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Multivariable practical higher order sliding mode control

S. Laghrouche, F. Plestan, and A. Glumineau

Abstract— This paper presents a new practical higher order
sliding mode controller for multi input-multi output (MIMO)
nonlinear systems. The advantages of the approach are mul-
tiple: first, the design is simple and the applicability is real;
secondly, the conditions of existence of this class of controllers
are weak ; the class of nonlinear systems for which the
controllers are designed are large.

I. INTRODUCTION

In order to overcome the classical problem of chattering
in standard sliding modes, a new approach called “higher
order sliding mode” has been recently proposed [1], [7],
[15]. Instead of influencing the first time derivative of slid-
ing manifold, the “sign” function is acting on higher time
derivatives. Keeping the main advantages of the standard
sliding mode control, the chattering effect is eliminated and
higher order precision is provided [15]. The main results
concern the second order sliding mode control (for example,
[7], [15] with well-known “twisting” and “‘super-twisting”
algorithms, [1] derived from the optimal bang-bang control
and proposed for SISO nonlinear systems with uncertainties).
Even if the design of r-order sliding controllers (r > 3) is
difficult, first results have been proposed in [16], [17], [18]
for SISO nonlinear systems and were inspired by the so-
called “terminal sliding modes control” [24]. An alternative
approach recently comes into view in [12] for SISO nonlinear
systems and uses standard sliding mode control with linear
quadratic (LQ) one converging over a finite time interval with
a fixed final state [20].

The extension of these results to the MIMO nonlinear
systems is an exciting challenge. Very few results on the
higher order sliding mode control for MIMO nonlinear
systems have been done, mainly due to the non-applicability
of Lyapunov’s direct method. Some existing results [2], [9],
[11], [19] only concern the second order sliding mode control
of systems with a “low” coupling between the inputs and the
sliding variables. However, this condition is quite restrictive
(for example, the Lagrangian systems do not enter in this
class). For this class of systems, a solution is given by [2]
but is difficult to apply and ensures only an asymptotic
convergence. An other solution based on regular form has
been proposed in [9]. An other solution is given in [19], but
this result is based on quite restrictive conditions.

The main contribution in this current paper is the extension
of [12] for MIMO nonlinear systems. Due to the control
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design manner, this extension is natural and quite easy. As
a matter of fact, in [12], the establishment of higher order
sliding mode is equivalent to establish a 1-order sliding mode
on a time-varying linear manifold. Then, the generation of
a higher order sliding mode is equivalent to the generation
of l-order sliding modes on p (p, output dimension) time-
varying linear manifolds. Then, it is possible to use the well-
known techniques of the multivariable standard sliding mode
control [3], [4], [5], [6], [22], [23].

The proposed result is based on weaker conditions than
[2], [9], [11], [19], [14]: in this last reference, a first attempt
to generalize [12] is proposed by using the restrictive “low”
coupling condition. In the present paper, this structural
property is not needed. The problem of the higher order
sliding mode control of MIMO minimum-phase uncertain
systems is formulated in input-output terms only through the
differentiation of the sliding vector s, and via a change of
coordinates, is equivalent to the finite time stabilization of
integrators chains with nonlinear uncertainties [12]. These
latter are considered as bounded non structured parametric
uncertainties: in this case, the system can be viewed as an
uncertain linear system. Then, following the optimal higher
order sliding mode solution for SISO uncertain nonlinear
systems [12], an optimal time varying switching manifold
is determined by minimizing a quadratic cost function over
a finite time interval [0, ¢p| with a fixed final state. The
standard sliding mode over this manifold leads to the es-
tablishment of higher order sliding mode in finite time with
respect to the sliding variable vector s = [s1 ... s,]T.

The control algorithm, which is given in the practical
higher order sliding mode context, needs the relative degree
pi with respect to s; and the bounds of uncertainties and has
several advantages

« the convergence time is fixed a priori via parameter tp,

« the control law can be adjusted via ¢t and two constant
weighting matrices Py and @,

« this strategy can be applied for all value of sliding mode
order (greater or equal to the relative degree) under a
structural condition,

o the structure of the controller is well-adapted for a
practical implementation (a first version has been ex-
perimentally checked on electrical motors [13], [14]).

II. PROBLEM FORMULATION

Consider the nonlinear system
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where x € X C IR"™ is the state variable, u € IRP is the
input control vector and y € IRP is the output vector. f(z),
g(x) and h(x) are uncertain sufficiently smooth functions.

Definition 1: [10] The system (1) has a relative degree
vector [p1 -+ pp)T at xg if Lg].L’J%hi(x) =0forl <j<p,
1<i¢<p, k< p;—1 and for all x in a neighborhood of
xg, and if the p X p matrix

[ Lol T ae) e Lo LT (@) ]

Ly L2 hala) - Ly L2 ho()
A= @)

| Lo, L hy(2) Ly L% 'hy(x)

Ipf

is nonsingular at x = z. -

Remark 1: If Definition 1 fulfills, preliminary feedback
may be applied to system (1) [10]: this feedback is designed
such that it decouples the nominal system (without uncertain-
ties). Then, without loss of generality, in order to simplify
the notations, after suitable reordering of the y;’s, the output
Y, is associated to the input u; with a relative degree p;. g

Let yr(t) = [Yyr1 Yre -+ Yrp|T denote the desired
trajectories that outputs of (1) are forced to track through
the control input u. These trajectories are supposed to be
sufficiently differentiable. Let s(z,t) = [s1 s2 -+ 5,]T =
y — yr(t) denote the “new” output of (1), called “sliding
vector”. These outputs are obviously the same relative as the
initial outputs.

Definition 2: Consider the nonlinear system (1) and the
sliding vector s(z,t). The r; —ry — - -+ — 7, order sliding
set with respect to s(x,t) is defined as

ST = {JZEX‘51251:~-~:3Y171):O7...,
Sp = 3;0 — .. = S;)Tpfl) — 0}
3)
ri=[ry ro --- 1|7 is called sliding order vector. -

Definition 3: Consider S” the not-empty r-order sliding
set, and assume that it is locally an integral set in the Filippov
sense [8]. Then, the behaviour of (1) on (3) is called ‘“r*"’
order sliding mode with respect to s. -

H1. The relative degree p; (1 <14 < p) of each output s; of
(1) with respect to u is assumed constant and known. The
sliding mode order versus each sliding variable s; is r; such
that r; > p;.

III. CONDITION ON EXISTENCE OF HIGHER ORDER
SLIDING MODE

Consider the general problem of the multivariable higher
order sliding mode control for a sliding order vector r; —
rg — -+ — 1, with 7; > p;. The objective is to design a
control vector u which forces, in finite time and in spite of
uncertainties, the state trajectories to evolve on S”. Extend

system (1) by a chain of integrators with length r; — p; on
each input u; as

A R “
y = hx)
with Z o= [T ug -~ "7 oy, e urPe T

i.e. the input variables and their time derivatives are
state variables increasing the dimension of (1). v :=
(=P .. {7 P?))T s the new control input.

The ri" time derivative of each function s; reads as

S:(L'r‘l) L}lyl _ ygll)(t)
sy’ Ly, —yiir (#)
) » o() o
L§1 L}l (750 . Lgp L}l Y1
Lg, L7y N R
+ :
ug”pfpp)
rp—1 rp—1 —
L Lg, Lf “yp o0 Lg, LY yp v

(5)
H2. u(t) € U = {u : |Ju| < up} with upy € R
Furthermore, the r; —p; —1 (1 <% < p) first time derivatives
of u; are bounded and v = u" """ is a discontinuous
function such that |v;| < vy, vy € IRT* . The system
(4) with discontinuous right-hand side admits solutions in
Filippov’s sense on S".

H3. The zero dynamics of (4) are asymptotically stable.

H4. Components of vector ¢(+) and matrix () are bounded
functions. Furthermore, there exists positive constants s,
Kijm € R, Kijmy € R, Co; e Rt 1<i<p,1<j<p)
such that,

|s(z,t)| < so
lpi(-)] < Coi
0 < Kiim < |7ii(")| < Kiim (6)

Kijm < |7ij()] < Kijn - fori # j.

The problem of r; — ro — --- — 7, order sliding mode
control of (1) with respect to s is then equivalent to the
stabilization in finite time, by a discontinuous control law v,
of the multivariable uncertain system

A2y + Ay Zs
o+ @

2 =
Zy =
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p
with (R =" "r; and 1 <i < p)

j=1

A12 = diag [Alg o Apg] c R(R_p)Xp, ®)

Ay = diag[Ay - Apy] € RE-P)X(E-p)
T
7, = [Sgn T A o "
T
Zy = [85”71) (Tpfl)} ;
€))
[0 1 0 7
Apn = 7
0 1
0o . . o0 1 -1y x(re)
T
A = [0--0 1](”71)“,
v = ugﬁ_pl) ul()rp_l’p) T.
(10)

The control and the stabilization of system (7) by a discontin-
uous control law v require the invertibility of «. Then, system

(4) has to have relative degree vector [10] [ry --- r,]7 with
respect to s. State the following assumption
H5. [r1 -+ rp)7 is a relative degree vector for (4).

The first part of the next section is proposed in the context of
the ideal higher order sliding mode, as previously presented
in order to present with a sake of clarity the philosophy
of the higher order sliding mode controller design. But,
the establishment of an ideal sliding mode is not really
possible for several reasons (finite frequency of control
switching, singularity of control at the convergence instant,
...) . Then, the practical higher order sliding mode needs to
be introduced [23].

Definition 4: Given the sliding variable s(z,¢) and a
parameter € , the “practical 7" order sliding manifold”
associated to (1) is defined as

S = {zeX||ls]| <Cole), ||| < Cile), (11
— sV < Croa(e))
with C; = 0whene -0 (1 <i<r-—1). -

Definition 5: Consider the not-empty practical r*" order
sliding set (11), and assume that it is locally an integral set in
the Filippov sense, i.e. it consists of Filippov’s trajectories
of the discontinuous dynamics system. The corresponding
behavior of system (1) satisfying (11) is called “practical
r*" order sliding mode” with respect to the sliding variable

s(z, t). ]

IV. SYNTHESIS OF A PRACTICAL HIGHER ORDER SLIDING
MODE CONTROLLER

The objective of this section is to propose a solution to
the practical higher order sliding mode control for a large
class of multivariable nonlinear systems. The design of the
higher order sliding mode control is made in two steps

o Design of an optimal time varying switching manifold
by minimizing a linear quadratic criterion over a finite
time interval with a fixed final state,

o Synthesis of a discontinuous control ensuring that sys-
tem trajectories evolve on the optimal time varying
switching manifold in finite time and in spite of un-
certainties.

A. Synthesis of an optimal switching manifold

Given the system (7), the synthesis of an optimal switching
manifold, such that the generation of the sliding mode on
this manifold allows the establishment of a 1 — -+ — 7,-
order sliding mode with respect to s(x,t), is based on the
same approach than [12] which considers only SISO case.
The synthesis of the optimal manifold is done through the
minimization of a criteria over a finite time interval [to, tF]
(to > 0, tp < o0) with constraint on final state (Z(tr) = 0)

tp
J = / ZTQ7 dt
to
tp
= / Z1Qu1 71 + 221 Q197 + 7T Q20 Z, dt
¢
j (12)
with Z == [27 Z¥)T and
Q: |: Q%’l 812 :| (13)
12 22

a symmetrical definite-positive matrix, such that @11, Q12
and Qa2 with respective dimensions (R — p) X (R — p),
(R—p) x p- and (p X p). In the first equation of (7), consider
Z, as the state variable, and Z5 as a fictitious control input.
Then, the problem leads back to the resolution of the L@
problem (12) for the dynamics of Z;, under the constraint
Z(tr) = 0. A vector Z> minimizing the criteria (12) under
the constraint Z(tr) = 0 reads as [20]

Zy = —(Q AP — Qo ALVH'WT + Q3. Q1) 21
(14
with P(t) € R(F~P)*(=P) is the unique solution of (t, <
t<tp, P(tp) = Py)
—P = PA+ATP— PA;,Q;) AL,P
+(Q11 — Q12Q5, QT5),
with A == Ay — A15Q5, Q% and V € RE-P)*(R=p) ¢

H e RUE—P)*(E=p) regpectively solutions of (tg < t < tp,
Vtp) =1, H(tp) = 0)

15)

_.V = (A\lL_ A\12QA521Q{2 - 212Q521A\{2P)TV’
H = VTALQ, ALV

(16)
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From (14), one gets the optimal sliding variables vector
Sopt () defined as

Sopt(') = [Slopt T Spopt
Zg+(Q221A P— Q221A VH- VT

+Q50 Q12) 21
(17)

Equation S,p:(Z,t) = 0 described the desired dynam-
ics which satisfy the finite time stabilization of Z =
[s1 81 s s g, - sV 1o zero and
minimize the criteria (12). In short, one gets a sliding surface
with time-varying coefficients, these latter being computed
from a finite-time convergence L() control approach so that
Sopt(Z,t) and each component of Z equal zero in a finite
time ¢r. Thus, the optimal time varying switching manifold
reads as

opt - m S’Lopt

B. Controller design

]T

p
(zeXx |8, ()=0 @18
=1

Once the optimal switching manifold designed, the second
step of the synthesis of the control law is the design of
the control input vector v composed by p discontinuous
components and ensuring the establishment of a 1-order
sliding mode with respect to each component S;, , of Sopt,
which induces the establishment of a 7;-order sliding mode
with respect to each component s; of s, in spite of uncer-
tainties. The multivariable context makes this synthesis more
difficult than in monovariable one, because the objective is
to force the system trajectories to slide on the intersection
of p surfaces, even if there exists interaction (coupling)
between the outputs. This interaction is due to the structure
of uncertain matrix . As a matter of fact, one has

Sopt = ®+99+’YU (19)
with
© = U-[AnZi+AnZ)+A- 27,
U= Q221A o P — Q221A1T2VH W+ sz Qs
A = 221A12 (P VH-VT — V(H )VT

—-VH~ (V ))-
(20
In order to determine a control law ensuring the establish-
ment of a sliding mode on S,,:, one uses the classical
methods for stability analysis, i.e. Lyapunov’s direct method.
Consider the followmg function, which is a Lyapunov’s

S T Sopt. The first time derivative

function candidate ¥V = opt

of V reads as
y=sT

e (©+@)+ S,y Q1)

Consider v a discontinuous control law defined as (o € IRT*)

sign(S7,,,)
v = —q sign [Sopt] = —« : (22)

sign(S* )

Popt

with
Sopt = D Sopt; (23)
D an invertible matrix such that the matrix L := (D~1)7 .~

is a dominant diagonal matrix.
Note that the transformation (23) is non singular [23]: the
establishment of a sliding mode behaviour on S7, implies
the establishment of sliding mode behaviour on S,y [23],
ie. S5, = 0 implies S, = 0. Equation (21) reads as
Vo= (S5)T(DTHT (O+9)
~a(S5,) "L [sign(s1,,) -+

D
= Z |:S;koptHi (| 1opt| 2
p

i=1
Z S ” sign(Sj*Opt)

Jj=1,5

sign (S )} !

Popt

(24)
where 1I; (1 < ¢ < p) are the components of the vector
(D~HT (O + ). If The time derivative of the Lyapunov
function candidate is negative, then a sliding mode exists on

S;‘pt after a finite time. One gets (for 1 < ¢ < p)

p
Sy Mi—a |18y |li+ Z LSy sign(Sr )| <0

j=1,j#i
(25
Then, one has
P
II; — lii + Z l;; sign( Jow) <0 (26)
J=1,5#i
IT;
One gets o > ‘ | This relation can be
|l“‘ ] 1,j#1 ‘l’LJ|

<0.As L= (D YTy and by

denoting di_j1 the (4, ) component of matrix D! , the time

derivative of the Lyapunov function candidate is negative,

i.e. a sliding mode exists on S;; if @ > Maxi<i<p {lgﬂ
|d;1Kum + Zg 1,54 dﬂlszm|

with
|Z;n 1,j7#1 ulKUM + Z;’L 1,j7#1 d]le J]\EI2|7)

also found in the case S*Om

Xi =

Now, let suppose that
H6. At t =tg, Sopt(Z,t) = 0.

The function S, (Z,-) is a switching variable with time-
varying coefficients depending on P(), V(-) and H(-).
These coefficients do not depend on state variables and then,
can be computed off-line and stored from resolution of (15)-
(16) for each time between ¢y and ¢g. Then, when the
controller is implemented, these coefficients are fully known.
However, at tp, the function S,,; can not be evaluated
because it is undetermined. As a matter of fact, it depends
on the inverse of H(-) (with H(tp) = 0) which is multiplied
by Z; (with Zi(tp) = 0). From [21], it is known that
H~! exists for t € [tg,tr — €|, with ¢ an arbitrarily small
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constant. Then, via a discontinuous control wu, the final
control objective consists in forcing, the trajectories of (1)
to slide on

Sopt =12 | Sopt(Z,t) =0, t € [to,tr — €], 0 < e << tp}

in finite time. The design of a switching control function w,
which allows the sliding on Sg,,, follows the conventional
path [23]; the variable structure control u can be selected
to satisfy the sliding mode condition S,y - S’Opt < —n|Sopt]

where n > 0 is a positive real number.

Theorem 1: Consider the nonlinear system (1) with a
relative degree vector [p; --- p,]T with respect to the
sliding vector s(x,t) and a sliding order vector [ry --- ,]7T.
Suppose the assumptions H1, H2, H3, H4, HS and H6
fulfilled. Let S,,; denote the following vector (with ¢y <

t<trp—¢trp>0and 0 <e<<tp)

Sopt = [Slopt Spopt
= Z2 + [Q;;A%;P(t)

—Qu ALVH®) V()" + Qs 1T2] Z

]T

where the matrix Ajo is defined by (8), P(-) the unique
solution of (15) with P(tp) = Py positive definite matrix,
V(-) and H(-) the solutions of (16) with V(tr) = I and

H(tp) = 0), and Q = Q%} @12 a weighting matrix
Qi Q22
which is symmetric definite positive. Consider the vector

S;pt defined by (23) from Sp¢. Then, the control input vector
v=[v; --- v,]T defined by (with 1 <i < p)

v = —« [sign(Sfom)]
with

II;
a > MaXlSiSP |:|:|, (28)

%

with y; defined by (27), allows the establishment of a

practical 7y — ro — - - - — rp-order sliding mode with respect
to the sliding vector s(z,t). -
Implementation in practice/Algorithm. The matrix

Sopt(Z,t) is a switching variable with time-varying
coefficients, which depend on P(t), V(¢) and H(t). These
coefficients do not depend on state variables and then, can
be computed off-line and stored from resolution of (15)-(16)
for each time between ¢ = ¢y and ¢t = ¢y + tp. Then,
when the controller is implemented, these coefficients are
fully known. Assumption H6 in Theorem 1 can be relaxed
through the following algorithm:

Stage 1. t € [0, to[. The goal of this stage is force
the system trajectories of (1) to reach the surface
S0, = DS, = D(Za(t) + XoZi(t)) = 0 (note that,
as D is invertible, S;St = 0 implies Sgpt = 0), with
Ao issued from the off-line computations/resolutions of
(15)-(16) at t = ty, ie.

>\O = Q2_21A{2P(t = tO) - Qg_glA?QV(t = to)
H(t=to) 'V (t =to)" + Q3 Qi,

by applying the control law © = —a sign (SS;t

Sopt = D(Za(t) + Ao Z1(1)).

Of course, during all this stage, the coefficients vector Ag
is constant. The time ¢ = ty is defined such that Sg;‘t =
D(Z5(to) + Ao Z1(to)) = 0.

Stage 2. ¢t € [ty, to + tr — €]. The control law v =
—a sign (Sh,,) = —a sign (D [Zy(t) + AZi(t)]), with A
issued from the off-line computations/resolutions of (15)-(16)
for t € [to, to+tr — €, i.e.

A= Qu ALP(t) — Qu ALV H () 'V + Q QT

maintains S;,, = 0 (and Sopr = 0). Consequently, the
equality (14) minimizing (12) under the constraint Z(tp) =
0, holds. Then, practical higher order sliding mode occurs.

) with

Stage 3. ¢ €]to + tp — €, oo[. The control task consists in
maintaining the system trajectories at the origin. This objec-
tive is fulfilled by the control law u = —a sign (S5/,) =
—a sign (D [Z2(t) + A\sZ1(t)]), with As issued from the
off-line computations/resolutions of (15)-(16) at ¢t =tp — ¢,
ie.

Af = Q2_21A{2P(t = tF - 6) - Qg_QlA{QV(t = tF — 6)
H(t=tr— e 'V(t=tr — )" + Q5 Q)

which allows the continuation of the sliding on S, =

(and S . = 0).

D
Remark 2: Equations (15) and (16) are three differential
equations which do not depend on the state trajectories. Since
only their final conditions are available, these equations have
to be integrated backward from a a priori final time ¢ over a
time interval 7 € [ty, 0] in order to find the initial conditions
of P,V and H at 7 = 0 (which corresponds to t = ?p). g

V. EXAMPLE

The academic example is taken from [19], in which a
second order sliding mode controller is designed, and reads
as (with z = [z; z9 23]T = y the state vector and the output
and u = [u; us u3]? the input vector)

—2oX3 Afy Ag
T = 123 + | Afs |+ | Ag
—%1101%2 Afs Ags
—_— Y
Af Ag (29)
1 1.2 1.5
+1 15 1 12 |u
1.2 15 1

with Af and Ag are considered as bounded uncertainties
defined as

cos(t)(1 + 0.05sin(4t) + 0.1 cos(t))

Af = | sin(t)cos(t)(1 + 0.05sin(4t) + 0.1 cos(t))
sin?(¢)(1 4 0.05 sin(4t) + 0.1 cos(t))
0.01sin(t + 2.1)(u1 — 0.5ug3)
Ag = 0.01 cos(t)(—0.2uz + 0.8us)

0.01 cos(t 4+ 1.3)(—0.2u; — us + 0.7ug
(30)
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The objective is to force the state vector x = [z; 2o 3]
to track in finite time the desired trajectories defined as
27 (t) = 1 — sin(0.5t), 257 (t) = 0.5 cos(0.5t) cos(t) and
257 (t) = 0.5cos(0.5t) sin(t). Then, the sliding variable
vector (new output) is defined as s(z, t) = [z —27 (t) 2o —
a5 (t) wy — 257 (1)]T. The relative degree vector of (29)
with respect to s(z,t) are [1 1 1]7. As an other objective is to
design a robust sliding mode controller without chattering,
a second order sliding mode is then designed. Then, one
gets (with s = [s1 s s3]T) 5§ = ¢(x,t,u) + v(t)u with

¢ and 7 bounded matrix. By denoting Z; := [s1 so s3]7,
Zy = [41 4 83]7 and v = [ 1o u3]7, one gets
Zl = A11Z1 + A12Z2

. (31)

Zy = gz, t,u) +y(t)v

The matrices (11, Q22 and (12 have been stated as Q11 =

Isx3, Qa2 = Isxs and Q12 = 0Oszx3. The matrix Py and

the convergence time ¢ty are Py = 0O3x3, tr = 1.5 s and
€ = 1 ms. The matrix D is stated as

0.0005 0.0015 0.0015
0.0012 0.0005 0.0020
0.0020 0.0015 0.0005

D =

and ensures that L = (D~!)T~ is a diagonal dominant
matrix in spite of uncertainties. The gain « is tuned to 2000.
Figures 2 and 3 displays the outputs and the trajectories
tracking of state variables. The convergence to zero for the
three sliding variables appears to be effective at ¢ = 1.5 sec,
as stated via the parameter ¢r, in spite of uncertainties.

0.5

ol
0.5 -
» ; ; ; ; ;
o] 0.5 1 1.5 2 25 3
TIME (sec.)
1 T
0.5 =
ol
o5 ; ; ; ; ;
o] 0.5 1 1.5 2 25 3
TIME (sec.)
0.1 T T T T T
ol
0.1} ,
-0.2 .
—0a ; | i ; ;
o 0.5 1 1.5 2 25 3
TIME (sec.)
Fig. 1. Outputs s1 (top), s2 (middle) and s3 (bottom) versus time (sec.)
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