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Abstract— Multivariable hysteresis current controllers for
three-phases inductive loads fed by means of voltage source
inverters are considered in this paper. The stability of three
control strategies presented in literature ([1], [2] and [3]) is
rigorously analyzed by means of nonsmooth Lyapunov function
and keeping into account the switching nature of the considered
solutions. The main aim of this analysis is to enlighten the dif-
ferent robustness properties guaranteed by the aforementioned
solutions with respect to typical disturbances for this kind of
systems.

I. INTRODUCTION

Hysteresis current control for Voltage Source Inverters

(VSIs) is a common solution in apparatus as ac motor drives,

active filters, UPSs, and so on. This technique yields a

number of advantages in comparison with other current con-

trol approaches that make the Hysteresis Current Controllers

(HCCs) the preferable solution for current control in high

demanding applications where accuracy, wide bandwidth and

robustness are required.

Because of their effectiveness, a common solution in

the design of HCCs are the Multivariable Hysteresis Cur-

rent Controllers (MHCCs). Differences among this type

of controllers proposed in literature are mainly related to

the adopted reference frame and the control algorithm. A

multivariable controller has the objective to keep the current

error, computed in vector form, inside a multidimensional

tolerance region (TR) of suitable form. Because of its simple

implementation by means of inexpensive hardware, the usual

choice for TRs is a polygon. Hexagons of different orienta-

tions in the natural fixed abc frame are proposed in [1] and

in [3], a rectangle in the dq rotating frame is adopted in [4]

and a square in the αβ fixed reference frame is taken into

account in [2] and [5].

Although in literature HCC is so widely considered the

issue of the system stability is usually roughly discussed

or, in the most of cases, neglected. For example in [1], [2]

and [3] the stability analysis is not deduced in a general

framework and is based on simple “physical” considerations.

In the last years many efforts have been spent in the

development of stability investigation tools for the class

of switched systems which HCCs belong to. This systems

present equations with discontinuous right-hand side and,

with respect to the classical techniques, one cannot define

a solution, and even less discuss existence of equilibria and
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stability. A deep study of the stability for discontinuous

dynamics was made by Peleties and DeCarlo in [6] where

the work focuses on the stabilization of the so called m-

switched systems through Lyapunov-like functions. The main

limit consists in dynamics that has to be piecewise linear

and does not take into account other terms as disturbances.

A more general work in the field of Lyapunov methods is

the one by Branicky [7]. In this work the author introduces

analysis tools for switched and hybrid systems as the multiple

Lyapunov functions for analyzing Lyapunov stability.
Among the various Lyapunov methods for the study of

switched systems stability, in [8] and [9] the authors devel-

oped nonsmooth Lyapunov stability theory for a wide class

of nonsmooth Lipschitz continuous Lyapunov functions. The

theory developed is based on Filippov’s differential inclu-

sions and Clarke’s generalized gradient. The tools introduced

are quite interesting and are helpful for the design of the

manipulator controllers presented in [9] and [10].
The aim of this paper is to compare the stability properties

of the HCCs presented in [1], [2] and [3]. The stability

analysis is performed exploiting the tools developed in [8],

[9] and for every controller is presented an Admissible

Disturbance Set (ADS); if the disturbance belongs to the

ADS of the controller taken into account the asymptotic

stability of the comprehensive system is ensured.
The paper is organized as follows. Section II presents

the system model and the nomenclature used throughout the

paper. In Section III the analysis is performed. In particular,

in Subsection III-A the main assumptions and considerations,

used to make uniform the stability analysis and comparable

the results, are reported. In Subsections III-B, III-C and III-

D, the three solutions are considered and in Subsections III-E

the results are compared and discussed.

II. SYSTEM MODEL

In order to compare the stability of the three con-

trollers [1], [2] and [3] the same load is assumed. The

basic circuit taken into account for the three-phase VSI with

balanced load is shown in the first picture of Fig.1 while the

second one shows the related space-vectors representation.

The corresponding values of control voltages are reported

in Table I. System equations in the three-phase abc fixed

reference frame are:

vkabc = Riabc + L
diabc

dt
+ eabc (1)

xa + xb + xc = 0 (2)

where x is any vector in (1). Definition of vectors and

matrices are the same presented in [2].
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Fig. 1. a) Basic circuit of three-phase VSI with balanced load. b) Space-
vector representation.

TABLE I

CONTROL COMMANDS (Sip) AND RELATED VOLTAGE VECTORS.

Sap, Sbp, Scp vk va, vb, vc vα, vβ

(0, 0, 0) v0 (0, 0, 0) (0,0)

(1, 0, 0) v1 ( 2
3
E, −1

3
E, −1

3
E) (

√
2
3
E, 0)

(1, 1, 0) v2 ( 1
3
E, 1

3
E, −2

3
E) ( 1

2

√
2
3
E,

√
3

2

√
2
3
E)

(0, 1, 0) v3 (−1
3

E, 2
3
E, −1

3
E) (−1

2

√
2
3
E,

√
3

2

√
2
3
E)

(0, 1, 1) v4 (−2
3

E, 1
3
E, 1

3
E) (−

√
2
3
E, 0)

(0, 0, 1) v5 (−1
3

E, −1
3

E, 2
3
E) (−1

2

√
2
3
E, −√

3
2

√
2
3
E)

(1, 0, 1) v6 ( 1
3
E, −2

3
E, 1

3
E) ( 1

2

√
2
3
E, −√

3
2

√
2
3
E)

(1, 1, 1) v7 (0, 0, 0) (0,0)

After defining the current error ie = i − ir, where

ir is the current reference, by means of some algebraic

manipulations (1) can be rewritten in the error form as

follows:

L
dieabc

dt
= vkabc + e0abc (3)

where the term

e0abc = −L
dirabc

dt
− Rirabc − eabc

collects all the exogenous and endogenous disturbance acting

on the system and, since it is always stabilizing, the term

−Rie is neglected. The subscript k = 0, . . . , 7 in the voltage

vectors vk specifies that only eight control commands are

available, as reported in Table I.

Since constraint (2) introduces a linear dependency on the

three-phase quantities in (3), a two-dimensional representa-

tion can be adopted. The standard transformation matrix to

the equivalent system in two-phase αβ fixed frame is:

αβTabc =
√

2
3

[
1 −1/2 −1/2
0

√
3/2 −√

3/2

]
The resulting two-phase model is:

dieαβ

dt
=

1
L + M

(vkαβ + e0αβ) (4)

It is worth to mention that equation (1), and therefore also

the error dynamics (4), is a general model that can describe

the dynamics of a number of apparatus as electrical motor,

active filter and so on.

III. STABILITY ANALYSIS

A. Preliminaries

The main control specification of the three controllers

presented in [1], [2] and [3] is to bring the current error

inside the respective TRs and, once within, to keep it inside

in spite of the presence of the disturbance term. The three

different strategies [1], [2], [3] impose different voltage

vector according to the value of ie as enlighten in Fig. 2. In

some regions two or more voltage vectors can be selected,

this feature will be discussed later. The capability of the

controllers to meet the aforementioned requirement is largely

demonstrated in the related articles. However the system sta-

bility discussion is based on simple “physical” considerations

and is not arranged in a classical framework. The objective of

this paper is to study rigorously the stability of the systems

by means of the Lyapunov methods introduced in [8] and

[9]. In particular, the analysis aims to find, for each control

strategy [1], [2], [3], sharp (possibly, the largest) bounds on

the disturbance, e0, which guarantee that the respective TR,

see Fig. 2, is an attractive invariant. This information can

be use to compare the robustness properties of the different

strategies; but this comparison is formally not exhaustive

since Lyapunov analysis gives only sufficient conditions for

the stability, depending on selected Lyapunov function. To

overcome this issue practically, a uniform choice of the

Lyapunov function is imposed for each controller. Keeping

in mind the previous discussion, the analysis is performed

with the following assumptions and considerations:

1) In order to simplify the analysis, without impairing its

effectiveness, the TRs of the controllers are reduced

to the origin of the error plane choosing an hysteresis

band equal to zero. In this case when the origin is

reached an infinity switching frequency is assumed to

keep within the error in the TR.

2) Throughout the paper the nomenclature defined in [8]

is assumed. For example: K[f ](x, t) represents the set

obtained by means of the convex closure of the limiting

values of the vector field ẋ = f(x, t) in progressively

smaller neighborhoods around the Filipov’s solution

of the system; ∂V (x, t) represents the Clarke’s gen-

eralized gradient of the candidate Lyapunov function

V : Rn → R in the point (x, t); ˙̃V (x, t) is the set

obtained by means of the Chain Rule stated in [8].

3) In order to demonstrate the asymptotic stability of the

TR the Theorem 3.1 presented in [8] is taken into

account. For the sake of completeness the theorem is

reported below.

Theorem 3.1: Let ẋ = f(x, t) be essentially locally

bounded and

0 ∈ K[f ](0, t) (5)
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Fig. 2. TRs of the controllers [1], [2] and [3] respectively.

in a region Q ⊃ {x ∈ Rn| ‖x‖ < r}×{t|t0 ≤ t < ∞}.

Also let V : Rn × R be regular function satisfying:

V (0, t) = 0 (6)

and

0 < V1(‖x‖) ≤ V (x, t) ≤ V2(‖x‖) for x �= 0 (7)

in Q for some V1, V2 ∈ class K. Then if there exists

a class K function ω(·) in Q with the property

˙̃V ≤ −ω(x) < 0 (8)

the solution x(t) ≡ 0 is uniformly asymptotically

stable (condition trivially satisfied if
˙̃V is the empty

set).

4) In order to make uniform the stability analysis and con-

sistently compare the robustness results, the Lyapunov

functions used for each controller are a measure of the

distance from the adopted TR, i.e. their level curves

have the same shape of the considered TR; therefore

nonsmooth functions are used.

5) The disturbance functions e0αβ(t) of equation (4) is

assumed continuous and bounded.

B. Stability Analysis of Controller [1]

The controller taken into account presents the TR depicted

in the first picture of Fig. 2. Outside the region the space of

the current error is split in triangular zones, viz the zone

marked with Ti with i odd number, and strips that are the

2
3

1 2-
2 3

1 2
2 3

2-
3

3 2
2 3

3 2-
2 3

[ ]( , )K tkv 0

2 1= E -
3 30 0e e

Fig. 3. Set K[vk](0, t)

regions labeled with Si, i even one. However requirement 1)

reduce the region into the origin of the plane and the space

is therefore rearranged as the picture a) of Fig 4.

In order to demonstrate the asymptotic stability of the

origin the requirements of Theorem 3.1 must be met. Assume

x = ieαβ as state vector and f(x, t) = 1
L+M (vkαβ(ie) +

e0αβ) as vector field that, keeping in mind requirement 5)

about the disturbance, is essentially locally bounded. Taken

into account properties 2), 5), 7) and their proof of Theorem 1
stated in [9] the condition (5) is satisfied if

e0αβ ∈ K[vk](0, t)

set sketched in Fig. 3.

Assume the following candidate nonsmooth Lyapunov

function:

V (ie) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
3

2 (−ieα − 1√
3
ieβ) in T7

−ieβ in T9√
3

2 (ieα − 1√
3
ieβ) in T11√

3
2 (ieα + 1√

3
ieβ) in T13

ieβ in T3√
3

2 (−ieα + 1√
3
ieβ) in T5

The design of the Lyapunov function aim to define a function

with level set of the shape of TR boundary, viz an hexagon

with the orientation of picture a) in Fig. 2. Such function

is a regular one and satisfy requirement (6). Because of

the equivalence of the norms in an Euclidian space, once

requirement (7) is satisfied for a norm, then is satisfied

for all norms. Take into account the ‖·‖2, and assume

V1(φ) =
√

3
2 φ; V2(φ) = φ then requirement (7) is satisfied

and therefore is satisfied for all ‖·‖.

Finally, in order to demonstrate the uniform asymptotic

stability of the origin, it is necessary to meet requirement (8).

The analysis is performed region by region.

1) Region T3: in this case the controller could applies

whether vectors v5 or vector v6:

K[f ](ie, t) = 1
L+M (v5÷6αβ + e0αβ)

∂V =

[
∂

∂ieα
(ieβ)

∂
∂ieβ

(ieβ)

]
=

[
0
1

]

3984



Fig. 4. Reduced TRs of the controllers [1], [2] and [3] respectively.

˙̃V =
⋂

ξ∈∂V (ie,t)

ξT K[f ](ie, t) = 1
L+M

(
−

√
3

2

√
2
3E + e0β

)

and therefore:

e0β ≤
√

3
2

√
2
3E − ε ⇒ ˙̃V ≤ − ε

L+M . (9)

where ε is a strictly positive constant.
2) Region T13: the controller applies vector v4 or v5.

K[f ](ie, t) = 1
L+M (v4÷5αβ + e0αβ)

∂V =

[
∂

∂ieα
(
√

3
2 (ieα + 1√

3
ieβ))

∂
∂ieβ

(
√

3
2 (ieα + 1√

3
ieβ))

]
=

[ √
3

2
1
2

]

˙̃V = 1
L+M

(
−

√
3

2

√
2
3E +

√
3

2 e0α + 1
2e0β

)
Therefore:

e0β ≤ −
√

3e0α +
√

2E − 2ε ⇒ ˙̃V ≤ − ε
L+M (10)

3) Boundary between region T3 and region T13: in the

set of null Lebesgue measure that is the boundary between

T3 and T13 the controller pass trough the application of one

of the vectors {v5,v6} to one of the couple {v4,v5} or

viceversa.

Subcase v4 − v6:

K[f ](ie, t) = co
{
(v4αβ + e0αβ), (v6αβ + e0αβ)

}
=

= 1
L+M

⎡
⎣ (

3χ
2 − 1

)√
2
3E + e0α

−χ
√

3
2

√
2
3E + e0β

⎤
⎦ , χ ∈ [0, 1]

∂V = co

{[
0
1

]
,

[ √
3

2
1
2

]}
=

[ √
3

2 λ
1 − λ

2

]
, λ ∈ [0, 1]

˙̃V =
⋂

ξ∈∂V (ie,t)

ξT K[f ](ie, t) =

=
⋂

λ∈[0,1]

1
L+M

(√
3

2 λ

((
3χ
2 − 1

) √
2
3E + e0α

)
+

+
(
1 − λ

2

) (
−χ

√
3

2

√
2
3E + e0β

))

When the intersection over all the values of λ is not empty

the set of the Chain Rule reduces to the point:

˙̃V
λ=

1
2

= 1
L+M

(
−

√
3

4

√
2
3E +

√
3

4 e0α + 3
4e0β

)

e0β ≤ − 1√
3
e0α +

√
2

3 E − 4
3ε ⇒ ˙̃V ≤ − ε

L+M (11)

to ensure the asymptotic stability of the system the shaded

region in Fig. 3 has to be discarded. In this manner the

condition
˙̃V ≤ − ε

L+M is ensured.

Subcases v4 − v5, v5 − v5, v5 − v6: the analysis

is performed following the same procedure of the above

subcase. The conditions found on the disturbance, when
˙̃V is

not empty, are the same of (9) and (10) and substantially do

not introduce other stability conditions for the disturbance.

The stability analysis of the other regions and their

boundary leads to similar conditions about the disturbance.

Now it is possible to argue that when controller [1] is

employed and when the switching between two vectors

selects only adjacent vectors (avoiding cases as Subcase v4−
v6) the asymptotic stability of the comprehensive system is

guaranteed if the disturbance belongs to the interior of the

largest hexagon depicted in Fig. 5, a) that is the ADS. On

the other hand, if also the selection of not-adjacent vectors is

taken into account, the conditions on the boundaries among

the various regions as (11) lead to an ADS that consists of

the interior of the smallest hexagon reported in Fig. 5, a).

C. Stability Analysis of Controller [2]

In the study of this controller the following preliminary has

to be pointed out. The current error space is characterized

by a quadratic TR (picture b) of Fig. 2)) and, taking into

account requirement 1), reduces to the regions depicted in

b), Fig. 4: regions A5−i with i∈{1, 2} are related to region

A5 of Fig. 2), regions A6−i, i∈{2, 3} are the corresponding

of region A6, and so on. In the rearrangement of the current

error space the boundary between region A6 and region

S1 reaches the boundary between S1 and A2 involving the

suppression of region S1. Hence in the following stability

analysis the vector v1 will not be taken into account. The

same holds for region S4 and vector v4.

The analysis procedure follows the same steps of the

previous one. Assume the state vector and the vector field

as defined in III-B. Again the field taken into account is

essentially locally bounded. Condition (5) is satisfied when

the e0αβ belongs to the set K[vk](0, t) that, taking into

account the previous considerations about vectors v1 and v4,

3985



2
3
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3 2=
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2
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1 2-
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2-
3

3 2
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3 2-
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2 30e

1 2=
2 30e

2
3

1 2-
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1 2
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2-
3
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3 2-
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2=
30e

12 2= E -
3 30 0e e

3 2− += E0 0e e

Fig. 5. ADS of the controllers [1], [2] and [3], respectively.

assume the shape of the bold region of picture b), Fig. 5. The

following candidate Lyapunov function is taken into account:

V (ie) = ‖ie‖∞ =

⎧⎪⎪⎨
⎪⎪⎩

(ieα, 0)T in Aj−1, j∈{3, 5}
(0, ieβ)T in Aj−2, j∈{5, 6}
(−ieα, 0)T in Aj−3, j∈{2, 6}
(0,−ieβ)T in Aj−4, j∈{2, 3}

This Lyapunov function splits further the four regions of

the current error in eight subregions as depicted in Fig. 4,

has level sets of the TR shape, viz squares, is a max

function [9] and therefore a regular one and satisfy require-

ment (6). Condition (7) is satisfied by means of the functions

V1(φ) = 1√
2

φ; V2(φ) = φ and with ‖·‖ = ‖·‖2. Then the

requirement (8) of Theorem 3.1 has to be satisfied to prove

uniform asymptotic stability. As in previous subsection the

analysis is performed region by region.

1) Region A5−1: the following computations hold:

K[f ](ie, t) = 1
L+M (v5αβ + e0αβ)

∂V = ∂‖ie‖∞ =

[
∂

∂ieα
(ieα)

∂
∂ieβ

(ieα)

]
=

[
1
0

]

˙̃V = 1
L+M (− 1

2

√
2
3E + e0α)

e0α ≤ 1
2

√
2
3E − ε ⇒ ˙̃V ≤ − ε

L+M . (12)

2) Region A5−2: in order to guarantee asymptotic stabil-

ity here the disturbance has to satisfy the condition:

K[f ](ie, t) = 1
L+M (v5αβ + e0αβ)

∂V =

[
∂

∂ieα
(ieβ)

∂
∂ieβ

(ieβ)

]
=

[
0
1

]

˙̃V = 1
L+M (−

√
3

2

√
2
3E + e0β)

e0β ≤
√

3
2

√
2
3E − ε ⇒ ˙̃V ≤ − ε

L+M . (13)

3) Boundary between region A5−1 and A5−2:

K[f ](ie, t) = 1
L+M (v5αβ + e0αβ)

∂V = co

{[
1
0

]
,

[
0
1

]}

˙̃V =
⋂

λ∈[0,1]

1
L+M

(
λ

(
− 1

2

√
2
3E + e0α +

√
3

2

√
2
3E − e0β

)
+

−
√

3
2

√
2
3E + e0β

)

If the term multiplied by λ is not null the set
˙̃V is empty,

whilst if the term is null (13) is obtained again.

4) Boundary between region A5−2 and A6−2:

K[f ](ie, t) = 1
L+M co

{
(v5αβ + e0αβ), (v6αβ + e0αβ)

}
∂V =

[
0
1

]
˙̃V = 1

L+M (−
√

3
2

√
2
3E + e0β)

and condition (13) holds again.

Similar conditions about the disturbance can be obtained in

the other regions.

When controller [2] is adopted, the ADS which guarantee

the asymptotic stability is the interior of the bold rectangular

region depicted in b), Fig. 5.

D. Stability Analysis of Controller [3]

Condition (5) holds if e0αβ belongs to the hexagonal

region of Fig. 3. The candidate Lyapunov function:

V (ie) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ieα in P1√
3

2

(
− 1√

3
ieα − ieβ

)
in P2

√
3

2

(
1√
3
ieα − ieβ

)
in P3

ieα in P4√
3

2

(
1√
3
ieα + ieβ

)
in P5

√
3

2

(
− 1√

3
ieα + ieβ

)
in P6

has hexagonal level sets with the orientation depicted in c),

Fig. 2, is a regular function and satisfy requirement (6). Con-

dition (7) holds with the functions V1(φ) =
√

3
2 φ; V2(φ) =

φ with ‖·‖ = ‖·‖2. Now requirement (8) of Theorem 3.1 has

to be satisfied to derive the ADS.
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1) Region P4: the following condition holds:

K[f ](ie, t) = 1
L+M (v4αβ + e0αβ)

∂V =

[
∂

∂ieα
(ieα)

∂
∂ieβ

(ieα)

]
=

[
1
0

]
˙̃V = 1

L+M (−
√

2
3E + e0α)

e0α ≤
√

2
3E − ε ⇒ ˙̃V ≤ − ε

L+M (14)

2) Region P5:

K[f ](ie, t) = 1
L+M (v5αβ + e0αβ)

∂V =

⎡
⎣ ∂

∂ieα

√
3

2

(
1√
3
ieα + ieβ

)
∂

∂ieβ

√
3

2

(
1√
3
ieα + ieβ

)
⎤
⎦ =

[ 1
2√
3

2

]

˙̃V = 1
L+M (−

√
2
3E + 1

2e0α +
√

3
2 e0β)

e0β ≤ 2
√

2
3 E − 1√

3
e0α − 2√

3
ε ⇒ ˙̃V ≤ − ε

L+M (15)

3) Boundary between region P4 and P5:

K[f ](ie, t) = 1
L+M co

{
(v4αβ + e0αβ), (v5αβ + e0αβ)

}
∂V = co

{[
1
0

]
,

[ 1
2√
3

2

]}
˙̃V =

⋂
λ∈[0,1]

1
L+M

((
1 − λ

2

)(
− (

1 − χ
2

) √
2
3E + e0α

)
+

+
√

3
2 λ

(
−χ

√
3

2

√
2
3E + e0β

))

When
˙̃V is not empty the intersection over all the values of

λ is the following point:

˙̃V
λ=

1
2

= 1
L+M

(
− 3

4

√
2
3E + 3

4e0α +
√

3
4 e0β

)

e0β ≤ −
√

3e0α +
√

2E − 4√
3

ε ⇒ ˙̃V ≤ − ε
L+M (16)

to ensure the asymptotic stability of the system the shaded

region in Fig. 5 c) has to be discarded. In this manner the

condition
˙̃V ≤ − ε

L+M is ensured.

The stability analysis in the other regions follows in the

same way. The resulting ADS of the controller [3] ensuring

the asymptotic stability of the system is the interior of the

bold hexagonal region depicted in Fig. 5, c).

E. Comparison of the three controllers

The ADSs obtained in previous subsections ensure rigor-

ously the asymptotic stability of the systems. The stability

considerations stated in [1], [2] and [3] were obtained by

means of physical considerations and substantially define the

inscribed circumferences depicted in Fig. 5 inside the admis-

sible regions obtained in this paper. From this point of view

this work represents an improvement because the stability

analysis is made by means of rigorous Lyapunov methods

and moreover the admissible regions for the disturbance are

enlarged.

The introduced stability analysis allows to compare the

performances of the various controllers. The controller [2] is

characterized by the smallest ADS while the others two, [1]

and [3], have ADSs of the same type. However it is worth

to point out some differences among these results. The

ADS of controller [1] is basically due to condition (5).

Requirement
˙̃V ≤ −ω(x) < 0, both in the case of continuous

regions Ti and in boundaries among the regions, does not

modify the region depicted in Fig. 3. The same can be

stated for the controller [2]. This does not hold as long

as controller [3] is taken into account. Indeed, the stability

conditions computed in the regions Pi, as for example (14)

and (15), lead to a larger hexagon with orientation equal to

the one of the controller’s TR. This hexagon is drawn in

Fig. 5 c) using dashed line. Requirement (5) and stability

conditions obtained in the boundaries reduce this region to

a smaller one, viz the bold hexagon.

IV. CONCLUSIONS

Three multivariable hysteresis current control strategies for

three-phases inductive load fed by voltage source inverter

have been compared. Nonsmooth Lyapunov functions have

been exploited to derive the stability and robustness prop-

erties of each solution. In particular, to obtain robustness

results which could be practically compared each other, the

choice of the Lyapunov functions has been suitably restricted.

The presented results enlighten that the different strategies

have quite different robustness property with respect to dis-

turbances typically affecting this kind of system. This means

that the different strategies have a different effectiveness in

using the voltage source inverter capability.
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