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Abstract— Underlying interconnection symmetry is often a
major assumption for the derivation of scalable decentralized
stability certificates in networks i.e. decentralized stability
guarantees for an arbitrary interconnection of heterogeneous
dynamical systems. Even though such symmetry simplifies
significantly the mathematical analysis it is often the case
that networks can behave robustly even when deviations from
protocol symmetry do occur. We show in this paper how spectral
inclusion techniques can be used to certify scalable stability in
classes of nonsymmetric networks with potential applications
in Internet congestion control and consensus protocols. The
certificates derived are decentralized and scale with the degree
of nonsymmetry.

I. INTRODUCTION

Issues of scalability are very important in the stability anal-

ysis of interconnected dynamical systems. This is because

there exist many examples of heterogeneous networks such

as data networks, flocking phenomena, financial markets

where the system we want to analyze is not precisely known.

Therefore, it is important to have means of certifying stability

which are based only on local rules and these rules are

also preserved when the network is modified through the

addition/removal of agents. Since we are looking for stability

results that hold for an arbitrary network that obeys a certain

interconnection protocol, any symmetries present in this

protocol will enhance the mathematical derivation of such

decentralized stability conditions.

A major example in which scalable robust stability has

been extensively studied is that of Internet congestion con-

trol protocols. In [1] an optimization based framework is

introduced for the analysis of such protocols in arbitrary

networks. Global stability is guaranteed by seeing the net-

work as a potential system where decentralized control laws

maximize a relaxed aggregate utility. Decantralized local

stability conditions in the presence of delays are given in

[2], [3], [4]. Along the same lines, scalable control laws are

also suggested in [5]. As discussed in [6], this optimization

framework imposes a particular symmetric interconnection

structure. In fact it turns out that the return ratio of the

linearized system can be brought to a form G(s)A where

G(s) is a diagonal transfer matrix, diag(gi(s)), and A is

positive definite (or in the presence of delays A( jω) is

hermitian). The same kind of return ratios appear also in

consensus protocols, another important class of networks

with applications in UAV formations, flocking phenomena,

*The work of the author was supported by a Gates Scholarship.

sensor networks (see e.g. [7], [8], [9]). The structure of

the adjacency matrix A allows one derive scalable stability

conditions for the case of heterogeneous agent dynamics in

analogy with the Internet case. These conditions involve a

convexification of the the frequency responses of individual

dynamics and can be given a dissipativity interpretation

closely related to that in [10] (see [11]).

In practice, however, deviations, from this kind of sym-

metry in the interconnection do arise. For example, in a data

network with variable packet sizes the stability results in

[1], [2], [3], [4], [5] do not hold, since aggregate flow at the

resources becomes a weighted sum of flows if the congested

resource is bandwidth (thus losing the special structure in

the return ratio). Similarly, when one considers consensus

protocols on a directed graph the adjacency matrix A is no

longer symmetric. Consequently, extensions of the stability

certificates in non-symmetric cases can be quite significant,

or at least one needs to ensure that the designed system is

not fragile to an interconnection symmetry assumption.

The major contribution of this paper is that we derive

scalable decentralized stability certificates for classes of

networks where the interconnection matrix is not necessarily

symmetric. The certificates are generalizations of ideas in [3],

[6]; they can be seen as perturbations to analogous conditions

in the symmetric case and they scale with the degree of

nonsymmetry.

The main result presented, which holds for single input

single output linear time invariant dynamical systems on

bipartite graphs, takes roughly the form that the convex

hull of the frequency responses of participating dynamics,

each scaled by their in degree and perturbed by a set that

depends on the degree of non symmetry, must not encircle

the point −1. It should be pointed out that converting stability

certification to a spectral inclusion problem of a complex

matrix by means of frequency response methods, can be

very useful in the analysis of networks. Using the numerical

range as a tool for spectral inclusion, the internal structure

of the system is revealed even in the absence of symmetry.

Moreover a number of topological properties of the complex

plane with a scalable character (proved in the appendix) can

lead to results which are not readily deduced from time

domain arguments.

The paper is structured as follows. We give first a general

form of the main stability condition and describe in graph

theoretic terms the classes of networks for which it can

be relevant. This is then applied to models for Internet
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congestion control1.

II. PRELIMINARIES

Notation

σ(M) denotes the spectrum of a square matrix M, ρ(M)
its spectral radius and |M| the elementwise absolute value

of the matrix i.e. |[Mi j]| := [|Mi j|]. Given A,B ∈ C
m×n,

M = max(|A|, |B|) is the elementwise maximum i.e. Mi j =
max(|Ai j|, |Bi j|). Co(S) denotes the convex hull of a set

S and diag(xi) the matrix with elements x1,x2, . . . on the

leading diagonal and zeros elsewhere. C− is the open left

hand plane and R+ the open set of positive reals. The

Numerical Range or Field of Values of a matrix M ∈ Cn×n

is the set N(M) := {v∗Mv : v ∈ Cn,v∗v = 1}. The property

σ(M) ⊂ N(M) is used in this paper (see e.g. [12] [13] for a

more detailed discussion of the properties of the Numerical

Range). H∞ is the set of proper transfer functions analytic

and bounded in C+ . C0 is the class of functions continuous

in jR∪{∞} and A0 := H∞ ∩C0 .

A. Graph Theoretic Setting

We consider a directed graph representation of an inter-

connected system and use the following notation.

G = (V,E,A) is a weighted directed graph where V =
{v1, . . . ,vn} is the set of nodes, E ⊆V ×V the set of directed

edges and A = [ai j] a weighted adjacency matrix. Directed

edges are denoted as ei j = (vi,v j). Node v j is defined the

head of the edge ei j, node vi the tail. The adjacency matrix

A ∈ Rn×n satisfies a ji �= 0 ⇔ ei j ∈ E . The in-neighbours

of a node vi are defined as N in
i = {v j ∈ V : (v j,v j) ∈ E}

and its in-degree as |N in
i |. Similarly the out-neighbours are

defined as Nout
i = {v j ∈ V : (vi,v j) ∈ E} and the out-degree

as |Nout
i |. In the digraph representation of the network each

dynamical element corresponds to a node of the graph.

Furthermore in a network of n dynamic agents, each with

scalar input ui(t), scalar output yi(t) and transfer function

gi(s), the input and output vectors, u(t) = [u1(t), . . . ,un(t)]T

and y(t) = [y1(t), . . . ,yn(t)]T respectively, satisfy the relation

u(t) = Ay(t), where A is the adjacency matrix of the graph.

A graph is bipartite if its nodes can be divided into two sets

such that nodes from one set are only connected to nodes of

the other set.

In a digraph with aii = 0 ∀i the graph Laplacian is defined

as L = I −D−1A, where D = diag(di), di = ∑n
k=1,k �=i aik .

Note that if A is a 0−1 matrix then di is the in-degree.

For an interconnected system on a graph as defined

above, the return ratio is of the form G(s)A, where G(s) =
diag(g1(s), . . . ,gn(s)), if the interconnection is broken at the

output of each of the dynamical systems. In a bipartite graph

the adjacency matrix can be chosen to be block antidiagonal

by ordering the nodes in an appropriate sequence. If we

denote g1(s), . . . ,gn(s), h1(s), . . . ,hm(s) the transfer functions

of the dynamics corresponding to nodes from the two disjoint

sets in the bipartition respectively, the return ratio becomes

1Consensus protocols are also a potential application of the results
presented (see Remark 1); these are not extensively discussed in the paper
due to length limitations.

of the form diag(gi(s))RbT diag(h j(s))R f , R f ,Rb ∈ R
n×m

by breaking the loop at the output of each of the gi(s).

III. MAIN RESULT

The main proposition in the paper is given below.

Proposition 1: Given an m× n transfer matrix R(s) and

R f (s), Rb(s) where

R flr(s) = µ f
lrRlr(s), Rblr(s) = µb

lrRlr(s)

µ f
lr, µb

lr ∈ [0,1] for all l,r

and also M( jω) = max(|R f ( jω)|, |Rb( jω)|) satisfies

ρ(M( jω)T M( jω)) ≤ 1 for all ω ∈ R+, then for

F(s) = diag( f1(s), . . . , fn(s)), fi(s) ∈ A0 ∀i, the system

with return ratio L(s) ∈ A
n×n

0 that can be factorized as

L(s) = F(s)Rb(−s)T R f (s) is stable if

−1 /∈Co({ fr( jω)Sr : ω ∈ R+, r = 1, . . . ,n} (1)

where Sr = S(min
l

µ f
lr,min

l
µb

lr) and

S(µ1,µ2) :=

{
(v1 + µ1v2 + v3)(v1 + v2 + µ2v3)

∗

(|v1|+ |v2|+ |v3|)2 :

v1,v2,v3 ∈ C

} (2)

Proof: This follows directly from Theorem 1 in the

appendix. The convex hull in (1) gives a bound for the

eigenloci and hence the system is stable according to the

multivariable Nyquist criterion.

Remark 1: The structure of the return ratio has an ap-

pealing graph theoretic interpretation in the case R(s) is a

constant real matrix. As discussed in the preliminaries, this

could correspond to the return ratio of a bipartite weighted

directed graph where dynamics are associated with only one

of the two disjoint sets of nodes in the bipartition. Such return

ratios appear in Internet protocols as it will be illustrated in

section IV.

In addition such a return ratio could correspond to any graph

where the adjacency matrix can by factorized as R f Rb. This

factorization naturally exists for the Laplacian of a digraph

[14] and the Laplacian is an adjacency matrix in the case of

consensus protocols.

R(s) is presented in the proposition as a transfer matrix so

as to include the case where delays are associated with the

edges. The fact that Rb(−s) conveniently appears as a scaled

version of R(−s), can occur in cases of constant roundtrip

times as in Internet protocols, by factoring out the round trip

time in the agent dynamics.

Remark 2: In a symmetric network (µ f
lr = µb

lr = 1 ∀l,r)

S(1,1) = [0,1] and condition (1) above becomes

−1 /∈Co({ fr( jω) : ω ∈ R+, r = 1, . . . ,n}∪0)

Hence, set Sr can be seen as a perturbation set that scales

with the degree of nonsymmetry. It is important to note

that Sr depends for each agent, only on the smallest scaling

factors in the corresponding rows of R f (s) and Rb(s). It is

shown in Lemma 3 in the Appendix that S(µ1, l1)⊂ S(µ2, l2)
for 0 ≤ µ1 < µ2 ≤ 1, 0 ≤ l1 < l2 ≤ 1. Therefore as µ , l tend

4635



−0.2 0 0.2 0.4 0.6 0.8 1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Re(z)

Im
(z

)

Fig. 1. The boundary of S(µ , l) for (µ , l) = (0,0),(0.5,0.5),(1,1). Observe
that S(µ , l) → [0,1] as µ , l → 1.

from 0 to 1 S(0,0) ’shrinks’ to [0,1]. The set S(µ , l) has a

well defined shape as shown in figure 1.

Remark 3: The convex hull condition (1) can be given

a decentralized interpretation by constraining the perturbed

frequency response of each of the agents not to intersect a

predefined hyperplane through the point −1. Note that they

will all be on the same side of the hyperplane since 0 ∈ Sr.

Scalability follows from the fact that a new transfer function

fi(s) will introduce only an additional such condition.

The distance of each perturbed frequency response from

the hyperplane gives also a measure of robustness i.e. it

is guaranteed that the system will remain stable for an

additive perturbation on the agent dynamics with infinity

norm smaller than this corresponding distance.

Remark 4: The fact that the bound of the eigenloci in

(1) always includes zero, implies that the same stability

condition holds when the return ratio is being permuted since

for matrices A ∈ Cm×n and B ∈ Cn×m, AB and BA have the

same non-zero eigenvalues.

Remark 5: The spectral bound on M can be obtained

by appropriate scaling at the input of the dynamics. One

can exploit the fact that for M ∈ Cn×n ρ(M) ≤ ||M||∞ =
maxi ∑ j |Mi j|.

IV. INTERNET CONGESTION CONTROL

We consider TCP like protocols where users/sources im-

plement the control law based on the aggregate price from

the resources/links along the route and the resource prices

are generated as functions of the aggregate flow through the

resource. Note that the underlying graph is bipartite as users

communicate directly only with resources and resources only

with users.

The symmetry lies in the fact that the resources do

not discriminate between users when producing congestion

signals (prices) as a function of the aggregate flow through

the resource and equivalently users do not discriminate

between resources when determining their data flow as a

function of the aggregate prices they receive. Nevertheless

in practice such discrimination does occur. Consider, for

example, a differentiated services scheme where packet drop

probabilities at some routers depend on the priority given to

a particular flow. Then the ’price’ received from the router

will not be the same for all users. In addition, the presence

of variable packet sizes can compromise symmetry. In RED,

for example, packets are dropped based on the queue size in

packets (e.g. WRED the RED implementation on CISCO

routers) even though the queue size could grow because

the congested resource is bitrate; symmetry is thus lost if

RED is activated by some routers. The results presented

in this section are an extension of the approach in [6]

where a special kind of nonsymetry in the forward path was

considered and with a more general nonsymmetric setting as

in this paper being conjectured.

We use the notation in [4], [1] and define the following:

xr is the flow rate associated with route r. Ur(xr) is the

utility of the user/source on route r, which is a continuously

differentiable, strictly concave, increasing function of the

flow xr . Tr = τlr + τrl is the round trip delay of the rth

route, with τrl being the propagation delay from source r to

link/resource l and τlr the return delay from link l to source

r.
yl(t) = ∑

r:r uses l
xr(t − τrl) (3)

is the aggregate flow through link l. pl = fl(yl) is the link

price per unit flow, which is a non-negative, strictly increas-

ing function of the aggregate flow through the resource l. We

assume link prices to be static functions of the flow (this is

valid for low length queues, and large capacities) as in [1].

qr(t) = ∑
l:l used by r

pl(t − τlr) (4)

is the aggregate price along route r. The control law is

performed by the users according to

ẋr(t) = krxr(t −Tr)

(
1−

qr(t)
U ′

r(xr(t))

)
(5)

Taking Laplace transforms we can write (3) in the symmetric

protocol as a vector equation

ȳ(s) = R(s)x̄(s) (6)

where Rlr =

{
e−sτrl if route r uses link l

0 otherwise

and (4) as q̄(s) = diag(e−sTr )RT (−s)p̄(s) (7)

We now consider a non-symmetric protocol where R(s) is

replaced by scaled matrices R f (s) in (6) and Rb(s) in (7),

where
R flr = µ f

lrRlr, Rblr = µb
lrRlr

µ f
lr, µb

lr ∈ [0,1] for all l,r (8)

For small perturbations about equilibrium flow and prices

y(t) = ŷ+ δy(t), q(t) = q̂+ δq(t) etc. (9)

δy = R f (s)δx, δq(s) = diag(e−sTr)RbT (−s)δ p(s) (10)

and the equilibrium relations

ŷ = R f (0)x̂, q̂ = RbT (0)p̂ (11)

Linearization of the source law (5) and the static link price

gives

δxr(s) = −kr
x̂r

q̂r

1

s+ krαr
δqr(s), αr = −

x̂r

q̂r
U ′′

r (x̂r) (12)

δ pl(s) = f ′l (ŷ)δyl(s) (13)
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Breaking the loop at the source leads to the following return

ratio

G(s) = diag

(
kr

x̂r

q̂r

e−sTr

s+ krαr

)
×RbT (−s)diag( f ′l )R f (s)

(14)

The following condition for stability folows from Proposi-

T

dynamics
user

dynamics
link

x y

pq

Rf(s)

Rb(−s)

Fig. 2. Block diagram of interconnected network.

tion 1. In the subsequent Corollary a decentralized interpre-

tation is given with local network parameters.

Proposition 2: The interconnection described by (3-

8),(11) with n users and kr ≥ 0 ∀r is locally asymptotically

stable around its equilibrium if there exists B such that the

inequalities below are satisfied

f ′l (ŷl) ≤
p̂l
¯̂yl

B ∀l (15)

−1 /∈Co

{
Bk̄r

e− jωTr

jω + k̄rᾱr
Sr : ω ∈ R+, r = 1 . . . ,n

}
(16)

where k̄r =
¯̂q
q̂

kr, ᾱr = −
x̂r
¯̂qr

U ′′
r (x̂r) > 0,

¯̂qr = ∑
l

p̂l max(µ f
lr,µb

lr), ¯̂yl = ∑
r

x̂r max(µ f
lr,µb

lr),

Sr = S(min
l

µ f
lr,min

l
µb

lr)

where set S(µ1,µ2) is as defined in (2).

Remark 6: In a symmetric network (µ f
lr = µb

lr = 1 ∀l,r)
¯̂y = ŷ, ¯̂q = q̂ and S(1,1) = [0,1]. Hence the conditions above

converge to those in [4] for symmetric networks i.e.

f ′l (ŷl) ≤
p̂l

ŷl
B ∀l , krTr <

π
2

1

B
∀r (17)

Proof: [of Proposition 2] Proposition 1 is applied by

reducing the return ratio G(s) to the similar form

Ĝ( jω) = diag

(
Bkr

¯̂qr

q̂r

e− jωTi

jω + krαr

)
R̂b

T
(− jω)R̂ f ( jω) (18)

R̂b
T
(− jω) = diag

(√
x̂r
¯̂qr

)
RbT (− jω)diag

(√
f ′l
B

)

R̂ f ( jω) = diag

(√
f ′l
B

)
R f ( jω)diag

(√
x̂r
¯̂qr

)

The spectral radius bound is achieved by means of Remark

5 and noting the equilibrium relations (11) (see [4]).

In the following Corollary we satisfy condition (16) with

a delay dependent bound on the gain k̄r and a delay inde-

pendent bound on B. Before stating the Corollary we define

the following parameter given a set Sr as in Proposition 2

λ (Sr) := min
γ>0

[
γ s.t. ℜ(z) > −1∀ z ∈

{
e− jx

jx + γ
Sr : x ∈ R+

}]

Corollary 1: The interconnection described by (3-8),(11)

with n users and kr ≥ 0 ∀r is locally asymptotically stable

around its equilibrium if there exists B such that

f ′l (ŷl) ≤
p̂l
¯̂yl

B ∀l (19)

AND ∀r EITHER B < ᾱr (20)

OR the inequalities below are satisfied

k̄rTr <
1

B
, B <

ᾱr

λ (Sr)
(21)

where k̄r, ᾱr, ¯̂q, ¯̂y,Sr are as defined in Proposition 2.

Remark 7: Since S(0,0) is the worst case perturbation set

that includes all other sets Sr (see Lemma 3), (21) is true for

all Sr if B < ᾱr
λ (S(0,0)) .

Remark 8: Condition (20) is delay independent, neverthe-

less, it can be rather conservative.

Remark 9: It should be emphasized that the importance

of the bounds in Corollary 1 lie in the fact that they are

decentralized and hold for arbitrary interconnections like

the results for symmetric protocols. Once we deviate from

symmetry, the symmetric bounds still hold, i.e. feedback gain

depends on delay and the nature of the price functions. An

extra delay independent bound is, however, also introduced,

that depends on the degree of non symmetry (through Sr)

as well as the nature of the utility functions of the users

(through αr). Notice that this bound only affects users

behaving in a non-symmetric way since for symmetric users

(Sr = S(1,1)= [1,0]) the delay independent condition in (21)

becomes redundant.

Proof: [of Corollary 1] This follows directly from

Proposition 2. Note that{
Bk̄r

e− jωTr

jω + k̄rᾱr
Sr : ω ∈ R+,

}
=

{
e− jxBk̄rTr

jx + ᾱr
B

Sr : x ∈ R+,

}

If all sets above lie to the right of the point −1, so does the

convex hull of their union over all r. Using Lemma 4 and

the fact that Sr is star shaped with respect to 0 (see Lemma

1) it is sufficient to consider the maximum and minimum

values of Bk̄rTr and ᾱr
B respectively. Hence inequalities (21)

are sufficient for (16) to be satisfied.

Condition (20) is also sufficient for (16) since the set we

want to convexify in this case lies in a unit ball centred at

the origin.

V. CONCLUSIONS

A way has been suggested for the relaxation of intercon-

nection symmetry assumptions in the derivation of scalable

decentralized robust stability certificates for heterogeneous

networks. The result presented holds for a class of networks
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including Internet congestion control models and consensus

protocols. The stability conditions can be seen as a perturba-

tion of analogous ones in symmetric networks and scale with

the degree of nonsymmetry. The analysis is primarily based

on the use of the Numerical range as a spectral inclusion tool

that helps to certify stability. It is thus illustrated how such

spectral inclusion techniques can reveal the internal structure

of the system even without symmetry.

APPENDIX

Lemmas 1 and 2 are used to prove Theorem 1, the main

Theorem in the paper.

Lemma 1 (S(µ , l) is star): Given µ , l ∈ [0,1] the set

S(µ , l) :=

{
(a + µb + c)(a + b + lc)∗

(|a|+ |b|+ |c|)2 : a,b,c ∈ C

}
(22)

is star shaped w.r.t. 0 i.e. if v ∈ S(µ , l) then kv ∈ S(µ , l) for

any k ∈ [0,1]
Proof: Let

f (a,b,c) =
(a + µb + c)(a + b + lc)∗

(|a|+ |b|+ |c|)2

choose b1,c1 s.t.

b1 + lc1 = µb1 + c1 ⇐⇒ (1−µ)b1 = (1− l)c1

and let ā = a−b1− lc1 = a−µb1− c1

b̄ = b + b1, c̄ = c+ c1

Note that a + µb + c = ā+ µ b̄+ c̄

a + b + lc = ā+ b̄+ lc̄

Hence k f (a,b,c)= f (ā, b̄, c̄), where k =

(
|a|+ |b|+ |c|

|ā|+ |b̄|+ |c̄|

)2

By choosing |b1|, |c1| sufficiently large k can be chosen by

continuity to be any number in (0,1]. The fact 0 ∈ S is

obvious e.g. a = −c,b = 0.

Lemma 2 (Characterizing S(µ , l) ): Given µi, li ∈ [0,1]
and µi, li are not all equal to zero{

(∑i µivi)(∑i livi)
∗

(∑i max(µi, li)|vi|)2 : vi ∈ C

}
⊆ S(µmin, lmin)

where µmin = mini µi, lmin = mini li and S(µmin, lmin) is as

defined in (22).

Proof: Let

A =

{
(∑i µivi)(∑i livi)

∗

(∑i max(µi, li)|vi|)2 : vi ∈ C

}

and B =

{
(a + µminb + c)(a + b + lminc)∗

(|a|+ |b|+ |c|)2 : a,b,c ∈ C

}
if µi < li let µivi = kiµminvi − kiµminvi + µivi

s.t. ki + µi − kiµmin = li i.e. ki =
li −µi

1−µmin
(23)

Similarly, if li < µi let livi = lminkivi − lminkivi + livi

s.t. ki − lminki + li = µi i.e. ki =
µi − li

1− lmin

So ∑
i

µivi = ∑
i:µi=li

µivi︸ ︷︷ ︸
f

+ ∑
i:µi>li

µivi︸ ︷︷ ︸
d+e

+ ∑
i:µi<li

µivi − kiµminvi︸ ︷︷ ︸
b

+ ∑
i:µi<li

µminkivi︸ ︷︷ ︸
µminc

∑
i

livi = ∑
i:li=µi

livi︸ ︷︷ ︸
f

+ ∑
i:li>µi

livi︸ ︷︷ ︸
b+c

+ ∑
i:li<µi

livi − kilminvi︸ ︷︷ ︸
d

+ ∑
i:li<µi

lminkivi︸ ︷︷ ︸
lmine

∑
i

µivi = f + d + b︸ ︷︷ ︸
k

+e+ µminc = k + e+ µminc (24)

∑
i

livi = f + d + b︸ ︷︷ ︸
k

+c+ lmine = k + c+ lmine (25)

Also |k|+ |e|+ |c| ≤ | f |+ |d|+ |b|+ |e|+ |c|

= ∑
i:µi≥li

µi|vi|+ ∑
i:µi<li

(|µi − kiµmin||vi|+ |ki||vi|)

≤ ∑
i:µi≥li

µi|vi|+ ∑
i:µi<li

li|vi| ≤ ∑
i

max(µi, li)|vi| (26)

The second inequality is true because

|µi − kiµmin|+ |ki| ≤ li − ki + ki = li using (23)

Hence from (24-26) we deduce that for each x ∈ A there

exists y ∈ B s.t. x = ηy where

η =
|k|+ |e|+ |c|

∑max(µi, li)|vi|
≤ 1

Therefore A ⊆ B using the fact that the set B is star shaped

w.r.t. 0 from Lemma 1.

Theorem 1: Given R ∈ Cm×n and R f , Rb where

R flr = µ f
lrRlr, Rblr = µb

lrRlr, µ f
lr, µb

lr ∈ [0,1] for all l,r

and also M = max(|R f |, |Rb|) satisfies ρ(MT M)≤ 1, then for

F = diag( f1, . . . , fn), fi ∈ C, we can bound the spectrum of

FRb∗R f as follows:

σ(FRb∗R f ) ⊂Co({ frSr : r = 1, . . . ,n}

where Sr = S(minl µ f
lr,minl µb

lr) and S(µ1,µ2) is as in (22).

Proof: σ(FRb∗R f ) = σ(R f FRb∗) if we ignore zero

eigenvalues. This is not a problem since the bounding region

in Theorem 1 always includes zero (0 is always in Sr).

ρ(MMT ) ≤ 1 ⇒ v∗MMT v ≤ 1 ∀v ∈ C
m s.t. v∗v = 1

since ρ(MMT ) = ‖M‖2
2 = sup

v∈Cm,v�=0

‖MT v‖2
2

‖v‖2
2

Expanding v∗MMT v we get

∑
j
(|v1M1 j + v2M2 j + . . . |)2 ≤ 1 ∀v ∈ C

m s.t. v∗v = 1

And since this is true for all such v

∑
j
(|v1M1 j|+ |v2M2 j|+ . . .)2 ≤ 1 ∀v ∈ C

m s.t. v∗v = 1 (27)
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We then bound the spectrum with the field of values of the

corresponding matrix.

σ(R f FRb∗) ⊂ N(R f FRb∗)

:= {v∗R f FRb∗v : v ∈ C
m v∗v = 1} (28)

Now v∗R f FRb∗v =
n

∑
k=1

fk

(
m

∑
i=1

v∗i R fik

)(
m

∑
i=1

viRb∗ik

)

=
n

∑
k=1

fk

(
∑

i
max(µ f

ik,µb
ik)|viRik|

)2

.(
∑m

i=1 v∗i µ f
ikRik

)(
∑m

i=1 viµb
ikR∗

ik

)
(

∑i max(µ f
ik,µb

ik)|viRik|
)2

∈
n

∑
k=1

(
∑

i
max(µ f

ik,µb
ik)|viRik|

)2

fkSk (29)

=
n

∑
k=1

(
∑

i
|viMik|

)2

fkSk

⊂

⎛
⎝ n

∑
k=1

(
∑

i
|viMik|

)2
⎞
⎠Co({ fkSk : k = 1, . . . ,n}

⊂Co({ fkSk : k = 1, . . . ,n} (30)

The inclusion in (29) follows from Lemma 2 and inclusion

(30) follows from (27).

Lemma 3 (S(µ , l) scales with nonsymmetry): The set

S(µ , l) as defined in (22) satisfies

S(µ2, l2) ⊂ S(µ1, l1) if 1 ≥ µ2 > µ1 ≥ 0, 1 ≥ l2 > l1 ≥ 0

Proof: Let v1,v2,v3 ∈ C. Note

µ2v2 = (µ2 − kµ µ1)v2 + µ1kµv2

and choose kµ s.t.

µ2 − kµ µ1 + kµ = 1 i.e. kµ =
1−µ2

1−µ1
, 0 ≤ kµ < 1 (31)

Similarly l2v3 = (l2 − kll1)v3 + l1klv3 where kl =
1− l2
1− l1

So v1 + µ2v2 + v3 = v1 +(µ2 − kµ µ1)v2 +(l2 − kll1)v3

+µ1kµv2 + klv3 (32)

v1 + v2 + l2v3 = v1 +(µ2 − kµ µ1)v2 +(l2 − kll1)v3︸ ︷︷ ︸
v̄1

+kµv2︸︷︷︸
v̄2

+l1 klv3︸︷︷︸
v̄3

(33)

|v̄1|+ |v̄2|+ |v̄3| =

|v1 +(µ2 − kµ µ1)v2 +(l2 − kll1v3)|+ |kµv2|+ |klv3|

≤ |v1|+(|µ2 − kµ µ1|+ |kµ|)|v2|+(|l2 − kll1v3|+ |kl|)|v3|

From (31) µ2 −kµ µ1 = 1−kµ and 0 < 1−kµ ≤ 1 (similarly

for kl). So all real parameter quantities in the absolute values

in the last expression are positive and hence

|v̄1|+ |v̄2|+ |v̄3| ≤ |v1|+ |v2|+ |v3| (34)

Since vi are arbitrary for some choice of vi the inequality

above is strict. Now for v ∈ C3 and µ , l ∈ [0,1] let

f (v,µ , l) :=
(v1 + µv2 + v3)(v1 + v2 + lv3)

∗

(|v1)|+ |v2|+ |v3|)2

From (32),(33),(34) for every v ∈ C
3 ∃v̄ ∈ C

3 s.t.

f (v,µ2, l2) =

(
∑ |v̄i|

∑ |vi|

)2

︸ ︷︷ ︸
η

f (v̄,µ1, l1)

where η ≤ 1 and strictly less than 1 for some vi. Hence

S(µ2, l2) ⊂ S(µ1, l1) since S(µ , l) is star from Lemma 1.

Lemma 4: Let

P(n,γ) :=

{
e− jxn

jx + γ
l1 : x ∈ R+

}
for some n,γ ∈ R+

and set l1 being the line segment l1 = [0,1], then

P(n1,γ) ⊆ P(n2,γ) for n1 ≤ n2 (35)

P(n,γ1) ⊆ P(n,γ2) for γ2 ≤ γ1 (36)

Proof: Let a ∈ P(n2,γ), b ∈ P(n2,γ), n1 ≤ n2 such that

a,b have the same phase. Then parameter x for a is greater

than that for b hence |a| < |b|. Similarly for case (36) if

a ∈ P(n,γ1), b ∈ P(n,γ2), γ2 ≤ γ1 such that a,b have the

same phase then |a| < |b| .
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