
Preconditioned conjugate gradient algorithm for large scale
problems with box constraints

R. Pytlak
Faculty of Cybernetics

Military University of Technology
00-908 Warsaw, Poland
rpytlak@isi.wat.waw.pl

T. Tarnawski
Faculty of Cybernetics

Military University of Technology
00-908 Warsaw, Poland
tarni@isi.wat.waw.pl

Abstract— The paper describes a new conjugate
gradient algorithm for large scale nonconvex problems
with box constraints. In order to speed up the conver-
gence the algorithm employs a scaling matrix which
transforms the space of original variables into the
space in which Hessian matrices of functionals describ-
ing the problems have more clustered eigenvalues.
This is done efficiently by applying limited memory
BFGS updating matrices. Once the scaling matrix is
calculated, the next few iterations of the conjugate
gradient algorithms are performed in the transformed
space. The box constraints are treated efficiently by
the projection. We believe that the preconditioned
conjugate gradient algorithm is competitive to the L-
BFGS-B algorithm. We give some numerical results
which support our claim.

I. INTRODUCTION

We consider the problem

min
x∈Rn

f(x) (1)

subject to the simple bounds l ≤ x ≤ u, (2)

where we assume that l, u are fixed vectors and the
inequalities are taken componentwise. In general, we
assume that the function f is continuously differentiable,
i.e., f ∈ C1 (however in some cases we will apply a
stronger assumption that f ∈ C2).

Assume that constraints (2) are not present. If second
order derivatives of f are not available, or the evaluation
of the Hessian matrix of f is not cheap, but gradients of
f are available, then we can either use quasi–Newton or
conjugate gradient algorithms to solve the problem (1).
If the number of variables is large then the recommended
quasi–Newton method is the limited memory BFGS de-
scribed in [15] and [23].

We can also use the conjugate gradient algorithm. In
[18] a new family of conjugate gradient algorithms was
introduced based on methods proposed in [14] and [22].
Their direction finding subproblem is given by

dk = −Nr{gk,−βkdk−1}, (3)

where gk = g(xk) = ∇f(xk) and Nr{a, b} is defined as
the point from a line segment spanned by the vectors a
and b which has the smallest norm, i.e.,

‖ Nr{a, b} ‖= min{‖ λa + (1 − λ)b ‖: 0 ≤ λ ≤ 1}, (4)

and ‖ · ‖ is the Euclidean norm. Let us notice that
the operation Nr{·, ·} can be easily performed. This is a
simple univariate quadratic problem with box constraints
and can be solved analytically.

If βk = 1 then we have the Lemaréchal-Wolfe algo-
rithm and when

βk =
‖gk‖2

|〈gk − gk−1, gk〉| (5)

directions generated by (3) are equivalent to those pro-
vided by the Polak–Ribiére formula (under the assump-
tion that directional minimization is exact). (3) with (5)
give the algorithm that has not only superior numerical
properties but has also convergence properties better
than that of all existing versions of the Polak–Ribiére
algorithm (see, e.g., [12]).

Due to strong convergence properties exhibited by
the conjugate gradient algorithm defined by (3) it is
tempting to extend it by introducing its preconditioned
version. The idea behind preconditioned conjugate gra-
dient algorithm is to transform the decision vector by
linear transformation D such that after the transforma-
tion the nonlinear problem is easier to solve–eigenvalues
of Hessian matrices of the objective function of the
new minimization are more clustered (see [17] for the
discussion of how eigenvalues clustering influences the
behaviour of conjugate gradient algorithms).

If x̂ is transformed x:

x̂ = Dx (6)

then our minimization problem will become

min
x̂

[
f̂(x̂) = f(D−1x̂)

]
(7)

and for this problem the search direction will be defined
as follows

d̂k = −Nr{∇f̂(x̂k),−β̂kd̂k−1} (8)

Since we want to avoid to minimize f̂ with respect to
x̂ we need expressing the above search direction rule in
terms of f and x. First of all, notice that

∇f̂(x̂) = D−T∇f(x) (9)

therefore we can write

d̂k = −Nr{D−T∇f(D−1x̂k),−β̂kd̂k−1}. (10)

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeB08.6

0-7803-9568-9/05/$20.00 ©2005 IEEE 5138

If we multiply both sides of (10) by D−1 we will get

dk = −λkD−1D−T∇f(xk) + (1 − λk) β̂kdk−1, (11)

where 0 ≤ λk ≤ 1 and either

β̂k = 1 (12)

for the Fletcher-Reeves version, or

β̂k =
‖ĝk‖2

|〈ĝk − ĝk−1, ĝk〉|
=

gT
k D−1D−T gk

| (gk − gk−1)
T

D−1D−T gk|
(13)

for the Polak-Ribiere version.
The equation (11) can be stated as

dk = −λkH∇f(xk) + (1 − λk) β̂kdk−1. (14)

where H = D−1D−T . This suggests that D should be
chosen in such a way that DT D is an approximation to
∇2

xxf(x̄) where x̄ is a solution of problem (1).
Moreover, D should be such that systems of linear

equations

DT ĝk = gk (15)
Ddk = d̂k (16)

which we have to solve at every iteration are easy to solve.

II. A general convergence theory

Now consider the problem with box constraints (2).
For the moment assume that the scaling matrix is an
identity matrix. This will be helpful in explaining the way
we handle the box constraints. To cope efficiently with
these constraints the projection algorithm is applied.

Let the projection operator P [·] be defined as follows

(P [x])i =

⎧⎨
⎩

(l)i if (x)i < (l)i

(x)i if (l)i ≤ (x)i ≤ (u)i

(u)i if (x)i > (u)i

.

The projection algorithm was studied, among others, in
[1], [2], [3], [8], [9], [10], [5], [6].

Before stating our algorithm we have to specify nec-
essary optimality conditions which must be satisfied by
any minimizer of problem (1)–(2).

Lemma 1: Let x� be a feasible point. Then x� is a
critical point for problem (1)–(2) if and only if

P [x� − α∇f(x�)] = x�, (17)

for all α > 0. Moreover condition (17) can be checked
only for α = 1.

Proof: The proof can be found in [1].
In order to simplify the presentation we will consider

the problem of minimizing f subject to the constraints

x ≥ 0. (18)

As far as a line search of our algorithm is concerned we
follow [19]. First, we notice that the function f(P [xk +
αdk]), of variable α, can be interpreted as a composition

of two functions: the first one is Lipschitzian and the
second one continuously differentiable. Let us consider a
piecewise linear arc of the form

xk(α) = xk + dk(α), where

(dk(α))i :=
{

α(dk)i if α ≤ αi
k

αi
k(dk)i if α > αi

k
(19)

where the breakpoints {αi
k}n

1 are calculated as follows

αi
k := − (xk)i

(dk)i
, i = 1, . . . , n. (20)

Throughout the paper we apply the following conven-
tion

(gk(α))i :=
{ ∇xif(xk + dk(α)) if α < αi

k

0 if α ≥ αi
k

, (21)

i = 1, . . . , n.
Having in mind that we consider simpler constraints

(18) we define the set of indices I+
k

I+
k := {i ∈ 1, n : (xk)i ≤ εk and ∇xif(xk) > 0},(22)

where {εk} is such that εk > 0 and

lim
k∈K

‖xk − P [xk −∇f(xk)]‖ = 0 ⇔ lim
k∈K

εk = 0.

(23)

for any subsequence {xk}k∈K .
Let us notice that if {εk} is calculated in the following

way

wk = xk − P [xk − M∇f(xk)], εk = min(ε, ‖wk‖),
(24)

ε > 0, where M is a diagonal positive definite matrix,
then condition (23) will be satisfied.

The sets I+
k are used to modify the direction finding

subproblem. Instead of solving problem (3) we find a new
direction according to the rule

dk = −Nr{∇f(xk),−βkd+
k−1}. (25)

Here d+
k−1 is defined by

(d+
k−1)i :=

{
(dk−1)i if i 	∈ I+

k

− ∇xi
f(xk)/βk if i ∈ I+

k

. (26)

Let us notice that according to (25) and (26) we have

(dk)i = −∇xi
f(xk) for i ∈ I+

k . (27)

Next, we introduce, for a given α, the set of all indices
such that i 	∈ I+

k , or i ∈ I+
k and αi

k > α:

Ik(α) := {i ∈ 1, n : i 	∈ I+
k }

⋃
{i ∈ 1, n : i ∈ I+

k and αi
k > α}. (28)

Having defined Ik(α) we can partition dk into two
vectors in such a way that one of them, d−k (α), is as
follows

d−k (α) := {(dk)i}i∈Ik(α).

5139

Eventually we can state our directional minimization
rule which we borrow from [19]: find a positive number
αk such that

f(P [xk + αkdk]) − f(xk) ≤
−µ〈dk, P [xk + αkdk] − xk〉, (29)
〈gk(αk), dk〉 ≥ −η‖d−k (αk)‖2,

0 < µ < η < 1. (30)

According to Bertsekas ([2]) the scaling matrix should
be applied only to variables with indices corresponding
to the set I+

k . Therefore, we choose the scaling matrix as

Dk =
[

D+
k 0
0 Ink

]
.

Here, D+
k is a nonsingular matrix of dimension n+

k = n−
nk and Ink

is the identity matrix of dimension nk = |I+
k |.

We use the matrix D+
k to transform x variables to x̂

variables resulting in equations:

DT
k ĝk = gk (31)

Dkdk = d̂k (32)

Notice that, as in (27), we have

(d̂k)i = (dk)i, (33)
∇xi

f̂(x̂k) = ∇xi
f(xk), i ∈ I+

k . (34)

and d̂k is defined by

d̂k = −Nr{ĝk,−β̂kd̂+
k−1}. (35)

Our general algorithm is as follows:

Algorithm Parameters: µ, η ∈ (0, 1), η > µ, ε >
0, {β̂k}∞0 , ε > 0, {Dk}∞1 , Dk ∈ Rn×n, diagonal positive
definite matrix M .
Data: x0

1) Set k=0
2) Compute:

dk = −gk

d̂k = Dkdk

If ‖dk‖ = 0 then STOP, otherwise go to Step 4).
3) Compute:

DT
k ĝk = gk (36)
wk = xk − P [xk − M∇f(xk)]. (37)
εk = min(ε, ‖wk‖), (38)
d̂k = −Nr{ĝk,−β̂kd̂+

k−1} (39)

Dkdk = d̂k (40)

If wk = 0 then STOP.
4) Find αk according to (29)–(30).
5) Substitute P [xk+αkdk] for xk+1, increase k by one,

go to Step 3).
We can prove the lemma
Lemma 2: Assume that xk is a noncritical point,

DT
k Dk is positive definite and dk 	= 0 is calculated in

Step 2 of Algorithm. Then there exists a positive αk such
that (29)–(30) are satisfied, or

lim
α→∞ f(P [xk + αdk]) = −∞. (41)

To investigate the convergence of Algorithm we begin
by providing a crucial lemma which requires the following
assumptions.

Assumption 1: There exists L < ∞ such that

‖∇f(y) −∇f(x)‖ ≤ L‖y − x‖
for all x, y from a bounded set.

Assumption 2: There exist dl, du such that 0 < dl <
du < +∞ and

dl‖x‖2 ≤ xT DT
k Dkx ≤ du‖x‖2 (42)

for all x ∈ Rn and k.
Lemma 3: If Assumptions 1–2 hold, the direction dk

is determined by (36)–(40) and the step–size coefficient
αk is calculated according to (29)–(30), then for any
bounded subsequence {xk}k∈K

lim
k∈K

‖xk − P [xk + dk]‖ = 0. (43)

Proof: The proof of the lemma, as the proofs of
other results presented in the paper, is given in [21].

For the convenience of future notations we assume that
variables (x)i have been reordered in such a way that dk

can be partitioned into two vectors (d1
k, d2

k) where the
first vector d1

k is represented by

d1
k := {(dk)i}i �∈I+

k
.

The same convention applies to other vectors, for exam-
ple

∇f(xk) = ((∇f(xk))1, (∇f(xk))2)
= (∇1f(xk),∇2f(xk)),

d+
k−1 = ((d+

k−1)
1, (d+

k−1)
2)

= (d1
k−1, (d

+
k−1)

2) (44)

and to vectors such as x̂k = (x̂1
k, x̂k

2) since we have
x2

k = x̂2
k. It is important to remember that this par-

titioning is always related to I+
k and not to I+

k−1 as
the second part of (44) would suggest. This partitioning
simplifies statements and proofs of several convergence
results presented later in the paper. It also enables the
adaptation of the convergence analysis stated in [18] to
the new algorithm.

The condition (43) stated in Lemma 3 unfortunately
is not equivalent to the condition

lim
k∈K

‖xk − P [xk −∇f(xk)]‖ = 0

which we have to prove. This is due to the additional
vector β̂kd̂+

k−1 in the formula (39).
Theorem 4: Suppose that Assumptions 1–2 are satis-

fied. Moreover, assume that for any convergent subse-
quence {xk}k∈K whose limit is not a critical point

5140

1) {β̂k} is such that

lim inf
k→∞

(
β̂k‖d1

k−1‖
)
≥ ν1 lim inf

k→∞
‖∇1f(xk)‖ (45)

where ν1 is some positive constant,
2) there exists a number ν2 such that

ν2‖D−T
k ‖2‖Dk−1‖2 ∈ (0, 1) and

〈∇1f(xk), d1
k−1〉 ≤ ν2‖∇1f(xk)‖‖d1

k−1‖, (46)

whenever λk ∈ (0, 1).
Then limk→∞ f(xk) = −∞, or every accumulation point
of the sequence {xk}∞0 generated by Algorithm is a
critical point.

The condition (46) is independent of the choice of the
sequence {β̂k} and is related to the directional minimiza-
tion. Therefore it is not surprising that in some important
situation it can be substituted by another, more easily
verifiable, condition.

Lemma 5: Suppose that Assumptions 1–2 are satis-
fied. Assume that {xk} is generated by Algorithm and
{β̂k} satisfies (45) for any convergent subsequence whose
limit is not a critical point. Then either

lim
k→∞

f(xk) = −∞, (47)

or for every convergent subsequence {xk}k∈K such that

lim
k∈K

‖xk+1 − xk‖ = 0 (48)

we have

lim
k∈K

‖xk − P [xk −∇f(xk)]‖ = 0. (49)

III. The globally convergent Polak–Ribiere
algorithm.

In this section we examine Algorithm with the sequence
{β̂k} defined by

β̂k = ‖∇1f̂((x̂1
k, x̂2

k−1))‖2/

|〈∇1f̂((x̂1
k, x̂2

k−1)) −∇1f̂(x̂k−1),∇1f̂((x̂1
k, x̂2

k−1))〉|,
(50)

where, as usual, by x̂1 we mean a vector defined by in-
dices not belonging to I+

k and the vector ∇1f̂((x̂1
k, x̂2

k−1))
is as follows

∇1f̂((x̂1
k, x̂2

k−1)) = {∇xi
f̂((x̂1

k, x̂2
k−1))}i �∈I+

k
.

In [18] we proved that {β̂k} constructed in this way
guarantees that directions generated by Algorithm are
equivalent to those generated by the Polak–Ribiére al-
gorithm, if directional minimization is exact and I+

k are
empty for all k.

We can prove the theorem.
Theorem 6: If Assumptions 1–2 are satisfied, then Al-

gorithm gives

lim
k→∞

f(xk) = −∞,

or for any convergent subsequence {xk}k∈K

lim
k∈K

‖xk − P [xk −∇f(xk)]‖ = 0 (51)

provided that:
1) β̂k is given by (50),
2) there exists S < ∞ such that αk ≤ S ∀k.
The next result applies to problems which satisfy suffi-

cient optimality conditions together with the strict com-
plementarity condition. We show the important property
that Algorithm determines the set of bounds that are
active at the solution in a finite number of iterations.

Assumption 3: Let x� be a point which satisfies neces-
sary optimality conditions for problem (1), (18). Assume
also that f is twice continuously differentiable and there
exist m2 > m1 > 0 such that

m1‖z‖2 ≤ zT∇2
xxf(x�)z ≤ m2‖z‖2 (52)

for all z satisfying

z 	= 0 : (z)i = 0 ∀i ∈ A(x�), (53)

where
A(x) := {i ∈ 1, n : (x)i = 0}. (54)

Moreover

∇xi
f(x�) > 0 ∀i ∈ A(x�). (55)

We can prove the following theorem.
Theorem 7: Let x̄ be a point at which Assumption 3

is satisfied. Assume that {xk} is generated by Algorithm,
the assumptions of Theorem 6 hold and εk is calculated
according to (24). Then there exists δ > 0 such that if

‖xk̄ − x̄‖ ≤ δ

for some k̄, then {xk} converges to x̄ and

A(x̄) = A(xk) = I+
k ∀k ≥ k̄ + 1.

IV. Scaling matrices

In the previous section we showed that for a given
nonsingular matrix H−1 = DT D the preconditioned
conjugate gradient algorithm is globally convergent. The
use of constant scaling matrix is likely to be inefficient
since the function f we minimize is nonlinear. Therefore,
we are looking at the sequence of matrices {Hk} such that
each H−1

k is as close as possible to the Hessian ∇2
xxf(xk)

and can be easily factorized as D−1
k D−T

k where Dk is a
nonsingular matrix.

In the paper we present the method of obtaining the
scaling matrix that is based on the compact representa-
tion of the L-BFGS matrix proposed in [7] (see also [23]).
In that method on kth iteration the Hessian matrix is
approximated with Bk:

Bk = B0 − [B0Sk Yk]
[

ST
k B0Sk Lk

LT
k −Gk

]−1

×

×
[

ST
k B0

Y T
k

]
(56)

5141

where Sk and Yk are n×m matrices (m being a constant
parameter that controls the amount of memory used by
the algorithm) defined by

Sk = [sk−m−1, . . . , sk−1], Yk = [yk−m−1, . . . , yk−1] (57)

with sk = xk+1−xk and yk = ∇f(xk+1)−∇f(xk), while
Lk and Gk are the m × m matrices

(Lk)i,j =
{

sT
i−1yi−1 if i > j

0 otherwise

Gk = diag
[
sT

k−m−1yk−m−1, . . . , s
T
k−1yk−1

]
(58)

and where B0
k is usually a diagonal matrix. A method for

choosing B0
k that has proved to be effective in practice

is to set B0
k = γkI with

γk =
yT

k−1yk−1

sT
k−1sk−1

. (59)

If we assume then that B0 = γkI and introduce
matrices Mk = [γkSk Yk] and

Wk =
[

γkST
k Sk Lk

LT
k −Gk

]−1

then (56) can be written as Bk = γkI − MkWkMT
k .

Now we have to recall, that the scaling matrix will be
applied only to the variables with indices not in the set
I+
k . Therefore, instead of full scaling matrix Dk (so that

Bk = DT
k Dk) it will be needed to evaluate the ”reduced”

scaling matrix D+
k corresponding to B+

k , with B+
k defined

analogically to 56, but in terms of S+
k , Y +

k , L+
k and G+

k .
The matrices S+

k , Y +
k are submatrices of Sk, Yk with

rows with indices not belonging to I+
k . In turn L+

k and
G+

k are equivalent to Lk and Gk, but defined in terms
of s1 and y1. Having said all that we write B+

k = γ+
k I −

M+
k W+

k M+T
k .

From here the transformation of the matrix B+
k to

the form D+T
k D+

k will proceed along the lines presented
in [20]. First we do the QR factorization of the matrix
M+

k : M+T
k = QkRk, where Qk is n+

k × n+
k orthogonal

matrix and Rk the n × m matrix which has zero ele-
ments except the elements constituting the upper m×m
submatrix([13]). Taking into account that QT

k Qk = I we
can represent B+

k as

B+
k = QT

k

[
γkI − RT

k W+
k Rk

]
Qk. (60)

Notice that the matrix RT
k W+

k Rk has zero elements
except those lying in the upper left m × m submatrix.
We denote this submatrix by Tk and we can easily
show that it is a positive definite matrix. If we compute
the Cholesky decomposition of the matrix γkIk − Tk,
γkIk − Tk = CT

k Ck then eventually we come to the
relation B+

k = QT
k FT

k FkQk with

Fk =
[

Ck 0
0

√
γkIn+

k
−k

]
. (61)

The desired decomposition of the matrix B+
k is thus given

by B+
k = D+T

k D+
k , D+

k = FkQk, where the matrix D+
k is

nonsingular provided that s1T
i y1

i > 0 for i = 0, . . . ,m−1.
Notice that the matrix Qk does not have to be stored
since it can be easily evaluated from the Householder
vectors which have been used in the QR factorization.
These vectors can be stored in zero elements of the Rk

matrix ([13]).
Recall the relations (15)–(16) which now can be writ-

ten as

QT
k FT

k ĝ1
k = g1

k (62)
FkQkd1

k = d̂1
k. (63)

Solving these equations requires the number of floating
point operations proportional to n+

k (see, e.g., [20]).

V. Numerical Experiments

In order to verify the effectiveness of the proposed
algorithm it has been tested on problems from the CUTE
collection ([4]). The aim was to try it on problems as
large as possible, therefore choosing the problems with
the select tool was done with the criteria, that the
problem’s dimension had to exceed 1000 or the num-
ber of variables had to be modifiable. The names and
dimensions of bound constrained problems used in the
comparison, are listed below in Table I.

Problem Dimension
S368, SCOND1LS, SINEALI, SPECAN 8 – 12
CHEBYQAD, HS110 50
CVXBQP1, HARKERP2 100
EXPLIN, EXPLIN2, EXPQUAD,
QRTQUAD

120

QR3DLS 155
GRIDGENA 170
CHARDIS0 400
PROBPENL 500
BIGGSB1, CHENHARK, PENTDI, 1000
LINVERSE 1999
BDEXP 5000
MINSURFO 5306
JNLBRNG1, JNLBRNG2, JNLBRNGA,
JNLBRNGB

5625

MCCORMCK, NCVXBQP1, NCVXBQP2,
NCVXBQP3, NOBNDTOR, NONSCOMP,
OBSTCLAE, OBSTCLAL, OBSTCLBL,
OBSTCLBM, OBSTCLBU, TORSION1,
TORSION2, TORSION3, TORSION4,
TORSION5, TORSION6, TORSIONA,
TORSIONB, TORSIONC, TORSIOND,
TORSIONE, TORSIONF

10000

TABLE I

Dimensions of bound-constrained problems used for

testing the algorithm.

The implemented code (CG Algorithm) was compared
against the benchmark for bound-constrained large scale
optimization: the L-BFGS-B routine presented in [23].
Both programs were compiled on Intel PC machine under
Linux operating system. For ensuring fair comparison the
common parameters in both algorithms and the stopping
criterion were unified. Both algorithms were to terminate
on: ‖∇1f(x)‖∞/ max(1, ‖x1‖) ≤ 10−7.

The parameters for the directional minimization rule
(29)-(30) were set as: µ = 10−3, η = 0.9. The line search

5142

0.1110

BDEXP
BIGGSB1
CHARDIS0
CHEBYQAD
CHENHARK
CVXBQP1
EXPLIN
EXPLIN2
EXPQUAD
GRIDGENA
HARKERP2
HS110
JNLBRNG1
JNLBRNG2
JNLBRNGA
JNLBRNGB
LINVERSE
MCCORMCK
MINSURFO
NCVXBQP1
NCVXBQP2
NCVXBQP3
NOBNDTOR
NONSCOMP
OBSTCLAE
OBSTCLAL
OBSTCLBL
OBSTCLBM
OBSTCLBU
PENTDI
PROBPENL
QR3DLS
QRTQUAD
S368
SCOND1LS
SINEALI
SPECAN
TORSION1
TORSION2
TORSION3
TORSION4
TORSION5
TORSION6
TORSIONA
TORSIONB
TORSIONC
TORSIOND
TORSIONE
TORSIONF

LI
T
IF C
P
U

Fig. 1. Performance comparison of the proposed CG Algo-
rithm against the L-BFGS-B code for bound-constrained problems
(shown in table I). The bars correspond to algorithms performance
with m set to 5, while the additional lines show analogous compar-
ison for m = 3.

routine implemented in the code was augmented with
the steplength selection algorithm of Morè & Thuente
described in [16].

The results of the comparison are presented graph-
ically. On the figure a set of three bars is drawn for
each problem. The bars on a logarithmic scale show
the ratio of the number of iterations (LIT), number of
function+gradient evaluations (IF) and computing time
(CPU) needed by the CG Algorithm divided by those
from the executions of the L-BFGS-B code. Therefore
values above one testify in favor of the L-BFGS-B and
below one – in favor of the CG Algorithm. For some
problems one or the other algorithm has failed and it
is indicated by all tree bars drawn past the maximum
(minimum) value.

References

[1] D.P. Bertsekas, On the Goldstein–Levitin–Polyak gradient
projection method, IEEE Trans. Automat. Control 21 (1974),

pp. 174–184.
[2] D.P. Bertsekas, Projected Newton methods for optimization

problems with simple constraints, SIAM J. Control and Op-
timization 20 (1982), pp. 221–245.

[3] D.P. Bertsekas and E.M. Gafni, Projected Newton meth-
ods and optimization of multicommodity flows, IEEE Trans.
Automat. Control 28 (1983), pp. 1090–1096.

[4] I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint,
CUTE: Constrained and Unconstrained Testing Environ-
ment, Research Report RC 18860, IBM T.J. Watson Research
Center, Yorktown, USA, 1994.

[5] J.V. Burke and J.J. More, On the identification of active
constraints, SIAM J. Numer. Anal., 25 (1988), pp. 1197–1211.

[6] J.V. Burke and J.J. More, Exposing constraints, SIAM J.
Optimization 4 (1994), pp. 573–595.

[7] R.H. Byrd, J. Nocedal and R.B. Schnabel, Representa-
tions of quasi–Newton matrices and their use in the limited
memory methods, Technical Report NAM–03, Northwestern
University, 1996.

[8] A.R. Conn, N.I.M. Gould and Ph.L. Toint, Global con-
vergence of a class of trust region algorithms for optimization
with simple bounds, SIAM J. Numerical Analysis 28 (1988),
pp. 433–460.

[9] A.R. Conn, N.I.M. Gould and Ph.L. Toint, Testing a class
of methods for solving minimization problems with simple
bounds on the variables, Mathematics of Computation 50
(1988), pp. 399–430.

[10] J.C. Dunn, Gradient projection methods for systems opti-
mization problems, Control and Dynamic Systems 29 (1988),
pp. 135–195.

[11] R. Fletcher, Practical Methods of Optimization, J. Wiley:
Chichester, 1987.

[12] J.Ch. Gilbert and J. Nocedal, Global convergence proper-
ties of conjugate gradient methods for optimization, SIAM J.
Optimization 2 (1992), pp. 21–42.

[13] G.H. Golub and Ch.F. Van Loan, Matrix computations,
The Johns Hopkins University Press, Baltimore, 1996.

[14] C. Lemaréchal, An extension of Davidon methods to nondif-
ferentiable Problem, in Mathematical Programming Study 3 ,
M.L. Balinski and P. Wolfe eds., North–Holland: Amsterdam,
1975, pp. 95–109.

[15] D.C. Liua and J. Nocedal, On the limited memory BFGS
method for large scale optimization problems, Mathematical
Programming 45 (1989), pp. 03–528.

[16] J.J. Morè and D.J. Thuente, Line Search Algorithms
with Guaranteed Sufficient Decrease, ACM Transactions on
Mathematical Software, Vol. 20, No. 3, (1994) pp. 286–307.

[17] J. Nocedal and S.J. Wright, Numerical optimization,
Springer–Verlag, New York, 1999.

[18] R. Pytlak, On the convergence of conjugate gradient algo-
rithms, IMA J. Numerical Analysis 14 (1994), pp. 443–460.

[19] R. Pytlak, An efficient Algorithm for Large Scale Problems
with Simple Bound on the Variables, SIAM J. on Optimiza-
tion, Vol. 8, (1998) pp. 632–560.

[20] R. Pytlak and T. Tarnawski, Preconditioned Conjugate
Gradient Algorithms for Nonconvex Problems, Research Re-
port RR/ISI/WCY/WAT/01/2004, Military University of
Technology, Warsaw, also 43rd IEEE CDC, December, Ba-
hamas (2004) pp. 3191-3196.

[21] R. Pytlak and T. Tarnawski, Preconditioned Conjugate
Gradient Algorithms for Large Scale Problems with Box
Constraints, Research Report RR/ISI/WCY/WAT/01/2005,
Military University of Technology, Warsaw, 2005.

[22] P. Wolfe, A method of conjugate subgradients for minimiz-
ing nondifferentiable functions, in Mathematical Program-
ming Study 3, M.L. Balinski, P. Wolfe, eds., North–Holland:
Amsterdam, 1975, pp. 145–173.

[23] C. Zhu, R.H. Byrd, P. Lu and J. Nocedal, L–BFGS–B —
FORTRAN Subroutines for Large–Scale Bound Constrained
Optimization, Research Report, Northwestern University,
Department of Electrical Engineering and Computer Science,
1994.

5143

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

