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Abstract— This paper considers the question of designing a
fully image based visual servo control for a dynamic system.
The work is motivated by the ongoing development of image
based visual servo control of small aerial robotic vehicles.
The observed targets considered are coloured blobs on a flat
surface to which the normal direction is known. The theoretical
framework is directly applicable to the case of markings on a
horizontal floor or landing field. The image features used are
a first order spherical moment for position and an image flow
measurement for velocity. A fully non-linear adaptive control
design is provided that ensures global stability of the closed-loop
system.

I. INTRODUCTION

With a range of applications in both the civilian and
military fields, the development of automated aerial robots
are an increasingly important field of robotics research. A key
challenge in the development of autonomous aerial vehicles is
to provide robust and simple sensing and control systems for
local stabilisation. The core of this problem is the ability of
the vehicle to measure its position and velocity relative to the
local environment. Due to weight constraints the sensor input
available to an aerial robot is severely limited. A common
sensor suite includes an inertial measurement unit (IMU) and
a camera. Although global positioning systems (GPS) are
often integrated into a payload they tend to operate at too
low a bandwidth (and do not function effectively indoors)
to provide the key sensor input for localised stabilisation. In
the framework of image based visual servo (IBVS) control,
local environmental features are extracted as image points
(or more general image features) from the video feed of the
camera. These image features are used directly in a sensor
based control strategy. For control of the full dynamic system,
additional measurements are required. Recent work has lead
to practical algorithms for determination of stable angular
velocity and attitude estimates from low cost IMU units [14],
[11]. Linear velocity measurements are the most difficult to
obtain. One approach, motivated by insect behaviour [18],
is to use visual flow information. Using visual flow directly

in the control design fits with the philosophical paradigm of
sensor based control design that has significant robustness
advantages when dealing with low cost sensor systems [3].
Both visual flow and image feature measurements suffer from
the lack of depth information inherent in measuring from
a projection onto the image plane of a camera. Adaptive
online estimation of the extrinsic calibration (relative position
of camera to environment including ‘depth’) of a camera in
visual servo control has been studied by a number of authors
(cf. [17] and references therein). A key difficulty in applying
adaptive techniques when the camera is mounted on the aerial
platform is that the extrinsic calibration of the camera is
dynamically evolving with the system.

In this paper, we consider the question of designing an
image based visual servo (IBVS) control for a fully dynamic
system. The motivating example is an aerial robotic system
evolving on SE(3), however, the key issues are addressed
by considering just the linear translation dynamics of the
system. The image feature considered is a first order un-
normalised spherical moment [4], [1]. In addition, we use
the sum of visual flow of the observed target points to
provide a velocity estimate. An image based representation
of the full dynamics of the system is derived and a control
Lyapunov function is proposed for the closed-loop control
design. Input actuation is dependent on an unmeasured depth
parameter that varies dynamically with the system movement.
This problem is overcome by proposing a modification to
a standard input gain adaptive control strategy [8, pp. 168-
173][13]. Lyapunov analysis is used to prove global asymp-
totic stability of the closed-loop system subject to continued
observability of the targets. As a side effect of the control
design the state estimate of the adaptive controller provides
an approximate estimate of the dynamically changing depth.
This approach has some resemblance to the early attempts
to use adaptive control in IBVS schemes, however, we
stress that this estimate is not used as a parameter in a
certainty equivalence control design and the convergence of
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the closed-loop system does not require convergence of the
depth estimate. Simulations are provided that demonstrate the
performance of the closed-loop system.

II. PROBLEM FORMULATION.

The motivating example considered is that of aerial robotic
vehicles capable of quasi-stationary flight. The underlying
system model considered in the sequel is based on those
introduced in the literature to model the dynamics of heli-
copters [16], [2] and helicopter like vehicles [5], [12]

Let A denote the world frame and let B denote the body-
fixed frame of vehicle airframe. The position of the airframe
in the world frame is denoted ξ = (x, y, z) ∈ A and its
attitude (or orientation) is given by a rotation R : B → A.
Let V (resp. Ω) denote the linear (resp. angular) velocity of
the body expressed in the body fixed frame. Let m denote the
total mass and I denote the inertia of the body. The dynamics
of a rigid body are1:

ξ̇ = RV (1)

mV̇ = −mΩ × V + F = −mΩ×V + F (2)

Ṙ = RΩ×, (3)

IΩ̇ = −Ω × IΩ + Γ = −Ω×IΩ + Γ. (4)

The exogenous force and torque are denoted F and Γ
respectively.

For a typical aerial robot capable of quasi-stationary flight
the exogenous force may be modeled at a basic level by

F := −Te3 + mgRT e3 (5)

where T ∈ � is a scalar input representing the thrust force
applied in direction e3. Motion in the linear dynamics (Eqn’s
1 and 2) is obtained by specifying the thrust T and controlling
the rotation R(t) according to the attitude dynamics Eqn’s 3
and 4.

In practice, it is possible to obtain accurate high band-
width measurements of attitude and angular velocity directly
from the IMU unit [14]. Based on this measurement a
high gain feedback around the attitude loop is designed to
regulate the force F . Following this approach, the linear
translation dynamics, Eqn’s 1 and 2, can be considered as
a decoupled second order dynamic system with rate and
saturation bounded input F . This simplification of the control
design can be justified using small gain arguments [15].
It is an important simplification in the present paper, as
it allows us to concentrate on issues associated with the
image based control design without explicitly incorporating
the additional complexities of the attitude dynamics in the
control design. Thus, the dynamics considered are just Eqn’s
1 and 2 subject to an unknown external disturbance Ω and
with input F ∈ �3.

1The notation Ω× denotes the skew-symmetric matrix such that Ω×v =
Ω × v for the vector cross-product × and any vector v ∈ �3.

The linear position and linear velocity cannot be derived
from the low grade IMU systems used for non-military aerial
robots. The IBVS control framework uses image features to
replace the position state in Eq. 1. The conceptual extension
of this idea to control of dynamic systems is to use visual flow
to replace the velocity in Eq. 2. The resulting control problem
involves a stabilisation of a set of non-linear dynamics
expressed in terms of variables measured directly from the
video feed of the onboard camera.

III. IMAGE DYNAMICS

In this section, image plane kinematics and dynamics are
derived for a first order un-normalised spherical moment
image feature.

The target constellation considered consists of a finite set
of disjoint points lying in a plane. The plane is termed the
target plane and the image of the points are extracted in real-
time by the vision system and passed to the control system as
a sequence of 2D pixel locations {(Xi, Yi)}. Assume that an
accurate camera calibration matrix K is available. Each 2D
centroid is transformed into a 3D point lying on a spherical
image plane

pi =
p̄i

|p̄i| , p̄i = K

⎛
⎝ Xi

Yi

1

⎞
⎠ , (6)

where p̄i denotes the perspective projection of the ith 2D
centroid. Let BP = (xi, yi, zi) ∈ B denote the actual target
point lying on the target plane. Thus, pi = BP/|BP |.

Since the camera is onboard the vehicle, the motion of the
camera frame inherits dynamics in the body fixed frame. In
order to simplify the derivation in the sequel, it is assumed
that the camera fixed frame C coincides with the body fixed
frame B. The kinematics of the target point in the spherical
image plane is given by

ṗi = −Ω×pi + πpi

V

|BPi| . (7)

where πpi = I3 − pip
T
i is the orthogonal projector onto the

tangent space to the sphere at pi.
Let η denote the unit normal to the target plane. Following

the standard aeronautical conventions, the inertial frame is
oriented such that gravity points in the positive Ez direction
and the body-fixed frame is oriented in the same manner
when the vehicle is in hover. Let d := d(t), depth, denote
the distance from the target surface to the origin of frame B.
Thus,

d(t) = −〈Aη, ξ〉 = |〈Aη, ξ〉|
where Aη denotes the normal direction in the inertial frame
and 〈·, ·〉 denotes the vector inner product. For each observed
point pi the depth may be calculated by

d(t) = 〈BP i,
Bη〉 = |BP i| cos(αi)
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where both Pi and η are expressed in the body-fixed-frame
and αi is the angle between the inertial direction η and the
observed target point pi. Thus, for all target points one has

|BP i| =
d(t)

〈pi, Bη〉 =
d(t)

cos(αi)
.

Substituting this relationship into Eq. 7 yields

ṗi = −sk(Ω)pi − cos(αi)πpi

V

d(t)
. (8)

The image feature used is the average landmark vector

q :=
n∑

i=1

pi ∈ �3 (9)

The image feature is essentially an un-normalised first order
spherical moment. The image feature q contains three effec-
tive degrees of information and can be used as the basis of
a position stabilisation control design [4].

Recalling Eq. 8, it may be verified that

q̇ = −Ω × q − Q
V

d(t)
, (10)

where

Q =
i=n∑
i=1

cos(αi)πpi . (11)

Note that Q := Q(t) is a time varying matrix that can be
computed explicitly from observed image data. The matrix
Q is not defined at target points since the angle αi is not
defined. In practice, as long as the camera remains above the
target plane the matrix Q is always well defined. In Theorem
4.1 it is shown that d(t) > 0 along closed-loop solutions of
the proposed control design. For two or more target points
then Q > 0 is positive definite at all points except along the
line containing the points. If there are three or more non-
collinear targets then Q > 0 is positive-definite at all points
in space, except for the target points themselves, where Q is
not defined. On any bounded subset of the upper plane then
the eigenvalues of Q are under-bounded Q ≥ µI3, where the
constant µ depends on the bounded subset. As ξ → ∞ then
detQ → 0 due to the effective coalescence of the observed
target points in the image.

The visual servo control task considered is that of position
servo control of the camera frame above the image plane.
The target pose is specified as a desired image feature q∗. In
order, to obtain good passivity properties we assume that q∗
is defined with respect to the inertial frame and inherits the
ego motion of the camera [4]

q̇∗ = −Ω×q∗

This requires that we have access to an inertial direction in
the body-fixed-frame. In the sequel we will use the direction
η normal to the image plane that will also be the gravitational
direction.

The image based error considered is the difference between
the measured centroid and the target vector expressed in the
camera fixed frame

δ := q − q∗. (12)

In earlier work [4] it has been shown that for two or more
non-collinear targets then q = q∗ uniquely defines a position
ξ = ξ∗ in Cartesian space.

Deriving δ yields:

δ̇ = −Ω×δ − Q
V

d(t)
(13)

The above equation (Eq. 13) defines the kinematics of the
visual error δ. It is of interest to study the structural properties
of Eq. 13. Consider the storage function |δ|2. The derivative
of this function is

d

dt
|δ|2 = −δT Ω×δ − δT Q

V

d(t)
.

The first term is zero due to the skew symmetry of Ω. Since
the matrix Q > 0 is positive definite, the second term can be
seen as an inner product between δ and V/d(t). The second
term acts as a supply function to the storage function |δ|2.
Choosing V = Q−1δ acts to decrease |δ|2 in proportional
rate to the unknown depth d(t) > 0. Since d(t) is positive in
the expected flight regime the kinematic control proposed is
likely to be effective in stabilising the closed-loop system.
In earlier work [4] the authors used this approach in a
backstepping control to obtain control of the full dynamics
Eqn’s 1-4 of the vehicle. However, this approach requires a
measurement of the velocity V and cannot be used in the
present approach.

The visual velocity measure that is used is

W (t) =
V (t)
d(t)

(14)

To measure W (t) from the image sequence requires a differ-
entiation of the image feature q(t). Formally, one has

W (t) = −Q−1 (q̇ + Ω × q) .

Clearly, the derivative q̇ must be estimated using a finite
difference process running at frame rate and the dependence
on the angular velocity will based on reading from the IMU.
It is interesting to note that W (t) may be written as

W (t) = −Q−1
n∑

i=1

(ṗi + Ω × pi) = −Q−1
n∑

i=1

Xt(pi)

The bracketed term, equated to Xt(pi), is the spherical visual
flow for each target point pi. Thus, the velocity estimate W (t)
is a scaled average visual flow of the target points.

In order to obtain a full image based representation of
the system dynamics it is necessary to compute the dynamic
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response of W (t) induced by the system dynamics Eqn’s 1
and 2. Differentiating W (t) one obtains

Ẇ =
V̇

d
− V ḋ

d2

= −Ω × W + W 〈W,η〉 +
1

d(t)
F

m
(15)

where
ḋ = −〈η, V 〉 = −d〈η,W 〉 (16)

Thus, the full dynamic equations of the system expressed
in the image plane features are Eqn’s 13 and 15. All variables
in the equations are related to the measured values δ, W (t)
and Ω. The dynamics depend on an unknown and time-
varying input gain 1/d(t).

IV. CONTROL DESIGN

In this section a stabilising control design for the system
Eqn’s 13 and 15 is proposed.

The control problem considered is to develop a control F
that stabilises δ → 0 given the dynamic system

δ̇ = −Ω×δ − QW (17)

Ẇ = −Ω × W + W 〈W,η〉 +
F

md(t)
(18)

ḋ = −d〈η, W 〉 (19)

with all variables measured except d(t). It is necessary to
incorporate a model of the dynamic response of d(t) into
the control design. Let d̂(t) denote an estimate of d(t). The
estimate d̂(t) is given dynamics based on those of d(t)

˙̂
d(t) = −d̂〈η,W 〉, d̂(0) = d̂0. (20)

Note that the dynamics of d̂ depend only on known variables
and may be computed on-line. Moreover, if d̂0 = d(0) then
in principal d(t) = d̂(t) for all t ≥ 0. Consider the ratio
d̂(t)/d(t). One has

d

dt

(
d̂

d

)
=

˙̂
d

d
− d̂ḋ

d2
= − d̂〈η, W 〉

d
+

d̂d〈η, W 〉
d2

= 0

Integrating this relationship over time one obtains

d̂(t)/d(t) = a

where a is an unknown constant. Substituting into Eq. 15 one
obtains

Ẇ = −Ω × W + W 〈W,η〉 + a
F

md̂(t)
(21)

The purpose of this manipulation is that the resulting dynam-
ics in W depend on an unknown constant parameter a. The
control term F/(md̂(t)) can be directly computed from the
value of d̂(t) obtained from the integration of Eq. 20 in the
control architecture. Note that the initial condition d̂0 need

not be correct as the proposed control design will adapt a to
compensate for the error in the initial condition.

The control design is a direct application of standard
adaptive control design techniques to Eqn’s 17 and 21.
Introduce notation ρ = 1/a for the inverse of the control
gain a. Let ρ̂(t) be an adaptive estimate of the constant ρ.
Define

ρ̃ = ρ − ρ̂

Let k > 0 be a positive (kinematic gain) constant and define
the velocity error

ε = W − kδ

Theorem 4.1: Consider the system Eqn’s 1 and 2 and its
expression in terms of image error kinematics and dynamics,
Eqn’s 17 and 21 along with unmeasured depth dynamics
Eq. 16. Assume that the observed target consists of at least
three non-collinear points. Assume d(0) > 0 and that the
goal q∗ corresponds to a positive depth. Let k, σ, c, λ, > 0
be positive gains corresponding to the kinematic, k and σ,
dynamic, c, and adaptation, λ, closed-loop system responses.
Let ρ̂ denote an estimate of the inverse of the unknown input
gain ρ = 1/a. For an arbitrary estimate d̂0 > 0 of the initial
height set

˙̂
d(t) = −d̂〈η, W 〉, d̂(0) = d̂0.

Define the control input and adaptation law by

U := σQδ − W 〈W,η〉 − kQW − cε,

F (t) := ρ̂md̂(t)U, (22)
˙̂ρ := −λ〈U, ε〉, ρ̂(0) = 1. (23)

Define a Lyapunov function L by

L =
σ

2
|δ|2 +

1
2
|ε|2 +

a

2λ
|ρ̃|2

Then, the closed-loop trajectory exists for all time and
satisfies

d(t) > 0.

There exists µ0 > 0, that depends on the initial conditions
of the system, such that along closed-loop solutions of the
system

d

dt
L = −kσδT Qδ − c|ε|2, Q(t) > µ0I.

The error terms δ, ε are convergent to zero and the system is
globally asymptotically stable to ξ∗ with domain d > 0. The
parameter estimate error is convergent (ρ̃ → const.).

Proof: The control and adaptation laws are well defined
and smooth for d > 0. From classical ODE theory the closed-
loop solutions either exist for all time, or there exists a first
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time T > 0, such that d(T ) = 0, for which the solutions
exist for all time t < T . For t < T , differentiating L yields

L̇ = −σ〈δ, Ω×δ〉 − σ〈δ,QW 〉 − aρ̃ ˙̂ρ
λ

+

〈
ε,−Ω × W + W 〈W,η〉 + a

F

md̂(t)
+ kΩ×δ + kQW

〉

The term 〈δ, Ω×δ〉 = 0 due to the anti-symmetric of Ω×.
Combining terms, substituting for F and ˙̂ρ, ρ̂ = ρ − ρ̃, and
recalling that Q = QT is symmetric yields

L̇ = −kσ〈δ,Qδ〉 − c〈ε, ε〉.
This proves that L(t) ≤ L(0) and by construction that
|ξ(t)| ≤ B for some B > 0. Since the target has at least
three non-collinear points then it follows that Q(ξ) > 0 on
the ball |ξ| ≤ B, d ≥ 0. Note that Q is not defined at target
points, however, its eigenvalues in all points around a target
point are bounded away from zero. It follows that there exists
a constant µ0 such that Q(t) > µ0I as long as the closed-
loop solution is well defined.

Consider the closed-loop dynamics of d(t). Since L(t) <
L(0) then

|W (t)| ≤ |ε| + k|δ| ≤ A
√
L(0)

for some constant A > 0. This implies that

|V (t)| ≤ A
√

L(0)d(t)

and
ḋ = −〈η, V 〉 ≥ −|η| |V | ≥ −A

√
L(0)d(t)

It follows that d(t) ≥ d(0) exp(−tA
√L(0)) and d(t) > 0

for all t ≤ ∞. As a consequence the closed-loop solutions
exists for all time.

Finally, since Q > µ0I is positive-definite and the closed-
loop solutions are bounded and exist for all time, then
applying Lyapunov’s method [15] proves global asymptotic
stability of δ and ε to zero. Note that δ = ε = 0 implies that
W = 0. Since L̇ ≤ 0 then L is monotonic and converges to
a minimum L∞ = 1

2 |ρ̃∞|2. Applying Barbalat’s lemma [7,
Th. 4.8] proves convergence of ˙̂ρ → 0 and ρ̂(t) converges
to a constant. The global convergence of the result follows
from the uniqueness of the minimal point of the cost |δ|2
established in [4].

Note that the derivative of the Lyapunov function is
independent of the unknown error term ρ̃. This is typical
of adaptive control algorithms of the form proposed. For the
particular control task considered, W → 0 with convergence
of the control errors ε, δ → 0, and as a consequence one
cannot apply LaSalles principal [15] to infer convergence of
the asymptotic value of ρ̃. Indeed, if the system is correctly
positioned at time zero but d̂0 	= d(0) then ε = δ = W = 0
for all time and ρ̃ = d(0)/d̂0 − 1 for all time. This is an
important aspect of the control design proposed, it is not

necessary to accurately reconstruct the Cartesian depth of the
target. The approximate reconstruction undertaken provides
sufficient information to guarantee the convergence of the
closed-loop system.

Remark 4.2: It is possible to extend the above control
design to incorporate a time varying goal q� = q�(t) using a
similar approach to that used in Mahony and Hamel [9]. In
‘this case the asymptotic value of W (t) 	→ 0 and convergence
of the parameter ρ̂ → ρ can be guaranteed using a persistence
of excitation argument. 


An attractive aspect of the control design is that the
velocity feature W inherits important properties of visual
flow based control algorithms. Since W is related to the
visual flow field of the target it is singular, W → ∞, as
d → 0. In practice, this ensures that the closed-loop system
is highly sensitive to velocity errors when it is close to the
target plane and less sensitive as the depth increases. This
is an important property for aerial robots. It is the physical
reason that it is possible to prove d(t) > 0 along closed-loop
trajectories of the system in Theorem 4.1. This is an example
of a situation where working with the visual measure has
advantages for the closed-loop response of the system.

A second advantage of the control proposed is that the
kinematic error is bounded

|δ| = |q − q∗| ≤
∑

|pi| + |q∗| ≤ n + |q∗|.
As a consequence, the kinematic demand is bounded in the
control design. In practice, this does not effect the local
convergence of the system, however, for initial conditions
far from the set point the velocity demand is bounded. Thus,
for large initial errors the closed-loop trajectory resembles
a rate bounded time optimal trajectory, where, in the initial
phase (after acceleration) the vehicle travels at a constant
pace toward the goal, and then, as it approaches the goal
and the rate saturation is no longer active, it decelerates
and converges to the set point. This aspect of the dynamic
response is desirable for the closed-loop response of aerial
robotic vehicles.

V. SIMULATION RESULTS

In this section we present a simulation study of the
proposed control design. An example trajectory is considered
that is representative of the closed-loop response over a wide
range of initial conditions.

Simulations were undertaken in the SIMULINK envi-
ronment based on the MATLAB package. An advantage
of the SIMULINK environment is that it allows multirate
simulations. A separate block was coded for the full rigid-
body dynamics of the UAV. The UAV dynamics are simulated
as continuous-time dynamics (computed using SIMULINK
ODE integration procedures). Following the assumptions of
the paper, position dynamics of the system are decoupled
from the attitude dynamics and the attitude dynamics were
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not actuated in the simulation. The camera was also modelled
as a separate discrete time SIMULINK block operating at
25Hz. The visual flow is computed at 25Hz based on a simple
first order differencing scheme and both the image features
are passed to the control scheme as zero-order hold signals.
The control law is modelled as a continuous-time process.
This is based on the idea that the practical implementation
of the control would be undertaken at a sufficiently fast rate
to ignore the sample hold effects.

A set of initial conditions that were found to be illustrative
of the system response were taken to be

(x, y, z) = (2, 1.5,−3)

An initial estimate of depth d̂(0) = 2 was used. The true
initial depth was d(0) = 3 creating an initial error in the depth
estimation. The initial condition for the estimate ρ̂(0) = 1
as specified in the control algorithm. The goal feature was
specified to be

q∗ = (0, 0, 3.8806).

This corresponds to a goal position of (0, 0,−1) for a target
configuration with 4 targets symmetrically arranged around
the origin at a radius of 0.25m. The airframe was chosen to
have a mass of 1kg and inertia of 0.125I3 kg.m2.

The following controller gain parameters were chosen

k = 0.005 λ = 0.5
c = 0.1 σ = 0.005

Tuning the gains on an adaptive control design of this
complexity is a difficult business. The principal kinematic
gains k and σ are chosen equal as they both represent
exponential rates of convergence in the primary kinematic
coordinates. The values were chosen experimentally to obtain
a system settling time of around 60 seconds. The adaptive,
λ, and dynamic, c, gains were tuned together. The goal of
the adaptive gain tuning was to obtain a settling time of the
ρ̂ dynamics of around 60 seconds, the same time frame as
the (x, y) dynamics. The dynamic gain c was adjusted to
obtain the approximate %30 overshoot seen in the dynamics
response of the x and y coordinates. Tuning the two gains
iteratively lead to the gain choices shown. A final important
modification to the control presented in section IV is the
inclusion of an inverse estimate of the image Jacobian in
the control design. This modification of the control design is
done to balance the rates of convergence in the (x, y) and
z directions due to the low sensitivity of the image feature
to change in depth at the set point for the camera geometry
considered. This is a standard process in image based visual
servo control [3]. The final applied control varies from that
proposed in Theorem 4.1 only in the definition of ε and U ,

εmod := W − kQ−1
0 δ,

Umod := σQδ − W 〈W,η〉
− kQ−1

0 QW − cε − k[Q−1
0 , Ω×]δ.

Here Q0 (a constant matrix) is the estimate of Q at the goal
configuration. The term [Q−1

0 ,Ω×] = Q−1
0 Ω× − Ω×Q−1

0 is
a compensation that is needed due to the loss of passivity in
the derivative of |εmod|2 with the introduction of the scaling
factor.
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Fig. 1. Inertial trajectory of closed-loop system

The results obtained demonstrate the effective performance
of the control algorithm. Figure 1 shows the desired stable
convergence of the (x, y) and z coordinates. Note that the
z dynamics first demonstrate a movement away from the
desired set point. This is a characteristic of visual servo
algorithms using the image features considered. Due to
the low damping of the system this generates a damped
oscillatory response in the depth dynamics that is clearly
shown in Figure 2. In Figure 2 it is interesting to observe the
effective tracking of the two signals. The two traces appears
to approach each other as the depth decreases. This is due to
the relationship d̂(t) = ad(t). This property is also linked to
the fact that the depth can never reach zero during evolution
of the closed-loop system.

The evolution of the adaptive parameter is typical of
adaptive algorithms of this type, Figure 3 . It is interesting
to note that ρ̂ 	→ 2/3 = 1/a, however, as discussed in
Section IV, this does not effect the overall convergence of
the algorithm. The convergence of the Lyapunov function,
Figure 4 demonstrates the overall stability of the algorithm.

VI. CONCLUSIONS

In this paper we have presented a novel adaptive control
design for image based visual servo control of dynamic
systems. The key contribution of the paper, is incorporating
visual flow and image based features together to get an image
based, dynamic model of a system, and the application of
extended matching techniques to obtain a rigorous adaptive
control design for the stabilization problem. If desired, it is
possible to extend the proposed approach to incorporate the
attitude dynamics by using the extended matching approach
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Fig. 2. Time evolution of the true depth d(t) and the controller parameter
d̂(t)

0 10 20 30 40 50 60 70 80 90 100
0.995

1

1.005

1.01

1.015

1.02

1.025

Time

Evolution of the estimate of rho = 1/a

rh
o 

es
tim

at
e

Fig. 3. Time evolution of adaptive estimate ρ̂ of ρ.

[8], [13] similar to the manner undertaken in the reference
[10].
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