
A Lower Bound on Convergence of a Distributed Network
Consensus Algorithm

M. Cao1

Dept. of Electrical Engineering

Yale University

m.cao@yale.edu

D. A. Spielman2

Dept. of Computer Science

Yale University

spielman@cs.yale.edu

A. S. Morse1

Dept. of Electrical Engineering

Yale University

as.morse@yale.edu

Abstract— This paper gives a lower bound on the con-
vergence rate of a class of network consensus algorithms.
Two different approaches using directed graphs as a main
tool are introduced: one is to compute the “scrambling
constants” of stochastic matrices associated with “neighbor
shared graphs” and the other is to analyze random walks
on a sequence of graphs. Both approaches prove that
the time to reach consensus within a dynamic network
is logarithmic in the relative error and is in worst case
exponential in the size of the network.

I. INTRODUCTION

Distributed algorithms where processors reach con-

sensus by exchanging locally computed results have

been studied extensively in the field of distributed and

parallel computations [1], [2]. In recent years, network

consensus algorithms have attracted more attention from

control scientists and engineers interested in distributed

coordination of groups of mobile autonomous agents.

Some simple local rules can cause a group of agents to

behave cooperatively without the existence of a central

controller. The cooperative behaviors include moving in

the same direction [3], [4], aggregating in swarms [5],

and rendezvousing at the same location [6], [7]. Two

salient features make the convergence of the consensus

algorithms difficult to analyze in the context of dis-

tributed coordination within multi-agent systems: First,

the final consensus value cannot be determined a priori

and depends on the initial value of each agent as well

as the dynamic interaction between them; and secondly,

because agents move, the underlying network topology

may not be fixed during system evolutions.

A special class of network consensus algorithms for

flocking via distributed averaging was first studied in [8],

1. The research of these authors were supported in part, by grants
from the Army Research Office and the National Science Foundation
and by a gift from the Xerox Corporation.

2. The research of this author was supported by the National Science
Foundation under Grant No. 0324914.

and convergence was proved under mild connectivity

assumptions in [3] by using switching linear system

theory and algebraic graph theory. Since then various

works have been done to develop this class of algorithms

in continuous time [9], on weakly connected graphs [4],

and in asynchronous scenarios [10]. However, so far few

if any specific convergence rates have been derived for

this class of algorithms. This is due to the fact that tools

such as joint spectrum theory cannot compute an explicit

bound for this particular class of switched linear systems

without equilibriums that can be determined beforehand.

This paper will study the convergence rate for the

flocking process based on the encountered directed

graphs. A lower bound on the convergence rate is

presented using “scrambling constants” for “neighbor

shared graphs”. It will be shown that the time needed for

all the agents’ headings to converge to a ε-neighborhood

of the steady state is logarithmic in ε and in worst case

exponential in the total number of agents. To better

understand the factors that influence the convergence

rate, a separate approach using random walks on graphs

is also discussed.

The rest of the paper is organized as follows. In

section 2, the flocking algorithm based on distributed

averaging is introduced. In section 3, the convergence is

proved for the case when graphs encountered during the

flocking process are all “neighbor shared”. In section 4,

we study the more general case when graphs encoun-

tered are all rooted. In section 5, a separate approach

using random walks on graphs is introduced.

II. FLOCKING VIA DISTRIBUTED AVERAGING

Consider a system that consists of n mobile au-

tonomous agents, labelled 1 through n, that try to reach

agreement on a scalar variable which will be called

the heading. Each agent’s heading θi is updated using

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

TuA08.6

0-7803-9568-9/05/$20.00 ©2005 IEEE 2356

a simple local rule based on the average of its own

heading and the headings of its “neighbors”. Agent i’s
neighbors at time t are those agents, including itself,

whose value at time t is available to agent i. Because

of motion or other possible causes, agent i’s neighbors

may change with time. Let Ni(t) and ni(t) denote the

set of labels and the number of agent i’s neighbors at

time t respectively. Then agent i’s heading evolves in

discrete-time in accordance with a model of the form

θi(t + 1) =
1

ni(t)

∑
j∈Ni(t)

θj(t) (1)

where t is a discrete-time index taking values in the non-

negative integers {0, 1, 2, . . .}. We assume that the time

between such updates is bounded below by a positive

number τB called a dwell time, and that all agents update

their values synchronously.

The explicit form of the update equations determined

by (1) depends on the neighbor relationships which

exist at time t. These relationships can be conveniently

described by a directed graph G with vertex set V =
{1, 2, . . . n} and arc set A(G) ⊂ V×V which is defined

in such a way so that (i, j) is an arc or directed edge

from i to j just in case agent i is a neighbor of agent j.

Thus G is a directed graph on n vertices with at most

one arc from any vertex to another and with exactly one

self-arc at each vertex. We write G for the set of all

such graphs. We use the symbol P to denote a suitably

defined set indexing G. Thus G = {Gp : p ∈ P} where

for p ∈ P , Gp denotes the pth graph in G. It is natural

to call a vertex i a neighbor of vertex j in G if (i, j) is

an arc in G. In addition we sometimes refer to a vertex

k as an observer of vertex j in G if (j, k) is an arc in G.

Thus every vertex of G can observe its neighbors, which

with the interpretation of vertices as agents, is precisely

the kind of relationship G is suppose to represent.

The set of agent heading update rules defined by (1)

can be written in state form. Toward this end, for each

p ∈ P , define the flocking matrix

Fp = D−1
p A′

p (2)

where A′
p is the transpose of the adjacency matrix of

the graph Gp and Dp is the diagonal matrix whose jth

diagonal element is the in-degree of vertex j within the

graph1. Then

θ(t + 1) = Fσ(t)θ(t), t ∈ {0, 1, 2, . . .} (3)

1By the adjacency matrix of a directed graph G ∈ G is meant an
n × n matrix whose ijth entry is 1 if (i, j) is an arc in A(G) and 0
if it is not. The in-degree of vertex j in G is the number of arcs in
A(G) of the form (i, j); thus j’s in-degree is the number of vertices
it observes.

where θ is the state vector θ = [θ1 θ2 · · · θn]′ and

σ : {0, 1, . . .} → P is a switching signal whose value at

time t, is the index of the graph representing the agents’

neighbor relationships at time t.

We will show for a large class of switching signals

that all the agents will reach the same steady state value

θss given any initial set of agent headings. Convergence

of the θi to θss is equivalent to the state vector θ
converging to a vector of the form θss1 where 1 is the

n× 1 vector [1 1 · · · 1]′. In addition, we will also give

a sharp lower bound on the rate of this convergence

process. The main challenge lies in how to define and

analyze the rate of convergence for a multi-agent system

under changing neighbor relationships.

III. NEIGHBOR SHARED GRAPHS

We will first give a convergence result for the case

where the graphs encountered along a trajectory of

(3) are all “neighbor shared”. This requirement can be

relaxed significantly as explained in the next section. Let

us call G ∈ G neighbor shared if each set of 2 distinct

vertices share a common neighbor. It is now possible to

state the following elementary convergence result.

Theorem 1: Let Q denote the subset of P consisting

of those indices q for which Gq ∈ G is neighbor shared.

Let x(0) be fixed and let σ : {0, 1, 2, . . .} → P be a

switching signal satisfying σ(t) ∈ Q, t ∈ {0, 1, . . .}.

Then there is a constant steady state heading θss de-

pending only on θ(0) and σ for which

lim
t→∞ θ(t) = θss1 (4)

where the limit is approached exponentially fast.

In order to explain why this theorem is true, we

will make use of certain structural properties of Fp. As

defined, each Fp is square and non-negative, where by

a non-negative matrix is meant a matrix whose entries

are all non-negative. Each Fp also has the property that

its row sums all equal 1 {i.e., Fp1 = 1}. Matrices

with these two properties are called {row} stochastic.

Because each vertex of each graph in G has a self-arc,

the Fp have the additional property that their diagonal

elements are all non-zero.

Stochastic matrices have been studied extensively in

the literature for a long time largely because of their

connection with Markov chains [11]. One problem of

particular relevance here is to describe the asymptotic

behavior of products of n×n stochastic matrices of the

2357

form

SjSj−1 · · ·S1

as j tends to infinity. This is equivalent to looking at

the asymptotic behavior of all solutions to the recursion

equation

x(j + 1) = Sjx(j) (5)

because any solution x(j) can be written as

x(j) = (SjSj−1 · · ·S1) x(1), j ≥ 1

One especially useful idea, which goes back at least to

[12], is to consider the behavior of the scalar-valued non-

negative function V (x) = �x� − �x� along solutions

to (5) where x = [x1 x2 · · · xn]′ is a non-negative

n×1 vector and �x� and �x� are its largest and smallest

elements respectively. The key observation is that for

any n × n stochastic matrix S, �Sx� ≥ �x�, �Sx� ≤
�x� and, as a consequence, that V (Sx) ≤ V (x). These

inequalities and (5) imply that the sequences

�x(1)�, �x(2)�, . . . �x(1)�, �x(2)�, . . .
V (x(1)), V (x(2)), . . .

are each monotone. Hence, because each of these se-

quences is also bounded, the limits

lim
j→∞

�x(j)�, lim
j→∞

�x(j)�, lim
j→∞

V (x(j))

all exist. Note that whenever the limit of V (x(j)) is

zero, all components of x(j) must tend to the same value

and moreover this value must be a constant equal to the

limiting value of �x(j)�.

We will make use of the standard partial ordering

≥ on n × n nonnegative matrices by writing B ≥ A
whenever B −A is nonnegative. We extend the domain

of definitions of �·� and �·� to the class of all non-

negative n × m matrix M , by letting �M� and �M�
now denote the 1 × m row vectors whose jth entries

are the smallest and largest elements respectively, of the

jth column of M . For any infinite sequence of n × n
stochastic matrices S1, S2, . . ., we henceforth use the

symbol �· · ·Sj · · ·S1� to denote the limit

�· · ·Sj · · ·S2S1� = lim
j→∞

�Sj · · ·S2S1� (6)

From the preceding discussion it is clear that this limit

exists whether or not the product Sj · · ·S2S1 itself has

a limit. In the sequel we will be interested in the non-

negative matrix

��|S|�� = 1(�S� − �S�) (7)

Note that whenever ��|S|�� = 0, all rows of S must be

equal.

Lemma 1: For any two n× n stochastic matrices S1

and S2,

��|S2S1|�� ≤ µ(S2)��|S1|�� (8)

where for any n × n stochastic matrix S,

µ(S) = max
i,j

(
1 −

n∑
k=1

min{sik, sjk}
)

(9)

The proof of this lemma will appear in the full length

version of this paper. The quantity µ(S) has been widely

studied before [13], [11] and is known as the scrambling
constant of the stochastic matrix S. Note that since the

row sums of S all equal 1, µ(S) is non-negative. It is

easy to see that µ(S) = 0 just in case all the rows of S
are equal. Let us note that for fixed i and j, the kth term

in the sum appearing in (9) will be positive just in case

both sik and sjk are positive. It follows that the sum will

be positive if and only if for at least one k, sik and sjk

are both positive. Thus µ(S) < 1 if and only if for each

distinct i and j, there is at least one k for which sik and

sjk are both positive. Matrices with this property have

been widely studied and are called scrambling matrices.

Thus a stochastic matrix S is a scrambling matrix if and

only if µ(S) < 1. It is easy to see that the definition of

a scrambling matrix also implies that S is scrambling if

and only if its associated graph is neighbor shared.

Suppose that Fp is a flocking matrix for which Gp is

neighbor shared. In view of the definition of a flocking

matrix, any non-zero entry in Fp must be bounded

below by 1
n . Fix distinct i and j and suppose that k

is a neighbor that i and j share. Then fik and fjk

are both non-zero, so min{fik, fjk} ≥ 1
n . This implies

that the sum in (9) must be bounded below by 1
n and

consequently that µ(Fp) ≤ 1 − 1
n .

Now let Fp be that flocking matrix whose graph

Gp ∈ G is such that vertex 1 has no neighbors other

than itself, vertex 2 has every vertex as a neighbor, and

vertices 3 through n have only themselves and agent 1
as neighbors. Since vertex 1 has no neighbors other than

itself, fi,k = 0 for all i and for k > 1. Thus for all i, j, it

must be true that
∑n

k=1 min{fik, fjk} = min{fi1, fj1}.

Now vertex 2 has n neighbors, so f2,1 = 1
n . Thus

min{fi1, fj1} attains its lower bound of 1
n when either

i = 2 or j = 2. It thus follows that with this Fp, µ(Fp)
attains its upper bound of 1 − 1

n . We summarize.

Lemma 2: Let Q be the set of indices in P for which

Gp is neighbor shared. Then

max
q∈Q

µ(Fq) = 1 − 1
n

(10)

2358

Lemma 1 and 2 will be used in the proof of Theorem

1.

Proof of Theorem 1: By definition, the graph Gp of

each matrix Fp in the finite set {Fp : p ∈ Q} is neighbor

shared. By assumption, Fσ(t) ∈ {Fp : p ∈ Q} for t ≥ 0.

Let λ = 1 − 1
n . In view of Lemma 1 and 2,

��|Fσ(t) · · ·Fσ(0)|�� ≤ ��|Fσ(t)|�� · · · ��|Fσ(0)|�� ≤ λt+1

and λt+1 approaches zero exponentially fast as t →
∞. Thus the product Fσ(t) · · ·Fσ(0) converges to

1�· · ·Fσ(t) · · ·Fσ(0)� exponentially fast at a rate no

slower than λ. But it is clear from (3) that

θ(t) = Fσ(t−1) · · ·Fσ(1)Fσ(0)θ(0), t ≥ 1

Therefore (4) holds with θss = �· · ·Fσ(t) · · ·Fσ(0)�θ(0)
and the convergence is exponential.

Hence, we have proved that 1 − 1
n is a worst case

bound on the rate of convergence of products of flocking

matrices whose graphs are all neighbor shared.

IV. ROOTED GRAPHS

The proof of Theorem 1 depends crucially on the fact

that the graphs encountered along a trajectory of (3) are

all neighbor shared. The aim of this section is to show

that this requirement can be relaxed. To do this we need

to have a meaningful way of “combining” sequences of

graphs so that only the combined graph need be neighbor

shared, but not necessarily the individual graphs making

up the combination. Let us agree to say that the compo-
sition [10] of a directed graph Gp1 ∈ G with a directed

graph Gp2 ∈ G, written Gp2 ◦Gp1 , is the directed graph

with vertex set {1, . . . , n} and arc set defined in such

a way so that (i, j) is an arc of the composition just

in case there is a vertex q such that (i, q) is an arc

of Gp1 and (q, j) is an arc of Gp2 . Thus (i, j) is an

arc of Gp2 ◦ Gp1 if and only if i has an observer in

Gp1 which is also a neighbor of j in Gp2 . Note that

G is closed under composition and that composition

is an associative binary operation; because of this, the

definition extend unambiguously to any finite sequence

of directed graphs Gp1 , Gp2 , . . . , Gpk
. Note that the

definition of composition takes into account the order in

which the graphs are encountered along a trajectory.

In the sequel we will call a vertex i of a directed graph

G ∈ G a root of G if for each other vertex j of G, there

is a path from i to j2. We will say that G is rooted at i

2In a directed graph G ∈ G, by the path from vertex i1 to
vertex ik is meant a sequence of vertices {i1, i2, . . . , ik} such that
(i1, i2), (i2, i3), . . . , (ik−1, ik) are arcs of G.

if i is in fact a root. Thus G is rooted at i just in case

each other vertex of G is reachable from vertex i along

a path within the graph. By a rooted graph G ∈ Ḡ we

mean a graph which possesses at least one root.

Lemma 3: Each neighbor shared graph in G is rooted.

Proof: In a graph G ∈ G, we say v is a root for

vertices 1, . . . , k if each of vertices 1, . . . , k is reachable

from v. In a neighbor shared graph, vertices 1 and 2 have

a root. One may now prove by induction that if 1, . . . , k
have a root for an integer 2 ≤ k < n, then 1, . . . , k + 1
do as well: any common neighbor of vertex k + 1 and

the root of 1, . . . , k will suffice.

It is worth noting that although neighbor shared

graphs are rooted, the converse is not necessarily true.

The reader may wish to construct a three vertex example

which illustrates this. Although rooted graphs in G need

not be neighbor shared, it turns out that the composition

of any n − 1 rooted graphs in G is.

Lemma 4: The composition of any set of m ≥ n− 1
rooted graphs in G is neighbor shared.

The proof of this lemma will appear in the full length

version of this paper.

It is also possible to derive a worst case convergence

rate for products of flocking matrices which have rooted

rather than neighbor-shared graphs. We will use the

following result without providing its proof.

Lemma 5: Let b be a positive number less than 1. Let

Sm
r , m ≥ 1, denote the set of all m-term matrix products

S = SmSm−1 · · ·S1 where each Si is an n×n stochastic

matrix with a rooted graph in G and all nonzero entries

bounded below by b. Then

max
S∈Sn−1

r

µ(S) = 1 − b(n−1)

It turns out that this bound is actually attained if all the

Si are the same taking the form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0
b 1 − b 0 0 · · · 0
0 b 1 − b 0 · · · 0
...

...
...

...
...

...
...

...
...

... 1 − b 0
0 0 0 0 b 1 − b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

It is possible to apply at least part of the preceding to

the case when the Si are flocking matrices. Towards

this end, let Gp1 , Gp2 , . . . , Gpn−1 be any sequence of

2359

n − 1 rooted graphs in G and let Fp1 , . . . , Fpn−1 be

the sequence of flocking matrices associated with these

graphs. Since each Fp is a flocking matrix, it must be

true that any non-zero element in Fp is bounded below

by 1
n . Then

µ(Fpn−1 · · ·Fp1) ≤ 1 −
(

1
n

)(n−1)

(12)

Unfortunately, we cannot use the preceding reasoning

to show that (12) holds with equality for some sequence

of rooted graphs. This is because the stochastic matrix

in (11) is not a flocking matrix when b = 1
n , except

in the special case when n = 2. Nonetheless (12)

can be used as follows to develop a convergence rate

for products of flocking matrices whose graphs are all

rooted. Let Q denote the set of p ∈ P for which Gp is

rooted and write Fn−1
r for the closed set of all products

of flocking matrices of the form Fpn−1 · · ·Fp1 where

each pi ∈ Q. In view of Lemma 4, Gpn−1 ◦ · · · ◦ Gp1

is neighbor shared for every list of n − 1 indices

{p1, p2, . . . , pn−1} from Q, and (12) holds for every

such list. Now for any sequence p(1), p(2), . . . , p(j) of

indices in Q, the corresponding product Fp(j) · · ·Fp(1)

of flocking matrices can be written as

Fp(j) · · ·Fp(1) = S̄(j)S̄k · · · S̄1

where

S̄i = Fp(i(n−1)) · · ·Fp((i−1)(n−1)+1), 1 ≤ i ≤ k,

S̄(j) = Fp(j) · · ·Fp(k(n−1)+1),

and k is the integer quotient of j divided by n − 1. In

view of (12)

µ(S̄i) ≤ λ̄, i ∈ {1, 2, . . . , k}
where

λ̄ = 1 −
(

1
n

)(n−1)

It is clear that S̄k · · · S̄1 must converge to

1�· · · S̄k · · · S̄1� exponentially fast as k → ∞ at

a rate no slower than λ̄. But S̄(j) is a product of at

most n − 1 stochastic matrices, so it is a bounded

function of j. It follows that the product Fp(j) · · ·Fp(1)

must converge to 1�Fp(j) · · ·Fp(1)� exponentially fast at

a rate no slower than λ = λ̄
1

n−1 . Using the development

similar to that used in the proof of Theorem 1, we can

prove the following theorem.

Theorem 2: Let Q denote the subset of P consisting

of those indices q for which Gq ∈ G is rooted. Let θ(0)
be fixed and let σ : {0, 1, 2, . . .} → P be a switching

signal satisfying σ(t) ∈ Q, t ∈ {0, 1, . . .}. Then there

is a constant steady state heading θss depending only on

θ(0) and σ for which

lim
t→∞ θ(t) = θss1 (13)

where the limit is approached exponentially fast at a rate

no slower than

λ =

{
1 −

(
1
n

)(n−1)
} 1

n−1

It is possible to develop analogous results for strongly
connected graphs, where by a strongly connected graph

we mean a directed graph that has a path from each

vertex to every other vertex. We will state the following

result without proof.

Corollary 1: Under the hypotheses of Theorem 2, and

the additional assumption that σ takes values only in

the subset of Q composed of those indices for which

Gp is strongly connected, convergence of θ(t) to θss1
is exponential at a rate no slower than

λ =
{

1 −
(

1
n

)m} 1
m

where m is the integer quotient of n divided by 2.

V. RANDOM WALKS ON DIRECTED GRAPHS

We need some more ideas in this section. By the

reverse graph of G ∈ G, written G
′, we mean the graph

in G which results when the directions of all arcs in

G are reversed. It is clear that G is closed under the

reverse operation. It is also clear that (Gp ◦ Gq)′ =
G

′
q ◦ G

′
p, p, q ∈ P . For any flocking matrix Fp, p ∈ P ,

let γ(Fp) denote that graph G ∈ G corresponding to

Fp. A different approach to analyzing the convergence

of the flocking process is to multiply Fp by row vectors

from the left. In this approach, we are looking at the

random walk [14] where at each time step we apply a

different graph G
′
σ(t), σ : {0, 1, 2, . . .} → P . Then the

random walk will converge to some fixed distribution if

the flocking process converges.

First, we will consider walks that begin at just one

vertex, that is to begin with a distribution given by an

elementary 1×n vector ei with ei(i) = 1 and ei(j) = 0
for j �= i. In the sequel, let Q denote the set of p ∈ P
for which Gp is rooted.

Lemma 6: For any sequence p(1), p(2), . . . , p(n− 1)
of indices in Q, let Ri denote the set of indices of those

vertices that are reachable from vertex i after a walk on

2360

a sequence of n − 1 graphs γ(Fp(n−1))′, . . . , γ(Fp(1))′.
Then for all i and j ∈ Ri(

eiFp(n−1) · · ·Fp(1)

)
(j) ≥ (

1
n

)(n−1) (14)

Proof: The vector ei can be thought of as a unit

positive mass at vertex i. From the definition of Ri, we

know vertex j can be reached from vertex i by a walk

of n−1 steps on the sequence of n−1 graphs. Since in

each step at least 1
n fraction of the mass is propagated

along an arc, we know vertex j has at least (1
n)(n−1)

fraction of the unit mass.

Now we will consider the difference between any pair

of rows of the matrix Fp(n−1) · · ·Fp(1).

Lemma 7: For any sequence p(1), p(2), . . . , p(n− 1)
of indices in Q and for each i �= j

‖(ei − ej)Fp(n−1) · · ·Fp(1)‖1 ≤ 2 − 2(
1
n

)(n−1) (15)

where for a vector a = [a1 a2 . . . an]′, ‖a‖1 =
∑

i |ai|.
Proof: The initial vector ei − ej can be thought of

as unit positive mass at vertex i and unit negative mass

at vertex j. As the walk progresses, the sum of positive

mass minus negative mass remains zero. When a positive

mass meets a negative mass, they cancel each other

out. Since γ(Fp(n−1) · · ·Fp(1)) by Lemma 4 is neighbor

shared, the pair of vertices i and j can both reach some

vertex k in γ(Fp(n−1) · · ·Fp(1))′. Hence, after n−1 steps

of the random walk starting from vertices i and j, in

view of Lemma 6 we will cancel at least (1
n)(n−1) mass

at vertex k.

Now we are in a position to give a lower bound on

the rate of convergence of the random walk process.

Lemma 8: For any sequence p(1), p(2), . . . , p(n− 1)
of indices in Q and for every row vector x such that∑

i x(i) = 0,

‖xFp(n−1) · · ·Fp(1)‖1 ≤ λ̄‖x‖1 (16)

where λ̄ = 1 − (1
n)(n−1).

Proof: Let i be the index of the minimal non-zero

value |xi|. Assume without loss of generality that xi

is positive. Then pick some j such that xj is negative.

Lemma 7 says that at least a
(
1 − (1

n)(n−1)
)

fraction of

the mass propagated from xi will be cancelled by mass

propagated from xj . Now, remove xi from considera-

tion, and xi of the negative mass at xj . Continuing in

this way, we can pair up positive masses with negative

masses, and by observing the fraction of cancellation,

we have

‖xFp(n−1) · · ·Fp(1)‖1 ≤ (
1 − (1

n)(n−1)
) ‖x‖1

Using Lemma 8, we can arrive at the same conver-

gence result as that in Theorem 2. According to our

experience, we can gain insight into the convergence rate

by constructing special sequences of graphs on which

the random walk progresses.

VI. CONCLUDING REMARKS

It is possible to relax still further the conditions under

which the flocking process converges. We only require

the sequence of graphs encountered during the flocking

process be repeatedly “jointly rooted” where a finite

sequence of directed graphs Gp1 , . . . , Gpk
in G is jointly

rooted if the composition Gpk
◦ · · · ◦ Gp1 is rooted.

In the future, we are interested in designing consensus

algorithms with faster convergence rates once we gain

deeper insight into the factors that affect the convergence

process.

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed
Computation. Prentice Hall, 1989.

[2] N. A. Lynch. Distributed algorithms. Morgan Kaufmann
Publishers, San Francisco, 1996.

[3] A. Jababaie, J. Lin, and A. S. Morse. Coordination of groups of
mobile autonomous agents using nearest neighbor rules. IEEE
Transactions on Automatic Control, 48:988–1001, 2003.

[4] L. Moreau. Leaderless coordination via bidirectional and unidi-
rectional time-dependent communication. In Proc. of the 42th
IEEE Conference on Decision and control, pages 3070–3075,
2003.

[5] V. Gazi and K. M. Passino. Stability analysis of swarms. IEEE
Transactions on Automatic Control, 48:692–697, 2003.

[6] J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent
rendezvous problem. In Proc. of the 42th IEEE Conference on
Decision and control, pages 1508–1513, 2003.

[7] S. Martinez, J. Cortes, and F. Bullo. On robust rendezvous for
mobile autonomous agents. In Proc. of the IFAC world congress,
Prague, Czech Republic, 2005.

[8] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet.
Novel type of phase transition in a system of self-driven particles.
Physical Review Letters, 75:1226–1229, 1995.

[9] R. Olfati-Saber and R. M. Murray. Consensus problems in
networks of agents with swiching topology and time-delays.
IEEE Transactions on Automatic Control, 49:101–115, 2004.

[10] M. Cao, A. S. Morse, and B. D. O. Anderson. Coordination of
an asynchronous multi-agent system via averaging. In Proc. of
the IFAC world congress, Prague, Czech Republic, 2005.

[11] E. Seneta. Non-negative matrices and Markov chains. Springer-
Verlag, New York, 1981.

[12] J. L. Doob. Stochastic Processes, chapter 5: Markov Processes,
Discrete Parameter. John Wiley & Sons, Inc., New York, 1953.

[13] J. Hajnal. Weak ergodicity in nonhomogeneous markov chains.
Proc. Camb. Phil. Soc., 54:233–246, 1958.

[14] L. Lovasz. Random walks on graphs: a survey. In Cominatorics,
Paul Erdös is eighty, pages 353–397, Budapest, 1996. Janos
Bolyai Math. Soc.

2361

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

