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Abstract— A systematic study of the set of extremal norms
of an irreducible linear inclusion is undertaken. We recall
basic methods for the construction of extremal norms, and
consider the action of basic operations from convex analysis
on these norms. It is shown that the set of extremal norms
of an irreducible linear inclusion is a convex cone with a
compact basis in an appropriate Banach space. Furthermore,
the compact basis may be chosen to depend upper semi-
continuously on the data. We explain that this is the reason
for the local Lipschitz continuity of the joint spectral radius as
a function of the data.

Index Terms— Joint spectral radius, extremal norms, convex
cones, compact basis, Lipschitz continuity.

I. INTRODUCTION

The joint spectral radius describes the worst case expo-

nential growth behavior of a linear semigroup defined via

a generating set of compact matrices and a linear inclusion

in discrete or continuous time. This concept is important in

the study of systems under time-varying perturbations, but

surprisingly the idea has given rise to important applications

in diverse aras of mathematics, e.g. in wavelet theory, coding

theory, stochastics, combinatorics, iterated function systems.

The definition is due to Rota and Strang, [1]. Applications

in many areas are discussed in this invited session, e.g. [9].

A recurrent theme in the analysis of the joint spectral

radius has been the use of so-called extremal norms, which

are norms characterizing the exponential growth rate instan-

taneously (in discrete time) or infinitesimally (in continuous

time). Using the existence of such norms (at least for the

generic case of irreducible inclusions) numerous results have

been shown, as for instance continuity of the joint spectral

radius [2], [3], invariance of the joint spectral radius under

convexification of the generating set [2], equality of joint and

generalized spectral radius [4], [5], local Lipschitz continuity

of the joint spectral radius, [6], [7] and (in the discrete time

case) a strict monotonicity property [8], [7].

Despite this obvious importance of the concept of extremal

norms, there has been no systematic analysis of these norms

as objects in their own right, at least to the best of the

knowledge of the author. In this paper we begin this analysis

and derive several important properties. In particular, we will

see that the set of extremal norms is a convex cone with

compact basis in an appropriate Banach space. This cone

is invariant under several operations that are well-known in

convex analysis. As an application of these results we show

how the properties may be used to give a simplified proof

of the local Lipschitz continuity of the joint spectral radius

on the set of irreducible generators.
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The paper is organized as follows. In Section II we briefly

define linear inclusions in discrete and continuous time and

we recall how they generate semigroups of matrices and

define the joint spectral radius. In Section III we intro-

duce extremal norms and two special cases: Barabanov and

Protasov norms. We recall a method for constructing these

norms. A fixed point property associated with the unit ball

of Barabanov norms is presented and we introduce basic

operations that leave the set of extremal norms invariant. In

the ensuing Section IV it is shown that the set of extremal

norms is a convex cone in an appropriate Banach space: the

space of positively homogeneous, continuous functions on

K
n. In Section V it is shown that the cones of extremal norms

are “small” in that space, i.e. they have a compact basis. This

basis may be chosen to depend upper semicontinuously on

the generator. Finally in Section VI the previous results are

used to outline a simple proof of local Lipschitz continuity.

For reasons of space some proofs in this paper have been

omitted. These will appear elsewhere.

II. LINEAR INCLUSIONS

In the following we study linear inclusions in continuous

and discrete time. Whenever necessary we specify the time

set T, which is thus either equal to R+ := [0,∞) in the

continuous time case or equal to N in the discrete time case.

Let K = R, C. Given a compact set ∅ �= M ⊂ K
n×n and

the time set T = N we consider the discrete inclusion

x(t + 1) ∈ {Ax(t) | A ∈ M} , t ∈ N (1)

x(0) = x0 ∈ K
n .

A sequence {x(t)}t∈N is called a solution of (1) with initial

condition x0 if x(0) = x0 and if for all t ∈ N there exists

an A(t) ∈ M such that x(t + 1) = A(t)x(t). Associated to

(1) we can consider the sets of products of length t

St := {A(t − 1) . . . A(0) | A(s) ∈ M , s = 0, . . . , t − 1} ,

and the semigroup given by S :=
⋃∞

t=1 St.

In a similar manner we obtain a semigroup in the contin-

uous time case. Given a compact set ∅ �= M ⊂ K
n×n and

the time set T = R+ we consider the semigroup generated

by a differential inclusion

ẋ ∈ {Ax(t) | A ∈ M} . (2)

A function x : R+ → K
n is called solution of (2) if it is

absolutely continuous and satisfies ẋ (t) ∈ {Ax(t) | A ∈
M} almost everywhere. Equivalently, x(·) is the solution of

a linear time-varying differential equation

ẋ = A(t)x(t) (3)
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for an appropriately chosen measurable map A : R+ → M.

We denote the evolution operators of (3) by ΦA(t, s). The

set of time t transition operators is then given by

St := {ΦA(t, 0) | A : R+ → M measurable} .

Again S = ∪t∈TSt defines a semigroup. In the sequel, we

will always tacitly assume that S is generated by a discrete

inclusion of the form (1) or a differential inclusion of the

form (2), if we just speak of a semigroup (S, T)
In the following we wish to introduce several quantities

that characterize the growth behavior of a semigroup S.

These are the joint spectral radius (or generalized spectral

radius, or maximal Lyapunov exponent, or Lyapunov indi-

cator), that characterizes the long term exponential growth

behavior.

Remark 2.1: Whenever one considers discrete time and

continuous time systems simultaneously the dilemma ap-

pears, that in discrete time it is natural to denote exponential

growth in the form rt, while in continuous time it is natural to

be interested in estimates of the type elog rt. To keep notation

short we have opted for a unified notation using the discrete

time approach.

We begin our definitions with the joint spectral radius. Let

r(A) denote the spectral radius of A and let ‖ · ‖ be some

operator norm on K
n×n. Define for t ∈ N

ρt(M) := sup{r(St)
1/t | St ∈ St} ,

ρ̂t(M) := sup{‖St‖
1/t | St ∈ St} .

(4)

The joint spectral radius is defined by

ρ(M) := lim sup
t→∞

ρt(M) = lim
t→∞

ρ̂t(M) .

By the results in [4] the above quantity is well-defined. Note

that it does not depend on the choice of the norm ‖·‖.

If we fear that there is a chance of confusion we will

denote the joint spectral radius given by a set M via the

discrete inclusion (1) by ρ(M, N) and in the alternative case

we write ρ(M, R+). Finally, we note that in discrete time the

sets St are clearly compact if M is compact. In continuous

time, this is true if M is compact and convex. As the joint

spectral radius is invariant under convexification, we will

tacitly assume that M is convex if T = R+. Otherwise,

we would have to write clSt in many statements and we

wish to avoid this cumbersome notation.

III. EXTREMAL NORMS

A fundamental concept in the analysis of linear inclusions

as defined in the previous section are extremal norms. We

introduce these in the following definitions.

Definition 3.1: Let K = R, C, T = N, R+ and let (S, T)
be a semigroup in K

n×n.

(i) A norm v on K
n is called extremal for S if

v(S) ≤ ρ(S)t , for all t ∈ T, S ∈ St . (5)

(ii) an extremal norm v on K
n is called Barabanov norm

corresponding to S if for all x ∈ K
n, t ∈ T there is an

S ∈ clSt such that

v(Sx) = ρ(S)tv(x) . (6)

(iii) a norm v on K
n is called Protasov norm corresponding

to S if the unit ball Bv of v satisfies

ρ(S)tBv = conv clStBv , ∀ t ∈ T. (7)

Extremal norms do not exist for arbitrary compact sets

M. A sufficient condition for the existence of extremal,

Barabanov and Protasov norms is that M is irreducible, i.e.,

that only the trivial subspaces {0} and K
n are left invariant

under all A ∈ M, [2], [10], [7]. We denote the space of

compact irreducible subsets of K
n×n by I(Kn×n). Note that

I(Kn×n) is an open and dense subset of the metric space of

all nonempty compact subsets of K
n×n. (Here we use the

Hausdorff metric to define the topology).

We are at times interested in embedding the norms on K
n

in a suitable Banach space for which we choose the space of

continuous, positively homogeneous functions on K
n which

we denote

Hom (Kn, R) := {f : K
n → R | ∀α ≥ 0 : f(αx) = αf(x)

and f is continuous on K
n} .

It is easy to see that this space becomes a Banach space

when endowed with the norm

‖f‖
∞,hom := max {|f (x)| | ‖x‖2 = 1}

by noting that any continuous, positively homogeneous func-

tion f defines a continuous function on the unit sphere and

vice versa.

We note that there is a natural positive cone K in

Hom (Kn, R) which is given by the functions which are

positive on K
n \ {0}. In the following we will write w ≤ v,

if v − w ∈ K, v, w ∈ Hom (Kn, R).
Remark 3.1: It has become common to use the name

Barabanov norms because they have been introduced in [2],

[11]. It is clear from the definition, that Barabanov norms

are extremal.

In a similar vein, we use the name Protasov norm, because

these norms have been introduced in [10]. It follows from

the results of [12] that Protasov norms are extremal.

In the following we use a particular method for the

construction of Barabanov and Protasov norms, which has

been introduced in [6], [7]. We briefly recall the construction.

Given an irreducible semigroup (S, T) we define the limit
semigroup S∞ by

S∞ := {S ∈ K
n×n | ∃tk → ∞, Stk

∈ Stk
such that

ρ(S)−tkStk
→ S} .

(8)

We recall that S∞ is a irreducible, compact semigroup

with a factorization property, see [6]. Given an irreducible

semigroup (S, T) and the associated limit semigroup S∞ we

now present a general method to construct Barabanov and

Protasov norms, see [7].

Theorem 3.1: Let K = R, C, T = N, R+ and let (S, T) be

an irreducible semigroup in K
n×n and consider an arbitrary

norm ‖ · ‖ on K
n with unit ball B. Then

(i) the function

v(x) := max
S∈S∞

‖Sx‖ (9)
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is a Barabanov norm for S.

(ii) the set

B∞ := convS∞B (10)

is the unit ball of a Protasov norm corresponding to S.

A further interesting property of Barabanov norms is the

following fixed point property. The proof is omitted for

reasons of space.

Lemma 3.1: Let K = R, C, T = N, R+ and let (S, T) be

an irreducible semigroup in K
n×n with limit semigroup S∞

and Barabanov norm v corresponding to the norm ‖·‖. Then

for each x ∈ R
n and R ∈ S∞ such that v(x) = ‖Rx‖ there

exist S, T, T̃ ∈ S∞ such that

v(Sx) = v(x) , TSx = Sx , and T̃ S = R .
In the following we will always say that a norm v is a

Barabanov (Protasov) norm corresponding to a norm w if v
is obtained from w via (9), resp. (10). We note the following

interesting order relations between Barabanov, extremal and

Protasov norms.

Proposition 3.1: Let K = R, C, T = N, R+ and let (S, T)
be an irreducible semigroup in K

n×n with limit semigroup

S∞. Let w be an extremal norm for S and let v be the

corresponding Barabanov norm and v∞ the corresponding

Protasov norm, then

(i) the norm v∞ is the Protasov norm corresponding to v,

that is, for the unit ball B∞ of v∞ it holds that

B∞ := convS∞Bw(0, 1) = convS∞Bv(0, 1) ,

where Bw(0, 1) and Bv(0, 1) denote the unit balls of w and

v, respectively,

(ii) the norm v is the Barabanov norm corresponding to the

norm v∞,

(iii) v ≤ w ≤ v∞.

Proof: (i) As w is an extremal norm we have v ≤ w
and hence Bw(0, 1) ⊂ Bv(0, 1) so that we only have to

show that S∞Bv(0, 1) ⊂ S∞Bw(0, 1). To this end fix x with

v(x) = 1 and S ∈ S∞. By [6] we can factorize S = RT
with R, T ∈ S∞. Now w(Tx) ≤ 1 as otherwise we would

have v(x) ≥ w(Tx) > 1 by definition of v. This shows that

Sx = RTx ∈ RBw(0, 1) ⊂ S∞Bw(0, 1) as desired.

(ii) Again by extremality of w we have B∞ ⊂ Bw(0, 1)
and thus v∞ ≥ w. It follows for all x ∈ K

n that

v(x) = max {w (Sx) |S ∈ S∞}

≤ max {v∞ (Sx) |S ∈ S∞} ,

and we have to show the converse inequality. Now if

v∞(Sx) > 1 for some S ∈ S∞ we have that Sx /∈ B∞. We

claim that this implies that w(S′x) > 1 for some S′ ∈ S∞

and hence v(x) > 1. If w(Sx) > 1 this is clear, otherwise

we factorize S = RT again and obtain that 1 ≥ w(RTx).
Then either w(Tx) > 1 which was the claim or w(Tx) ≤ 1
which implies that Sx = RTx ∈ RBw(0, 1) ⊂ B∞, a

contradiction. This shows that

v(x) ≥ max {v∞ (Sx) |S ∈ S∞} ,

and concludes the proof. The remaining item is immediate

from the definitions.

Given a finite number of norms w1, . . . , wk with associ-

ated unit balls B1, . . . , Bk there are a number of basic op-

erations well known in convex analysis in order to construct

new norms. These are the following

(i) summation of norms, where we define for x ∈ K
n a

norm

wΣ(x) :=

k∑
j=1

wj(x), (11)

(ii) summation of unit balls, where we consider the norm

wΣ∗ the unit ball of which is given by

BΣ∗ := B1 + . . . + Bk.

For x ∈ K
n we thus define

wΣ∗(x) := inf
{
α > 0 |α−1x ∈ BΣ∗

}
, (12)

(iii) maximization, where we obtain the norm by defining

wmax(x) := max {wj(x) | j = 1, . . . , k} , (13)

(iv) and infimal convolution, which is defined by

�
k
j=1wk(x) :=

inf

⎧⎨
⎩

k∑
j=1

wj(xj) |x1, . . . , xk ∈ K
n,

k∑
j=1

xk = x

⎫⎬
⎭ .

(14)

Recall that the dual norm corresponding to a norm w is

defined by

w∗(x) := max{|〈l, x〉| | w(l) ≤ 1} .

It is well known [13, Corollary 16.4] that we have the follow-

ing duality relations between summation and summation of

unit balls, respectively maximization and infimal convolution

(wΣ∗)
∗

=

k∑
j=1

w∗
j , (15)

(
max

j=1,...,k
wj

)∗

= w∗
1�w∗

2� . . . �w∗
k. (16)

We will now show that these operations leave the set of

extremal norm invariant.

Theorem 3.2: Let K = R, C, T = N, R+ and let (S, T)
be an irreducible semigroup and let w1, . . . , wk be extremal

norms for (S, T). Then the following assertions hold.

(i) For any α > 0 the norm αw1 is an extremal norm.

(ii) the sum
∑k

j=1 wj is an extremal norm.

(iii) the norm wΣ∗ defined in (12) is extremal.

(iv) The norm wmax defined in (13) is extremal.

(v) The infimal convolution �
k
j=1wk is extremal.

Proof: We may assume that ρ (S) = 1.

(i) This is obvious from the definition.

(ii) Fix x ∈ K
n , t ∈ T and S ∈ St. Then it follows that

k∑
j=1

wj(Sx) ≤
k∑

j=1

wj(x)

by assumption and the assertion follows.
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(iii) This follows by the duality relation (15) and using that

the dual of extremal norms is extremal by [12, Lemma 6.1].

(iv) Fix x ∈ K
n, t ∈ T and S ∈ St. Then it follows that

max{w1(Sx), . . . , wk(Sx)} ≤ max{w1(x), . . . , wk(x)} .

(v) This using duality by (16) and [12, Lemma 6.1].

If we consider Barabanov and Protasov norms the situation

is more delicate as we see now. The proof follows the ideas

of the previous proof.

Proposition 3.2: Let K = R, C, T = N, R+ and let (S, T)
be an irreducible semigroup. Then the following assertions

hold.

(i) If w is a Barabanov norm for S then αw is a Barabanov

norm for any α > 0.

(ii) A sum of extremal norms wΣ is a Barabanov norm if and

only if for every x ∈ K
n, t ∈ T there exists an S ∈ St such

that ρ(S)twj(x) = wj(Sx), j = 1, . . . , k. In particular, a

sum of extremal norms is a Barabanov norm only if all the

summands are Barabanov norms.

(iii) The norm wmax defined in (13) is a Barabanov norm,

if the norms wj , j = 1, . . . , k are Barabanov norms.

The previous result has obvious consequences for Protasov

norms.

Proposition 3.3: Let K = R, C, T = N, R+ and let (S, T)
be an irreducible semigroups. Let w1, . . . , wk be Protasov

norms for (S, T). Then the following assertions hold.

(i) For any α > 0 the norm αw1 is a Protasov norm.

(ii) The norm wΣ∗ is a Protasov norm if and only if for

every x ∈ K
n, t ∈ T there exists an S ∈ St such that

w∗
j (x) = w∗

j (S∗x), j = 1, . . . , k. In particular, summation

of unit balls of extremal norms defines a Protasov norm

only if all the summands are unit balls Protasov norms.

(iii) The infimal convolution �
k
j=1wk defined in (14) is a

Protasov norm.

Proof: All assertions are immediate consequences of

Equations (15) and (16) and the duality results in [12].

IV. THE CONE OF EXTREMAL NORMS

We will now investigate the structure of the set of ex-

tremal, Barabanov and Protasov norms given an irreducible

set M ⊂K
n×n.

Lemma 4.1: Let K = R, C, T = N, R+ and let ‖·‖ be

an arbitrary norm on K
n. Let {Mk}k∈N ⊂ I(Kn×n) be a

converging sequence with Mk → M ∈I (Kn×n). Assume

that for each k the norm vk is an extremal (Barabanov,

Protasov) norm for (Mk, T) with max{vk(x) | ‖x‖ = 1} =
1. Then for every uniformly convergent subsequence of

{vk}k∈N the limit function v is an extremal (Barabanov,

Protasov) norm for (M, T).
Remark 4.1: Note that any sequence of norms {wk}k∈N

with max{wk(x) | ‖x‖ = 1} = 1 is uniformly bounded and

equicontinuous on B, the unit sphere of ‖·‖. Thus the Arzela-

Ascoli theorem guarantees the existence of a subsequence

uniformly convergent on B. Thus under the assumption of

Lemma 4.1 a uniformly convergent subsequence of {vk}k∈N

always exists and is easily seen to be convex and Lipschitz

on K
n.

Proof: We consider the time scale T to be fixed and

drop the dependence on T in the remainder of the proof

as far as the notation is concerned. Now ρ is a continuous

function of M, [2], [3], [7]. Thus we see that ρ (Mk) →
ρ (M) and thus we may normalize all generalized spectral

radii without destroying the convergence. In the following

we will therefore assume that for all k we have ρ (Mk) =
ρ (M) = 1.

Assume that v is the uniform limit of some sequence

vk of extremal norms for Mk. As for every k there is an

xk, ‖xk‖ = 1 such that vk (xk) = 1 a standard compactness

argument shows that v �≡ 0. It is easy to see that v is convex

and positively homogeneous and thus v vanishes on a linear

subspace X of K
n.

We now show that v satisfies an extremality property. To

this end let S ∈ St(M) and x ∈ K
n. By assumption there

exists a sequence {Sk} with Sk → S and such that Sk ∈
St(Mk) for every k ∈ N. Then for a given ε > 0 and all k
large enough it follows that

v(Sx) ≤ vk(Sx) + ε ≤ vk(Skx) + 2ε

≤ vk(x) + 2ε ≤ v(x) + 3ε .
(17)

Letting ε tend to 0 shows extremality of v. To complete

the proof for the case of extremal norms it remains to show

that v is a norm which amounts to showing that X = {0}.

If this is not the case then by irreducibility for every 0 �=
x ∈ X we find an S ∈ S (M) such that Sx /∈ X . This,

however, implies v (Sx) > 0, which would contradict (17),

hence X = {0}, as desired.

Assume now that the norms vk are Barabanov norms. Then

for fixed t ∈ T and every k ∈ N there exists some Sk ∈
St (Mk) such that vk(Skx) = vk(x). Let S ∈ St (M) be

any accumulation point of the sequence {Sk}. Then for a

given ε > 0 and all k large enough it follows that

v(Sx) ≥ vk(Sx) − ε ≥ vk(Skx) − 2ε

= vk(x) − 2ε ≥ v(x) − 3ε

and again the assertion follows by letting ε tend to 0.

Finally, if the vk are Protasov norms then vk → v
uniformly implies that v∗

k → v∗ uniformly and the assertion

follows from the previous considerations and by the duality

between Barabanov and Protasov norms [12].

The following theorem is the main result of this section.

Theorem 4.1: Let K = R, C, T = N, R+. The set valued

maps

E ,B,P : I(Kn×n) � Hom(Kn, R) ,

given by

E : M � {v | v is an extremal norm for (M, T) } ∪ {0} ,

B : M � {v | v is a Barabanov norm for (M, T) } ∪ {0} ,
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and

P : M � {v | v is a Protasov norm for (M, T) } ∪ {0}

have the following properties:

(i) The values of E are closed, convex cones.

(ii) The values of B and P are closed cones.

(iii) For every M ∈ I(Kn×n) and w ∈ B(M) the minimal

face of E(M) containing w is contained in B(M).
(iv) For every r > 0 the maps

Er : M �

{
v | v ∈ E (M) , ‖v‖

∞,hom ≤ r
}

,

Br : M �

{
v | v ∈ B (M) , ‖v‖

∞,hom ≤ r
}

,

Pr : M �

{
v | v ∈ P (M) , ‖v‖

∞,hom ≤ r
}

,

are upper semicontinuous with compact values.

Proof:

(i) Convexity and conicity of E(M) follow from Theo-

rem 3.2 (i) and (ii). If {vk}k∈N
⊂ E(M) is a convergent

sequence, then either vk → 0 ∈ E(M) or

ck := max {vk (x) | ‖x‖2 = 1} → c > 0 .

Then v := limk→∞ vk = limk→∞ (c/ck) vk and

Lemma 4.1 shows that v ∈ E(M). Thus E (M) is closed.

(ii) The values of B and P are cones by Theorem 3.2 (i).

Closedness follows from an application of Lemma 4.1 as

in (i).

(iii) This is immediate from Proposition 3.2 (ii).

(iv) To show upper semicontinuity of Er,Br,Pr let

{Mk}k∈N ⊂ I(Kn×n) be a converging sequence with

Mk → M ∈I (Kn×n). Assume that the norms vk ∈
Er (Mk) are uniformly convergent to v. Then either v ≡
0 ∈ Er (M) or v ∈ Er (M) by Lemma 4.1. The argument

for Br,Pr is of course exactly the same. Compactness of

the values also follows from an application of Lemma 4.1

by considering the sequence Mk ≡ M.

V. COMPACTNESS

Now for M irreducible there is an easy way to construct

a compact basis for E(M).
Lemma 5.1: Let K = R, C, T = N, R+ and assume that

M is irreducible. For any 0 �= x ∈ K
n×n the set

A(x) = {v ∈ E(M) | v(x) = 1}

is a compact basis of E(M).
Proof: Convexity of A(x) follows from convexity of

E(M) and the convexity of the condition v(x) = 1. It is

clear that for any v ∈ E(M) there is a unique α > 0 such

that αv(x) = 1, so that αv ∈ A(x). Hence, every ray in

E(M) intersects A(x) exactly once, so that A(x) is a basis

of E(M).
Finally to prove compactness, let {vk}k∈N be a sequence

in A(x). Then vk(x) = 1 for all k and by an application

of Lemma 4.1 the sequence has a convergent subsequence,

which has to converge to an extremal norm of M.

Under variation of M we obtain an upper semicontinuous

choice of the basis, i.e.

Proposition 5.1: Let K = R, C, T = N, R+ and let q :
I(Kn×n) → K

n \ {0} be a continuous map. Then the map

M �→ A(q(M),M)

is an upper semicontinuous map from M to a basis of the

cone of extremal norms corresponding to M.

Proof: Let Mk → M be a convergent sequence in

I(Kn×n). Denote xk = q(Mk) and let

vk ∈ A(xk,Mk)

be a sequence converging to a function v. By continuity of

q it follows that xk → x = q(M) �= 0 and by vk(xk) = 1
this implies that v(x) = 1, so that v �≡ 0 and it follows

as in the proof of Lemma 4.1 that v is an extremal norm

corresponding to M. By construction

v ∈ A(x,M) = A(q(M),M) ,

as desired.

A priori it is not clear, that if a Barabanov norm is con-

tained in the compact basis A(x) then also its corresponding

Protasov norm is contained in A(x). For certain choices of

x this can be guaranteed recalling the fixed point property

of Lemma 3.1.

Proposition 5.2: Let K = R, C, T = N, R+ and assume

that M is irreducible. If T ∈ S∞ and 0 �= x ∈ K
n

satisfy Tx = x, then the compact basis A(x) of E(M)
has the property that if v, v∞ are a Barabanov norm and

its corresponding Protasov norm then

v ∈ A(x) if and only if v∞ ∈ A(x) . (18)

In particular, if v ∈ A(x) all extremal norms w for which v
is the corresponding Barabanov norm satisfy w ∈ A(x).

Proof: If v ∈ A(x) then we have for the unit ball B∞ of

v∞ that B∞ = convS∞Bv ⊂ Bv . As Tx = x it follows that

x ∈ ∂B∞, or in other words that v∞(x) = 1, so that v∞ ∈
A(x). Conversely, if v∞(x) = 1, then v(x) ≥ v∞(Tx) =
1 but also v(x) ≤ v∞(x) = 1, as v∞ is extremal. This

shows the first assertion. The final statement is an immediate

consequence of Proposition 3.1 (iii).

Under the assumption of the previous Proposition we can

partition A(x) into sets of the form

[v, v∞] := {w ∈ A(x) | v ≤ w ≤ v∞} ,

where v and v∞ are a Barabanov norm and the corresponding

Protasov norm contained in A(x). We note the following

properties.

Lemma 5.2: Let K = R, C, T = N, R+ and assume that

M is irreducible. Let x ∈ K
n \{0} satisfy Tx = x for some

T ∈ S∞. Then

(i) A(x) =
⋃

[v, v∞], where the union is taken over all

Barabanov norms v ∈ A(x),
(ii) for every Barabanov norm v ∈ A(x), the set [v, v∞] is

convex, invariant under maximization, convex combination

of unit balls and infimal convolution.
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(iii) The set

B∞ := conv {αSx | S ∈ ∪t>0e
−ρ(M)tSt(M) ∪ S∞ ,

α ∈ K, |α| = 1}

is the unit ball of a Protasov norm contained in A(x) which

is the maximal element contained in A(x).

VI. LIPSCHITZ CONTINUITY

As an application of the previous results we give a new

proof for the property, that the joint spectral radius is locally

Lipschitz continuous on I(Kn×n). To this end we need the

following definition of eccentricity.

For irreducible M we are interested in the eccentricity that

an extremal norm can have and we need a measure for this.

Given a reference norm ‖·‖ we introduce for every norm v
the quantities

c−(v) := min{v(x) | ‖x‖ = 1} , (19)

c+(v) := max{v(x) | ‖x‖ = 1} . (20)

Note that for any A ∈ K
n×n we have for the induced

operator norm that

c−(v)

c+(v)
‖A‖ ≤ v(A) ≤

c+(v)

c−(v)
‖A‖ . (21)

Definition 6.1: Given two norms ‖·‖ , v on K
n the eccen-

tricity of v with respect to ‖·‖ is defined by

ecc(v) :=
c+(v)

c−(v)
.

The result we wish to obtain relies on the following simple

observation.

Lemma 6.1: Let ‖·‖ be a fixed norm on K
n. If V is a set

of norms that is compact in Hom (Kn, R), then

1 ≤ max{ecc(v) | v ∈ V} < ∞ .
Proof: This follows from a standard compactness

argument, after we note that by definition the eccentricity

is bounded on open neighborhoods of norms.

We now define for a M ∈ I(Kn×n)

C (M, T) :=

max {ecc(v) | v is extremal for (M, T)}

Corollary 6.1: Let K = R, C, T = N, R+ and let M ∈
I (Kn×n). For every norm ‖·‖ on K

n it holds that

1 ≤ C (M, T) < ∞ . (22)

Proof: By Lemma 5.1 the cone of extremal norms

E(M) has a compact basis A. Clearly the eccentricity is

constant on rays, i.e. ecc(v) = ecc(αv), for all α > 0. Thus

C (M, T) only depends on A and the result follows from

Lemma 6.1.

Corollary 6.2: Let K = R, C, T = N, R+. For M ∈
I(Kn×n) consider the constant C(M, T) defined in (22).

The map

(M, T) �→ C(M, T)

is upper semicontinuous on I(Kn×n). In particular, if P ⊂
I(Kn×n) is compact then there is a constant C > 0 such

that

1 ≤ C(M, T) ≤ C , for all M ∈ P .
Proof: As we have noted C(M, T) only depends on a

basis of E(M). By Proposition 5.1 we may choose the basis

to depend upper semicontinuously on M. Thus the assertion

follows from Lemma 6.1 and Corollary 6.1. The second

assertion is a standard property of upper semicontinuous

functions.

We now have obtained easily all the ingredients necessary

to obtain the following result on local Lipschitz continuity.

Theorem 6.1: Let K = R, C, T = N. The joint spectral

radius is locally Lipschitz continuous on I(Kn×n).
A similar argument applies for T = R+, but we skip this

part for reasons of space.

VII. CONCLUSIONS

For irreducible linear inclusions we have studied the set

of extremal norms. It is shown that this set has a wealth

of structural properties and we hope that these properties

will give new insight into the joint spectral radius. As an

application we have shown a proof of the Lipschitz continuity

of the joint spectral radius. It remains to be investigated, what

further results may be obtained using the methods developed

in this paper.
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