
Motion Planning and Control of Coordinated Systems

João Borges de Sousa and Fernando Lobo Pereira

Abstract— Two problems of motion planning for controlled
systems which are required to attain a given target set while
satisfying coordinated constraints are formulated and solved us-
ing dynamic optimization techniques. Constraint coordination
arises from the fact that the state of each system is mapped
onto state constraints for the other systems. The problems
are formulated in terms of backward reach sets which are
the sub-zero level sets of appropriate value functions for non-
standard cost functions. The value functions are the solutions
of Hamilton-Jacobi-Bellman type PDEs. For linear dynamics
and ellipsoidal constraints the value functions are calculated
through duality techniques from convex analysis.

I. INTRODUCTION

The problem of motion planning and coordination for
multiple systems has received significant attention in the
literature. A significant body of this work deals with the
problem of formation motion planning and control [27], [21],
[23]. However, there are requirements for motion planning
and coordination other than keeping a formation [3], [4].
Some of these requirements are more appropriately described
by coordinated state constraints. Constraint coordination is
possible when the state of each system is mapped onto state-
constraints for the other systems.

Here, we address the problem of planning the motions
of multiple systems to reach a certain number of targets
under coordinated state constraints. The state constraints are
modeled as set-valued maps mapping the state of each system
onto constraints for the other systems. There is one target set
for each system. The problem is solvable when the target
sets are reached at some time θ within some prescribed
time interval T . In this paper, we consider two versions
of this problem: 1) the motion of one system is known
in advance; 2) the motions of all systems are planned to
take advantage of the coordinated constraints. We address
these problems using backward reach set computation and
dynamic optimization techniques [13], [12]. We do this
for two coordinated systems. The solution methodology is
directly applicable to a larger number of systems.

In [25], dynamic optimization techniques are used in an
efficient algorithm to compute globally optimal trajectories
for systems given by ẋ = u(t), ‖u‖ ≤ 1 subject to simple
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state constraints and a traveling cost that depends only
on the state. Ordered Upwind Methods have been used
to solve Hamilton-Jacobi-Bellman-type equations describing
path planning problems for systems modeled by an hybrid
automaton with switching costs among different dynamics,
[20]. Techniques from optimal control and game theory
are used in [18] and [24] to design controllers for safety
specifications in hybrid systems.

The paper is organized as follows. In section II, we
introduce the mathematical preliminaries. In section III, we
state the problems under consideration. In section IV, we
use dynamic optimization techniques to characterize the
solution to these problems and for controller synthesis. In
section V, we find the solution for linear systems by using
duality techniques from non-linear analysis. In section VI, a
framework for the practical implementation of coordinated
control strategies at both the planning and control levels is
discussed. Finally, in section VII, we draw some conclusions.

II. PRELIMINARIES

Consider the controlled motions of a dynamic system
evolving in R

n described as:

ẋ = f(t, x, u), u(t) ∈ P (t) ⊂ R
m (1)

with the standard conditions for uniqueness and prolongabil-
ity of the solutions for t ≥ t0 (see for example [1]).

Definition 1: The backward reach set W [τ, tf ,Xf ] at time
τ relative to target set Xf and time tf ≥ τ is the set of points

W [τ, tf ,Xf ]=
⋃ {

x[τ ]
∣∣ u(s)∈P (s), s∈ [τ, tf ), x[tf ]∈X f

}
where x[τ ] is state of the system at time τ when driven by
control u(t).

The definition of backward reach set for the case where
the target set can be reached within some time interval T =
[tα, tβ ] with tα ≥ t0 follows.

Definition 2: The backward reach set W [τ, tα, tβ ,M] at
time τ ≤ tα is the set of points x ∈ R

n such that there
exists a control u(t) that drives the trajectory of the system
x[t] = x(t, τ, x) from state (τ, x) to the target set M at some
time θ ∈ [tα, tβ ].

The relation between dynamic optimization and reacha-
bility was observed in [16]. See also [26] for a description
of reach set computation using optimal control. The key
observation is that the reach set is the level set of an appro-
priate value function, [14]. To illustrate this point consider
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the following value function⎧⎨
⎩

V (τ, x) = min
u(.)

{d2(x(tf ),Xf )|x(τ) = x}

V (tf , x) = d2(x,Xf )
(2)

where u(·) is an admissible control function defined on [τ, tf ]
and d(x(tf ),Xf ) is the Euclidean distance between the state
of the system at time tf and the target set Xf for a trajectory
starting at x(τ) = x. Obviously, the point x(τ) = x belongs
to the backward reach set if this distance is zero. But this
also means that the backward reach set is the zero level set
of the value function V :

W [τ, tf ,Xf ] = {x| V (τ, x) ≤ 0} (3)

If the value function satisfies the principle of optimality,
then it can be determined from the solution of the generalized
Hamilton-Jacobi-Bellman (HJB) PDE associated with it.
This is the case for V in equation (2):⎧⎨

⎩
Vt(t, x) + max

u∈P (t)
{〈Vx(t, x), f(t, x, u)〉} = 0

V (tf , x) = d2(x,Xf ).
(4)

Definition 3: The ellipsoid E(a,Q) with center a and
shape matrix Q = Q′ > 0 is the set of points:

E(a,Q) = {x : 〈x − a,Q−1(x − a)〉 ≤ 1} (5)

Its support function, [19], is

ρ(l|E(a,Q)) = max{〈l, x〉|x ∈ E(a,Q)}
= 〈l, p〉 + 〈l, P l〉1/2.

III. PROBLEM FORMULATION

Consider the motions of two controlled systems under the
assumptions from section II for t ≥ t0

ẋ1(t) = f1(t, x1, u1), u1(t) ∈ P1(t) (6)

ẋ2(t) = f2(t, x2, u2), u2(t) ∈ P2(t) (7)

where Pi(t) ∈ Compm, i = 1, 2. Here, Compm is the set
of compact sets in R

m. Moreover,

x1(t0) ∈ X1, x2(t0) ∈ X2 (8)

Let Mi ∈ Compn, i = 1, 2 be convex target sets for the
motions of systems i = 1, 2.

Denote by u(.) = col{u1(.), u2(.)}, x = col{x1, x2}
and f(t, x, u) = col{f1(t, x1, u1), f2(t, x2, u2)}, and M =
M1×M2. In what follows, we will refer both to each system
i = 1, 2 separately, and to the composed system whose state
x is driven by control u(.).

Consider the time interval T = [tα, tβ ] with tα ≥ t0.
Now consider that the motions of both systems i = 1, 2 are
coupled through the following state constraints (convex and
complementary-convex as in [10]):

x1(t) ∈ F2(x2(t)), x2(t) ∈ F1(x1(t)) (9)

x1(t) /∈ G2(x2(t)), x2(t) /∈ G1(x1(t)) (10)

where F1, F2, G1, and G2 are continuous convex set-valued
maps with values in Compn with non-empty interior. G1 and
G2 are avoidance sets and model safety regions to prevent
the trajectories of the two systems from colliding. F1 and F2

are containment sets since they constrain the motions of x2

and x1, respectively.
Problem 1 (Motion planning): Find the set of all initial

conditions (x1, x2) ∈ X1 ×X2 such that there exist controls
(u1, u2) which starting at time t0 steer the trajectories of
both systems to reach M1 ×M2 at some time θ ∈ T under
constraints (9), and (10).

The following assumptions ensure that: 1) the problem is
well-posed; 2) at most two constraints are active at a time;
and 3) the problem has non-empty solution set.

Assumption 1: ∀x ∈ R
n : Gi(x) ⊂ Fi(x), i = 1, 2.

Assumption 2: ∀x1, x2 ∈ R
n : ∃y ∈ R

n, with y ∈
G1(x1) ∩ G2(x2), we have G1(x1) ∪ G2(x2) ⊂ Fi(xi),
i = 1, 2.

Assumption 3: ∃(x1, x2) ∈ M1 × M2 : x1 ∈ F2(x2) ∧
x2 ∈ F1(x1) ∧ x1 /∈ G2(x2) ∧ x2 /∈ G1(x1).

The solution to this problem is given in two steps.

Step 1 Find the backward reach set relative to target set
M1 × M2 and time interval T under state constraints (9)
and (10). This is the reach-evasion set, [24].

Next we consider two versions of this problem.
Problem 2: [Given feasible motion xf

2 ] Calculate the
backward reach set W g

1 [τ, tα, tβ ,M1] under coupling (9) and
(10) when a feasible motion xf

2 (·) is known in advance.
A feasible motion of xf

2 (·) is a trajectory xf
2 [t] =

xf
2 (t, τ, x2), x

f
2 (t0) ∈ X2 defined on [t0, tβ ] such that

xf
2 (t) ∈ M2 for some t ∈ [tα, tβ ].
Problem 3: [Coordinated controls] Calculate the back-

ward reach set W c[τ, tα, tβ ,M1 ×M2] under coupling (9)
and (10) and coordinated controls.

A pair of controls (u1, u2) is said to be coordinated when
both controls are responsible for both constraints.

Step 2 The solutions to the motion planning problem (1)
for the two versions of the backward reach set problem (2,
3) are given respectively by the following sets:

Sa
1 (t0) = W g

1 [t0, tα, tβ ,M1] ∩ X1

Sc(t0) = W c[t0, tα, tβ ,M1 ×M2] ∩ [X1 ×X2].

IV. DYNAMIC PROGRAMMING APPROACH

We follow the approach described in [15] to calculate the
solutions to problems (2, 3).

A. Value Functions

First, we consider problem (2). Let a feasible trajectory
xf

2 [t] = xf
2 (t, τ, x2) satisfying assumption (3) be given. Let

Tg = [tαg , tβg ], where tαg , tβg are the first entry and first
exit times of this trajectory in M2. From assumption (3)
and the fact that xf

2 [t] is a feasible trajectory we conclude
that S = T ∩ Tg 
= ∅.
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Let:

ϕ1
0(x1) = d2(x1,M1)

ϕ2
0(x2) = d2(x2,M2)

ϕ1(t, x1, x2) = d2(x1, F2(x2)) (11)

ϕ2(t, x1, x2) = d2(x2, F1(x1))
ϕ3(t, x1, x2) = −d2(x1, G2(x2))
ϕ4(t, x1, x2) = −d2(x2, G1(x1))

The continuity and convexity of the set-valued maps G1,
G2, F1 and F2, the convexity of both M1 and M2, and
the fact that d is the Euclidean distance function imply the
continuity of functions ϕ0

1, ϕ0
2 and ϕi, i = 1, . . . , 4.

Corresponding to this problem, we introduce the value
function:

V g(τ, x1, S) = min
u1(.)

min
tf∈S

{
max

{
ϕ1

0(x1(tf )),

max
i=1,2,3,4

{max
t

{φi(t, x1(t))|t ∈ [τ, tf ]}}
}

|x1(τ) = x1

} (12)

where

φi(t, x1) = ϕi(t, x1, x
f
2 (t)), i = 1, 2, 3, 4. (13)

The functions φi, (i = 1, . . . , 4) are continuous since
xf

2 (t) is continuous in t.

Lemma 1: The following relation is true:

W a
1 [τ, tαg

, tβg
,M1] = {x1 : V g(τ, x1, S) ≤ 0}

Proceeding similarly for problem (3), we may write

V c(τ, x, T ) = min
u(.)

min
tf∈T

{
max

{
ϕ1

0(x1(tf )),

ϕ2
0(x2(tf )),

max
i=1,2,3,4

{max
t

{ϕi(x1(t), x2(t))|t ∈ [τ, tf ]}}
}

|x1(τ) = x1, x2(τ) = x2

}
(14)

Lemma 2: The following relation is true:

W c[τ, tα, tβ ,M] = {x : V c(τ, x, T ) ≤ 0}

B. Solution Approach

Here, we consider the following assumption.
Assumption 4: The functions V c, V g , ϕ1

0, ϕ2
0, ϕi, (i =

1, . . . , 4), and φi, (i = 1, . . . , 3) are differentiable.
Next we describe how to calculate V c(τ, x1, x2, T ) (the

calculation of V g(τ, x1, S) is identical).
First we consider the case where tf = tα = tβ and denote

V c(τ, x, T ) = V c(τ, x, tf ) = V c(τ, x) = V c(τ, x|V c(tf , .))
where

V c(tf , x1, x2) = max
{

ϕ1
0(x1), ϕ2

0(x2),

max
i=1,2,3,4

{ϕi(x1, x2)}
}

. (15)

The following lemma states the Principle of Optimality
for this problem.

Lemma 3: V c(τ, x) satisfies a semi-group property,
namely:

V c(τ, x|V c(tf , .)) =

V c
(
τ, x|V c

(
t, .|V c(tf , .)

))
, τ ≤ t ≤ tf (16)

The proof of the lemma is based on a standard technique
from [5]. Basically, this means that the value function inherits
the semi-group property from the reach set. The infinitesimal
form of the Principle of Optimality yields a generalized
Hamilton-Jacobi-Bellman PDE for V c(τ, x).

Observe that:

V c(τ, x1, x2|V c(tf , .)) ≤ ϕ2
0(x2),

V c(τ, x1, x2|V c(tf , .)) ≤ ϕ1
0(x1),

V c(τ, x|V c(tf , .)) ≤ ϕi(x), i = 1, . . . , 4 (17)

Let:

H(t, x, V c, u) = V c
t + (V c

x (t, x), f(t, x, u)) (18)

Following [10] we conclude that the HJB equation for
V c(τ, x1, x2) is
Case 1) all the inequalities in equation (17) are strict:

V c
t + min

u
〈V c

x (t, x), f(t, x, u)〉 = 0 (19)

Case 2) assume there is only one equality relation in equation
(17), for example V c(τ, x) = ϕi(τ, x), for some i. Consider
(x0(t), u0(t)) to be an optimal solution of problem (3) that
goes through point x at time t (under the usual assumptions
these exist). Then,

max{H(t, x0(t), V c, u),H(t, x0(t), ϕi, u)} ≥
H(t, x0(t), V c, u0(t)) =
H(t, x0(t), ϕi, u

0(t)) = 0 (20)

Now we turn to V c(τ, x, T ).
Lemma 4: The following relation is true:

V c(τ, x, T ) = min
tf∈T

{V c(τ, x, tf )}.
In general, value functions are not differentiable and

assumption (4) does not hold. However, the above derivations
are still valid if we use some generalized concept of deriv-
ative. In this case the solutions to the HJB have to treated
in a generalized (“viscosity” or “min-max”) sense [2], [5],
[22], [17], [6].

C. Controller Synthesis

The motion planning problem (1) under coordinated con-
trols (given feasible trajectory xf

2 ) is solvable if Sc(t0) 
= ∅
(Sa

1 (t0) 
= ∅).
Let t0 ∈ R be such that problem (1) under coordinated

controls is solvable. Consider (x0
1, x

0
2) ∈ Sc(t0) and let

θ = argmintf∈T V c(t0, x0
1, x

0
2, tf ). Pick the value function

V c(t0, x0
1, x

0
2, θ). Starting at time t0 the control strategy

which solves problem 1 under coordinated controls has a
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feedback form u(t, x1, x2) ∈ U(t, x1, x2), where the feasible
controls U(t, x1, x2) are the minimizers in the HJB equation
(19), (20) for V c(., ., ., θ). The same type of calculations
yield the control strategy for problem 1 under a given feasible
trajectory xf

2 .
It may happen that the feedback law u(t, x1, x2) is discon-

tinuous in the state. This requires another notion of solution
for differential equations (6), (7). One possible approach is
to define the solution as a “constructive” motion introduced
in [9].

V. LINEAR SYSTEMS

The solution approach described above involves solving
a HJB equation for the value functions V g and V c. This
is not a trivial matter for non-linear systems and general
constraints. However, for systems with linear structure and
complementary convex constraints the value function can be
found through techniques of convex analysis and mini-max
theory [7], [8]. We illustrate these techniques to find the value
function for problem 2 with linear structure and convex and
complementary ellipsoidal convex constraints.

The equations of motion are

ẋ1(t) = A(t)x1 + B(t)u1, u1(t) ∈ P1(t) (21)

where A(t) has continuous coefficients, P1(t) = E(0, P1(t)),
P1 is continuous in t and P1 > 0. It is assumed that the
system is completely controllable.

The ellipsoidal and the complementary ellipsoidal convex
constraints are given by the set valued-maps F2 and G2

which map points to ellipsoids in Compn with non-empty
interior. For example x1 ∈ F2(x

f
2 ) is given by 〈(x1 −

xf
2 ), F e

2 (x1 − xf
2 )〉 ≤ 1). The target sets are also non-

degenerate ellipsoids (M1 > 0,M2 > 0) M1 = E(m1,M1),
and M2 = E(m2,M2).

In order to calculate the backward reach set
W g

1 [t0, tα, tβ ,M1] through V g(τ, x1, S) we need to
consider a constraint qualification from [15]:

Assumption 5: There exists a control u1(t) ∈ P1, t ∈
[t0, tβg

], a point x0
1 ∈ X1, and a number ε > 0 such that

the trajectory x1[t] = x1(t, t0, x0
1|u1(.)) generated by u1(t)

produces a tube

x1(t, t0, x0
1) + εBn(0) ⊆ F2(x

f
2 (t)), t ∈ [t0, tβg ]

where Bn is the unit ball in R
n.

As in [7] we find a solvability condition for V g(τ, x1, tf )
of the system of inequalities

(x1[t] − xf
2 [t]), F e

2 (t)(x1[t] − xf
2 [t]) ≤ µ2

(x1[tf ] − m1), M1(tf )(x1[tf ] − m1) ≤ µ2 (22)

and find the smallest µ that ensures solvability.
Furthermore, we consider that assumption 3 holds.
Now let s[t] be a row-vector solution to the adjoint

equation

ds = −sAdt − q′(t)dΛ(t), s(tf ) = l′ (23)

where q(t) is continuous and Λ is a nondecreasing, finite
variation function of bounded variation, then

Theorem 1: V g(τ, x1, tf ) is given by the formula

V g(τ, x1, tf ) = max
q(.)

max
Λ(.)

max
l

{(s[τ ], x1)

+
∫ tf

τ

(s[t]B(t)P1(t)B′(t)s′[t])1/2dt}(24)

= µ0(τ, x1)
where the maximums are taken over all functions
(q(t), N−1q(t)) ≤ 1, t ∈ [τ, tf ], N = F e

2 and all elements
(l,M−1

1 l1/2) +
∫ tf

τ
dΛ(t) ≤ 1.

From this theorem we obtain as a corollary that the
backward reach set is convex and compact.

VI. IMPLEMENTATION

In this section, we present a framework for the implemen-
tation of feedback coordinated control of the motion of two
vehicles based on the results presented in this article.

This framework encompasses both the motion planning
and the motion execution levels and provides a joint feedback
controller.

Let us cast the coordinated motion control problem in
somewhat simpler terms having in mind the clarity of the
exposition.

Let us assume that the dynamics of the two vehicles are
given in a differential inclusion form in a certain fixed time
interval [t0, θ], their initial state constraint and target sets,
are, for i = 1, 2, as follows:

ẋi(t) ∈ F̃i(t, xi(t)), t ∈ [t0, θ] (25)

xi(t0) ∈ Xi, (26)

xi(θ) ∈ Mi. (27)

Besides the constraints above, the coordinated control
strategy has also to satisfy the following joint state con-
straints:

x1 ∈ H2(x2), x2 ∈ H1(x1) (28)

for given set-valued maps Hi : R
n → P(Rn), i = 1, 2.

The problem that we address here consists in computing
control strategies for both dynamic systems so that the
corresponding trajectories satisfy the respective endpoint
constraints as well as the weak invariance property with
respect to the joint state constraint (28).

Notice that, formally, the maps Hi can be easily related
with the ones in the problem formulation in section III by
putting Hi(x) = Fi(x) ∩ Gi(x)c, for all x ∈ R

n. Here, Ac

denotes the complement of the set A.
Obviously mappings F̃i can be easily related with the

dynamics defined earlier as follows F̃i(t, x) = fi(t, x, P (t))
and the required assumptions are naturally inherited.

In what concerns the coordination constraints consider the
set-valued maps Hi(·) satisfying following properties:
A1 For each x ∈ R

n, Hi(x), i = 1, 2, are compact, convex,
and have nonempty interior in Rn.
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A2 The set-valued maps Hi(·), i = 1, 2, are Haus-
dorff Lipschitz continuous, i.e., ∃Ki > 0, s.t.,
dH(Hi(y),Hi(x)) ≤ Ki‖x − y‖. The Hausdorff dis-
tance between sets A and B is defined as follows

dH(A,B) := max
{

max
x∈A

ρ(x,B),max
x∈B

ρ(x, A)
}

where ρ(c, C) := inf
c′∈C

‖c − c′‖.

Moreover, we also require several additional hypotheses
ensuring the consistency among the different constraints
intervening in the problem in order to ensure the existence of
a coordinating control strategy for both vehicles. Therefore
besides the existence of a feasible trajectory for each one of
the dynamic systems in isolation, i.e., without considering
the coordinating constraints, we also need the following
assumptions

C1 int
[M1 ∩H2(M2)

] 
= ∅ and int
[M2 ∩H1(M1)

] 
= ∅.

C2 int
[X1 ∩ H2(X2)

] 
= ∅ and int
[X2 ∩ H1(X1)

] 
= ∅.

C3 There is a viable interior joint trajectory. That is, a pair
(x1(t), x2(t)), t ∈ [t0, θ] such that, for i = 1, 2, we
have, besides the differential constraints, xi(t0) ∈ intXi,
xi(θ) ∈ intMi, and

x1(t) ∈ intF2(x2(t)), and x2(t) ∈ intF1(x1(t)).

Here and in what follows, intA denotes the interior of the
set A relatively to the space in which it was originally
introduced. We also denote the unit ball by B.

Now, we are in position to address the proposed imple-
mentation framework which involves two stages.

A first one - the planning stage - where the finite sequences

{ti}N
i=0, {εi}N

i=0, {(xi
1, x

i
29}N

i=0,

are computed a priori with the following properties:

• The εk > 0, and tk < tk+1, k = 0, . . . , N − 1, with
tN = θ and t0 = t0, are such that, for i = 1, 2,

xi(t) ∈ xk
i + εkB, t ∈ [tk−1, tk].

• The pair (xk
1 , xk

2) satisfies, for k = 1, . . . , N ,

xk
1 + εkB ⊂ H2(x), ∀x ∈ xk

2 + εkB, and

xk
2 + εkB ⊂ H1(x), ∀x ∈ xk

1 + εkB.

• For i = 1, 2, xi(θ) = xN
i ∈ Mi, xi(t0) = x0

i ∈ Xi,
and xi(tk) = xk

i , k = 1, . . . , N − 1.

The positive integer N should be chosen in order to ensure
a robust viability of the computed sequences.

The procedure to compute the above sequences is recursive
and it is initialized by finding the numbers εN , and (xN

1 , xN
2 )

such that

xN
1 +εNB ⊂ int

[
M1

⋂{ ⋂
x∈xN

2 +εN B

H2(x)
}⋂

W f
1 [θ; t0,X1]

]
,

xN
2 +εNB ⊂ int

[
M2

⋂{ ⋂
x∈xN

1 +εN B

H1(x)
}⋂

W f
2 [θ; t0,X2]

]
.

Here, W f
i [θ; t0,Xi], i = 1, 2, is the set reachable at time θ

from the set Xi at time t0.
Then, for k = N, N − 1, . . . , 1, the above sequences are

computed so that

xk−1
1 + εk−1B⊂int

[
W b

1 (tk−1; tk, xk
1)

⋂
{ ⋂

x∈W b
2 (tk−1;tk,xk

2 )

H2(x)
}⋂

W f
1 [tk−1; t0,X1]

]
,

xk−1
2 + εk−1B⊂int

[
W b

2 (tk−1; tk, xk
2)

⋂
{ ⋂

x∈W b
1 (tk−1;tk,xk

1 )

H1(x)
}⋂

W f
2 [tk−1; t0,X2]

]
,

where W b
i (ti; tf , xf

i ) is the backward reach set at time ti
when the system reaches xf

i at time tf .
Each one of these sets is the level set of a certain value

function which can be computed by solving the correspond-
ing Hamilton-Jacobi equation. We should remark that there
are several degrees of freedom which can be used in order to
choose the best trade-off between complexity and robustness:
the finer the time partition ( i.e., the greater the number of
points with smaller time subintervals [tk−1, tk)), the higher
the complexity but also the higher the feasible values of εk,
and hence the more robust is the obtained solution.

The second stage is the on-line computation of the control
that drives the ith dynamic control system, i = 1, 2, between
the point xk−1

i at time tk−1 to the point xk
i at time tk, while

keeping it within the cylinder xk
1 + εkB, k = 1, . . . , N .

Notice that, because of the way these points are produced,
there exists always such a control strategy.

On the other hand, since this control synthesis process
involves each system individually, i.e., decoupled from the
other, this is a conventional problem for which there are
standard results. Therefore, we will not dwell on it here.

A final remark concerns the fact that this scheme lends
itself to replanning. In other words, after the motion has
already been initiated, there is always the possibility of
recomputing new waypoints for the part of the motion that
remains to be executed. This possibility can be used in order
to optimize some pertinent performance criterion.

VII. CONCLUSIONS

We have described motion planning problems under co-
ordinated constraints and used dynamic programming tech-
niques to characterize the solution and to synthesize con-
trollers. The solution approach involves solving a HJB equa-
tion. This is not a trivial matter. However, for systems with
linear structure and ellipsoidal constraints we can use the
techniques from [11] to obtain numerical solutions to the
HJB equation. We have not yet explored the geometry of
coordinated constraints so as to obtain a better characteri-
zation of the solution properties. An outline of a practical
implementation scheme is also discussed.
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