δij 0 0
0 0 Π0 0

⎤
⎦ ,

where δij is the Kronecker delta function (identically
zero except when i = j, where δii = 1).

B. Channel

The channel between the plant and the controller
is an additive white Gaussian noise (AWGN) channel.
Notice that we do not place an explicit power constraint
on this channel. In the spirit of LQG, the communica-
tion constraint is factored into the cost function, this
will be made apparent shortly.

C. Controller

At any instance in time, the controller has access to
past and present observations, as well as all past control
signals. That is, the control input is of the form

uk = µk(y0, y1, . . . , yk, u0, u1, . . . , uk−1),

where µk is a function of past and present observations
and past controls. Fig. 1 shows the interconnection of
the various components.

D. Quadratic Performance Objective

Our goal is to design the optimal control law, {uk},
and the optimal measurement gain, C, to achieve the
minimal average cost

J∗ � min
C,{uk}

lim
n→∞

E

[
1

n

n−1∑
k=0

(
Qx2

k + Ru2
k + SC2

)]
, (2)

where Q ∈ R++, R ∈ R++, and S ∈ R++. This
is a natural extension of the LQG cost objective. By
allowing C to become a variable parameter, we gain
an additional degree of freedom in the design process:
the control engineer now gets to design both the control
law and the amplifier used by the plant to transmit the
state vector. A quadratic cost is then placed on the gain
of the amplifier. One can think of this new cost as the
charge on the power-gain of the amplifier.

III. CLASSIC LQG PROBLEM

It is instructive to review the results of traditional
LQG first before continuing onto our problem. As these
results are standard and well known, we will state them
without giving the details of the proof.

Lemma 1 (LQG): For a fixed C ∈ R++, given the
discrete-time stochastic linear system (1) and the av-
erage cost

JLQG = lim
n→∞

E

[
1

n

n−1∑
k=0

(
Qx2

k + Ru2
k

)]
,

the optimal performance is:

J∗
LQG � min

{uk}
JLQG

= PW +
(
A2P − P + Q

)
Σ̄, (3)

where P and Σ̄ satisfy

P = A2P − (APB)2(B2P + R)−1 + Q, (4)

Σ̄ = Σ − (ΣC)2(C2Σ + V )−1,

Σ = A2Σ − (AΣC)2(C2Σ + V )−1 + W. (5)

and P > 0, Σ > 0. That is, P and Σ are the positive roots
to the quadratic equations (4) and (5), respectively.
Some of the key ideas from LQG theory can be sum-
marize as follows:

• At each instance in time, the optimal control is
linear in the current state estimate. That is, uk =
Lk x̂k where x̂k is the optimal estimate of the
current state. In the steady state, uk = L x̂k where
L = −(BPA)(B2P + R)−1.

• (Certainty Equivalence) The control gain, L, is
independent of the statistics of the problem. That
is, it remains the same if we were solving the
deterministic LQR problem.

• (Separation) The optimal solution to this problem
is obtained by independently solving the estima-
tion problem (assuming no control) and the control
problem assuming perfect information.

The details are omitted as they are readily available
in standard textbooks on optimal control theory; for
example, see §5.2 of [2], §4.5 in [3], or §5.3-4 [18].

The terms in (3) can be interpreted as the cost associ-
ated with perfect information, PW , and an additional
cost due to estimation error, (A2P −P + Q)Σ̄. We note
that equations (4) and (5) are the scalar algebraic Riccati
equations (ARE) associated with the linear quadratic
regulator (LQR) problem and the linear estimation
problem (à la Kalman filtering), respectively. Conditions
for their solutions are well known and we state it as a
lemma.

Lemma 2 (ARE): If Q > 0 and B �= 0, then there
exists a P > 0 that is the unique positive solution to
the ARE (4). Similarly, if V > 0 and C �= 0 then there
exists a Σ > 0 that is the unique positive solution to
the ARE (5).

Proof: The idea is that in order for the LQG
problem to be well-posed, we must be able to control
the system (B �= 0) and observe the system (C �=
0). Furthermore, to avoid degeneracies, the cost must
account for the state (Q > 0) and there should be
measurement noise (V > 0). For details, see Proposition
4.4.1 in [2].

It is evident that in order to solve the LQG problem,
we must solve ARE’s (4) and (5). Fortunately, in the
scalar case, the ARE is simply a quadratic equation
and we can solve for the solution in closed form.
We note that for general higher-dimensional systems,
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there are no known closed form solutions to matrix
ARE’s. However, they be solved numerically using
semidefinite programming (SDP) (see [24], [5], or [29]).
In order to gain insight into our problem which can
be easily obscured by the many difficulties associated
with vector systems, we examine only the scalar case in
this paper. More discussion on general vector systems
can be found Section V.

IV. COMMUNICATION CONSTRAINED LQG

Given the results in the previous section, it is straight
forward to see that in our formulation, the separation
principle between estimation and control continue to
hold (see [25], [1], or §5.2 in [2]). The optimal cost, (2),
becomes

J∗ = min
C

{
min
{uk}

lim
n→∞

E

[
1

n

n−1∑
k=0

(
Qx2

k + Ru2
k + SC2

)]}

and we have the following:
Theorem 3: Given the linear system (1) and a fixed

C ∈ R++,

J(C) � min
{uk}

lim
n→∞

E

[
1

n

n−1∑
k=0

(
Qx2

k + Ru2
k + SC2

)]

= PW + C2S +
(
A2P − P + Q

)
Σ̄, (6)

where P and Σ̄ are defined in (4) and (5), respectively.
The terms in (6) can be roughly interpreted as the

cost associated with perfect information, PW ; addi-
tional cost due to estimation error, (A2P − P + Q)Σ̄;
and cost due to communication, C2S. We note that the
last two terms are related as the choice of measurement
gain, C, directly influence the quality of estimation.

We first examine the implications of the ARE’s (4)
and (5). From (4), we can write

A2P − P + Q =
(APB)2

B2P + R
,

which implies

A2P − P + Q > 0. (7)

Similarly, from (5), we write

Σ =
A2V Σ

C2Σ + V
+ W,

which implies

A2V Σ

C2Σ + V
< Σ ⇒ A2 V

C2Σ + V
< 1 (8)

⇒ A2

(
V

C2Σ + V

)2

< 1

⇒ (AV )2 <
(
C2Σ + V

)2
. (9)

To make our presentation more concise, we need to
define a few more functions:

Lemma 4: Let

h(x) � 3 x4 + 8 x3V + 2 x2V 2(A2 + 3)

−4 xV 3A2(A2 − 1) − V 4(A2 − 1)2,

then for x > max{0, V (A2 − 1)}, h′′(x) > 0 and h′(x) ≥
0. 2

Proof:

h′(x) = 12x3 + 24x2V + 4xV 2(A2 + 3)

−4V 3A2(A2 − 1)

h′′(x) = 36x2 + 48xV + 4V 2(A2 + 3)

It is clear that for x > 0, h′′(x) > 0.
If |A| < 1, then h′(0) = 4V 3A2(1−A2) > 0. If |A| ≥ 1,

then h′(V (A2−1)) = 12V 3A4(A2−1) ≥ 0. Thus, h′(x) ≥
0 for x > max{0, V (A2 − 1)}.

We are now ready to examine the convexity of cost
function (6). Let

g(C) �
2V (A2P − P + Q)Σ2(
(V + C2Σ)2 − (AV )2

)3
,

then the second derivative of J(C) with respect to C

can be written as

J ′′(C) = 2 S + g(C)h(C2Σ). (10)

Theorem 5: When the system is unstable, |A| ≥ 1, the
cost J(C) is convex in C > 0, i.e., J ′′(C) ≥ 0 for C > 0.

Proof: The first term in J ′′(C), 2S, is always
positive.

By (7) and (9), we see that g(C) > 0.

From (8), we know that

C2Σ > V (A2 − 1).

Together with Lemma 4, we have

h(C2Σ) ≥ h(V (A2 − 1))

= 3A4(A2 − 1)2V 4 > 0.

Therefore, J ′′(C) > 0 and J(C) is convex in C > 0.
Unfortunately, this convexity doesn’t hold when the

system is stable. When the system is stable, |A| < 1
so h(0) < 0. Since S can be chosen arbitrarily small,
there may exist some small C > 0 such that J ′′(C) < 0.
Therefore, J is not always convex in C.

Although convexity of J under all circumstances
would have been nice, we can prove something that’s
almost as good: quasiconvexity.

Definition 6: A function β : R → R is said to
be quasiconvex (or unimodal) if its domain and all its
sublevel sets

Sα = {x ∈ domβ |β(x) ≤ α} ,

for α ∈ R, are convex.

2The symbol ′ denotes derivative where the differentiation variable
should be clear from the context.
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We will show that J is quasiconvex in C > 0 when
|A| < 1 by proving that J(C) exhibits the following
property.

Lemma 7: Suppose β : R → R is twice differentiable.
The function β is quasiconvex if and only if for all x ∈
domβ,

β′(x) = 0 ⇒ β′′(x) ≥ 0,

i.e. at any point with zero slope, the second derivative
is nonnegative.

Proof: See §3.4 of [6].
Before showing J is quasiconvex, we need to ex-

amine the relationship of Σ and C2Σ with respect to
C. From (5), Σ can be seen as a function, Σ(C), of C.
Similarly, C2Σ can be written as a function of C.

Lemma 8: Let

f(C) = C2Σ

�
1

2
(C2W − V + A2V ) +

1

2

√
C4W 2 + 2(1 + A2)C2WV + (A2 − 1)2V 2

Then for C > 0, we have

1) Σ(C) > 0 and Σ′(C) < 0;
2) f(C) > 0 and f ′(C) > 0.

Proof: Clearly, Σ(C) > 0 and f(C) > 0. Notice that
all coefficients of powers of C in f(C) are positive, so
f is increasing in C. That is, f ′(C) > 0 for C > 0. By
equation (5) and the definition of f , we can write

Σ(C) = W

(
1 +

A2V

f(C) + V (1 − A2)

)

By relation (8), for all C > 0,

f(C) + V (1 − A2) > 0,

so Σ′(C) < 0. This is intuitively satisfying as Σ is the
prediction error covariance and should decrease as we
increase signal gain (effectively increasing the signal-
to-noise ratio).

Lemma 9: For |A| < 1, there exists some positive C1

where J ′′(C) > 0 for C ≥ C1 and J ′′(C) is strictly
increasing in C for 0 < C < C1.

Proof: Recall the expression for J ′′ in equation (10).
By Lemma 4 and

h(max{0, V (A2 − 1)}) = h(0) < 0,

we know there exists a unique x1 > 0 where h(x1) = 0.
When |A| < 1, f(0) = 0. By Lemma 8 and noting that
f(C) → ∞ as C → ∞, we know that there exists a
unique C1 > 0 where f(C1) = x1. Hence, for all C ≥
C1, J ′′(C) > 0 because h◦f (C) ≥ 0.3

Now consider the interval 0 < C < C1. In this
interval, h◦f (C) < 0; by Lemma 8 and Lemma 4,

∂

∂C

[
h◦f (C)

]
≥ 0.

3Here, h◦f (C) = h(f(C))

We have already argued in Theorem 5 that g(C) >

0. Now, from Lemma 8, Σ′ < 0 and f ′ > 0, so
the numerator of g(C) is decreasing in C while the
denominator is increasing in C, thus g is decreasing
in C: g′(C) < 0. Therefore, g(C)h(f(c)), and hence
J ′′(C), is strictly increasing in C for 0 < C < C1. See
Figure 2(a) for illustration.

The following is a direct result of Lemma 9.
Corollary 10: When |A| < 1, if J is not convex, then

there exists a unique 0 < C0 < C1 where

J ′′(C)

⎧⎪⎨
⎪⎩

< 0 if C < C0,

= 0 if C = C0,

> 0 if C > C0.

See Figure 2(a) for illustration.
This corollary tells us that the plot of J ′(C) only has
one “dip”. See Figure 2(b) for illustration.

Theorem 11: When |A| < 1, if J(C) is not convex in
C > 0, it is quasiconvex in C > 0.

Proof: Assume J(C) is not convex in C > 0.
Consider the expression for J ′(C):

J ′(C) =
2C

(
V 2S(1 − A2)) + C4Σ2S + V Σ(· · · )

)
(1 − A2)V 2 + 2C2V Σ + C4Σ2

Clearly, J ′(0) = 0 so that means there exists a unique
C∗ > C0 where J ′(C∗) = 0. But C∗ > C0 means that
J ′′(C∗) > 0 and quasiconvexity follows from Lemma
7. See Figure 2(c) for illustration.

Finally, we summarize our results in the following
theorem:

Theorem 12: Given A, B �= 0, Q > 0, R > 0, S > 0,
and the scalar discrete-time linear system{

xk+1 = Axk + Buk + wk, k ≥ 0
yk = Cxk + vk

whose control input is of the form

uk = µk(y0, y1, . . . , yk, u0, u1, . . . , uk−1).

For C > 0, the cost function

J(C) = min
{uk}

{
lim

n→∞
E

[
1

n

n−1∑
k=0

(
Qx2

k + Ru2
k + SC2

)]}

is convex when |A| ≥ 1 and quasiconvex when |A| < 1.
The convexity of J allows us to summarize the op-

timal solution to our communication constrained LQG
problem in the following table.

System Convexity Optimal C
|A| ≥ 1 Convex C > 0 such that J ′(C) = 0

|A| < 1 Convex C = 0 with J∗ = QW
1−A2

|A| < 1 Quasiconvex4 C > 0 such that J ′(C) = 0

4This is the case where J is NOT convex but only quasiconvex
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J ′′

CC0 C1 C∗

(a)

J ′

C
C0 C∗

(b)

C∗

J∗

J

C

(c)

Fig. 2. Plots of (a) J ′′, (b) J ′, and (c) J for a stable system whose
cost is quasiconvex in C. The system parameters are: A = 0.8, B =
10, Q = R = S = W = V = 1.

V. CONCLUSION AND FUTURE WORK

In this paper, we formulated an LQG problem with
a quadratic communication cost. We showed that the
optimization problem is quasiconvex in C and if the
system is unstable, the problem is convex. That is, it
can be solved in a computationally efficient manner.
Instead of viewing the problem from an information-
theoretic rate perspective, we examined it from an
energy perspective, consistent with traditional LQG.
We studied the scalar case in this paper to gain basic
insight into this new performance criterion.

The natural extension is to generalize to higher
dimensional systems. As we pointed out earlier, for
higher dimensional systems, (4) and (5) become matrix
ARE’s. There are no known closed form solutions
although we can solve them efficiently using SDP by
formulating the problem as a linear matrix inequality
(LMI), see [5], [29], or [24] for details. We are currently
exploring the problem for general vector systems.
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