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Abstract— The main goal of this paper is to show that
the so-called ”immersion assumption” is not in principle
needed in solving a problem of nonlinear output regula-
tion by output feedback. Under the only assumption that
the zero dynamics of the controlled system have bounded
trajectories, it is shown that there exists a controller
solving the problem. The design procedure illustrated in
the paper is based on some recent results, developed in
[1], on the theory of nonlinear state observers originally
proposed in [16]. The internal model obtained in this
way is a linear Hurwitz system with nonlinear output
map.

I. INTRODUCTION

In the problem of nonlinear output regulation (see
[14], [5]), it is well-known that a central role in
the design of the regulator is played by the so-
called internal model unit. The latter is a subsystem,
embedded in the regulator, which is required to posses
two fundamental properties. First, it is required to
have the capability of reproducing all possible “feed-
forward inputs” securing perfect tracking/rejection of
trajectories/disturbances generated by the so-called
exosystem (the latter being the dynamical system
which, in the framework of output regulation, is
supposed to generate exogenous reference/disturbance
signals). Second, it is required to have the property
that the augmented system, namely the controlled
plant augmented with the internal model unit, be
stabilizable by output feedback. The need of satisfying
simultaneously the previous two properties has been
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the primary reason of being of a crucial “classical”
assumption characterizing most of the existing related
literature: the so-called “immersion assumption”. The
latter essentially consists in the requirement that the
dynamical system defining all possible “feed-forward
inputs” which force an identically zero regulation
error be “immersed” into a system exhibiting certain
structural properties. In this framework, the recent lit-
erature has shown steady development of more general
and less restrictive conditions. At the beginning, the
system in question was assumed to be immersed into
a linear known observable system (see [13], [19], [5],
[20]). This assumption has been then weakened, in
the framework of adaptive nonlinear regulation (see
[21]), by asking immersion into a linear un-known (but
linearly parameterized) system. Subsequent extensions
have been presented in [8] (where immersion into
a linear system having a nonlinear output map is
assumed) and in an important contribution in the de-
velopment of in [9] (where immersion into a nonlinear
system linearizable by output injection is assumed).
Finally the recent works in [3] and [10] (see also [11])
have definitely focused the attention on the design
of nonlinear internal models requiring immersion into
nonlinear systems described, respectively, in a canon-
ical observability form and in a nonlinear adaptive
observability form.

The contribution of the present paper is to go a
step further and to present the important conceptual
result that no immersion assumption is needed at all
for the regulator to exist. In particular we shall show
that under the only assumption that the zero dynamics
of the extended system (namely of the controlled plant
and of the exosystem) have bounded trajectories, there
exists an internal model-based controller solving the
problem of output regulation. In order to prove this
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result, we will take advantage of a recently proposed
theory of observers for nonlinear systems pioneered
in [16] subsequently refined in [17], [18] and [1].
In linee with the results obtained in [1] for observer
design, the internal model unit is constituted by a
linear Hurwitz system of suitable dimension having
a continuous nonlinear output map.

The solution provided in this paper will be derived
in the general “non-equilibrium” framework proposed
in [2] in which the zero dynamics of regulated plant
and the dynamics of the exosystem are not required
to posses an equilibrium point but rather a possible
complex, though bounded, attractor. In this general
framework the proof of our result passes through
a number of technical details which, for obvious
reasons, can not be reported in a conference paper
and which will be presented in a journal version, in
preparation, to which the interested reader is referred.
Here we just limit ourself to provide the main result
and the main theorems and propositions supporting
the main result.

II. PROBLEM STATEMENT

In [3], as an illustration of how the non-equilibrium
approach presented in [2] can be applied to the design
of regulators, we have shown how the problem of
output regulation can be solved, under appropriate
assumptions, for a system which can be put in the
form

ż = f(w, z, ζ)
ζ̇ = q(w, z, ζ) + u
e = ζ
y = ζ ,

(1)

with state (z, ζ) ∈ IRn × IR, control input u ∈ IR,
regulated output e ∈ IR, measured output y ∈ IR and
exogenous (disturbance) input w ∈ IRr generated by
an exosystem

ẇ = s(w) . (2)

The functions f(w, z, ζ), q(w, z, ζ) and s(w) are Ck

functions (for some large k) of their arguments. The
initial conditions of (1) range on a set Z × E, in
which Z and E are fixed compact subsets of IRn

and, respectively, IR. The initial conditions of the
exosystem (2) range on a compact subset W of IRr.

Remark System (1) may look very particular, as
it has relative degree 1 between control input u and
regulated output e. However, the design methodology
described in [3], and pursued in what follows under

much weaker hypotheses, lends itself to a straightfor-
ward extension to systems with higher relative degree.
Details are not included here (see, for instance, [6]).
�

The analysis in [3] was based on three standing
hypotheses. The first of these hypotheses was that the
exosystem is “in steady-state”:

Assumption 0. The set W is a differential submanifold
(with boundary) invariant for (2). �

The second hypothesis was that the trajectories of
the zero dynamics of (1), augmented with (2), are
bounded, namely that:

Assumption 1. There exists a bounded subset B of
W × IRn which contains the positive orbit of the set
W × Z under the flow of

ẇ = s(w)
ż = f(w, z, 0) (3)

and the set ω(W × Z) is a differential submanifold
(with boundary) of W × IRn. Moreover, there exists a
number d1 > 0 such that

(w, z) ∈ W × IRn

|(w, z)|ω(W×Z) ≤ d1

⇒ (w, z) ∈ W × Z . �

It follows from this assumption (see [12]) that the
set

A0 := ω(W × Z) ,

i.e the ω-limit set – under the flow of (3) – of the set
W ×Z, is a nonempty, compact, invariant set which is
stable in the sense of Lyapunov and uniformly attracts
W × Z.

The third assumption was the so-called immersion
assumption described as follows.

Assumption 2-nl. There exists an integer d and a
locally Lipschitz function f : IRd → IR such that,
for any (w0, z0) ∈ A0, the solution (w(t), z(t)) of
(3) passing through (w0, z0) at t = 0 is such that the
function ϕ(t) := −q(w(t), z(t), 0) satisfies

ϕ(d) + f(ϕ,ϕ(1), . . . , ϕ(d−1)) = 0 . � (4)

The purpose of this paper it to show how this last
assumption can be removed, showing in this way the
important conceptual result that no immersion assump-
tion is needed in the the design of controllers which
solve the problem of output regulation for nonlinear
systems.
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III. OUTPUT REGULATION

We consider in what follows a control law of the
form

ξ̇ = Fξ + Gu
u = γ(ξ) + v
v = −ky ,

(5)

in which (F, G) ∈ IRm×m × IRm×1 is a controllable
pair with F a Hurwitz matrix and γ : IRm → IR is
a continuous map. The initial conditions of (5) range
on a compact subset Ξ of IRm.

The control of (1) by means of (5) results in a
system

ẇ = s(w)
ż = f(w, z, ζ)
ζ̇ = q(w, z, ζ) + γ(ξ) + v

ξ̇ = Fξ + G(γ(ξ) + v) ,

(6)

which, via the change of variables ξ �→ x = ξ − Gζ,
can be put in normal form as

ẇ = s(w)
ż = f(w, z, ζ)
ẋ = Fx − Gq(w, z, ζ) + FGζ

ζ̇ = q(w, z, ζ) + γ(x + Gζ) + v .

(7)

This system, viewing v as input and ζ as output, has
relative degree 1 and a zero-dynamics

ẇ = s(w)
ż = f(w, z, 0)
ẋ = Fx − Gq(w, z, 0) .

(8)

The asymptotic properties of the latter are summa-
rized in the following results. Set z := col(w, z), set
Z := W × Z and rewrite (8) as

ż = f0(z)
ẋ = Fx − Gq0(z) .

(9)

Consider the map

τ : A0 → IRm

z �→ −
∫ 0

−∞
e−FsGq0(z(s, z)))ds

and set

gr(τ) := {(z, x) : z ∈ A0, x = τ(z)} .

Without loss of generality, let Ξ be such that
τ(A0) ⊂ int(Ξ).

Lemma 1: The positive orbit of Z × Ξ under the
flow of (9) is bounded and

ω(Z × Ξ) = gr(τ) .

If A0 is also locally exponentially stable for (3), so is
gr(τ) for (9).

Proof: Let z(t, z0) denote the solution of ż =
f0(z) passing through z0 at time t = 0 and note that,
if z0 ∈ A0, then z(t, z0) ∈ A0 for all t (thus, in
particular, since A0 is compact, |z(t, z0)| is bounded
by a number which depends only on A0). Then, since
F is a Hurwitz matrix, the map τ(·) is well defined.
A simple calculation shows that

τ(z(t, z0)) = eFtτ(z0)+∫ t

0
eF (t−s)Gq0(z(s, z0))ds .

This shows that gr(τ) is invariant for (9). From this
the claim of the lemma can be easily obtained as
in Lemma 5 in [10] (see also Proposition 1 in [4])
considering the change of variable ξ �→ ξ̃ := ξ−τ(z).

Motivated by this result, we look at the closed loop
system (7) as a system whose zero dynamics have
an asymptotically stable compact attractor and we
proceed with the design of the parameter k and map
γ(·). The idea is prove that, if k is large enough, ζ
and (z, x) asymptotically approach respectively 0 and
gr(τ). To this end, with an eye to the last of (7), it
is crucial to make sure that the map γ(·) is such that
q(w, z, ζ)+γ(x+Gζ) ≡ 0 on the set {ζ = 0, (z, x) ∈
gr(τ)}. Bearing in mind the expression of gr(τ) and
the notation introduced above, this is to say that

γ ◦ τ(z) = −q0(z) for all z ∈ A0 . (10)

It is easy to realize that the possibility of choosing
γ(·) in this way is intimately related to the fact that
the map τ satisfies the partial (with respect to q0(·))
injectivity condition

τ(z1) = τ(z2) ⇒ q0(z1) = q0(z2) (11)

for all z1, z2 ∈ A0.

As τ is dependent on the pair (F, G), the next
natural point to be addressed is if there exists a choice
of (F, G) yielding the desired property for τ(·). This
is possible as claimed in the next lemma whose proof
can be obtained by adapting the arguments of Theorem
3 in [1].

Lemma 2: There exist an integer m > 0 and a
controllable pair (F, G) ∈ IRm×m × IRm×1 with F
a Hurwitz matrix, such that (11) holds for all z1, z2 ∈
A0.
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It turns out that the injectivity property (11) is a
sufficient condition for the map γ(·), with the desired
property, to exist as formalized in the next lemma.

Lemma 3: Suppose (11) holds for all z1, z2 ∈ A0.
Then there exists a continuous map γ : IRm → IR
such that (10) holds.

From these Lemma it is possible to conclude the
following final result which provides the solution to
the problem of output regulation.

Proposition 1: Consider system (1) controlled by
(5). Let W,Z,E,Ξ be fixed compact sets of initial
conditions and suppose Assumptions 0, 1 hold. Let
(F,G) be such that the condition indicated in Lemma
2 holds and γ(·) such that the condition indicated in
Lemma 3 holds. For every ε > 0, there exists a number
k∗ such that, if k ≥ k∗, the positive orbit of W ×Z ×
E×Ξ is bounded and there exists t̄ such that |e(t)| ≤ ε
for all t ≥ t̄. If, in addition, A0 is locally exponentially
attractive for (3) and γ(ξ) is locally Lypschitz at ξ = 0,
there is a number k∗ such that, if k ≥ k∗, the positive
orbit of W ×Z ×E × Ξ is bounded and e(t) → 0 as
t → ∞.

The proof of this Proposition follows a standard
paradigm (see, for instance, [22]). System (7) can
be viewed as interconnection of two subsystems, one
with state (w, z, x) and input ζ, the other with state
ζ and input (w, z, x). As shown in [7], this system is
semiglobally practically stabilizable, in the parameter
k, to the set gr(τ) × {0}, and this proves the first
part of the Proposition. If A0 is locally exponentially
attractive for (3) and γ(ξ) is locally Lypschitz at
ξ = 0, the two subsystems in question are both input-
to-state stable (relative to the set gr(τ) and to the
set {0}, respectively), with restrictions, with a linear
gain function (see again [7] for details). Thus an easy
extension (to the case of systems which are input-to-
state stable relative to compact attractors) of the small-
gain theorem of [15] can be invoked to show that, if
k is large enough, the results of the second part of the
Proposition holds.

Remark The reader familiar with recent develop-
ments on nonlinear state observers will find interesting
to compare the previous results with those on the
design of nonlinear observers design by Kazantzis
and Kravaris in [16] and recently developed in [1]
(see also [17]). In the framework of [16], system (9)
can be identified with the cascade of an “observed”
system ż = f0(z) with output yz = q0(z) driving

an “observer” ẋ = Fx − Gyz. If the map τ(·)
has a left inverse τ−1

� (·), the observer in question
provides a state estimate ẑ = τ−1

� (x). Such a left-
inverse, as shown in [1], always exists provided that
the dimension of x is sufficiently large and certain
observability conditions for the system (f0,q0) hold.
In the present context of output regulation, though,
left invertibility of τ(·) (and thus the observability
conditions) is not needed. In fact, it is not necessary to
recover the full state z but rather only the output q0(z)
of the observed system. This motivates the absence of
observability conditions for the system (f0,q0) and, in
turn, the absence of immersion conditions in the above
framework. �

IV. A WEAKENED ASSUMPTION

Assumption 1 is rather restrictive, as it requires
the controlled system (1) augmented with (2) to
be “weakly minimum-phase”. Indeed, such an as-
sumption is not strictly speaking necessary as it is
well known that problems of output regulation can
be solved also for systems which are not “weakly
minimum-phase”. In this section we show how As-
sumption 1 can be weakened and replaced by another
assumption, which is closer to being “necessary”, at
least for linear systems.

Consider a system having the same dynamics as
system (1), driven by an exogenous input w generated
by an exosystem of the form (2), but in which the
regulated output e ∈ IR and the measurable output
y ∈ IRp are generic Ck functions of (w, z, ζ). In other
words, consider a system modelled by equations of the
form

ẇ = s(w)
ż = f(w, z, ζ)
ζ̇ = q(w, z, ζ) + u

e = h(w, z, ζ)
y = k(w, z, ζ) .

(12)

Let, as above, initial conditions vary in compact sets
W,Z,E.

We retain Assumption 0 above but we replace
Assumption 1 by the following one:

Assumption 1-wk. There exists a bounded subset B of
W × IRn, a Ck function α : IRr × IRn → IR and a
Ck map Φ : IRp → IR such that:

(a1) the set B contains the positive orbit of the set
W × Z under the flow of

ẇ = s(w)
ż = f(w, z, α(w, z)) (13)

3318



and the set ω(W×Z) is a differential submanifold
(with boundary) of W × IRn. Moreover, there
exists a number d1 > 0 such that

(w, z) ∈ W × IRn

|(w, z)|ω(W×Z) ≤ d1

⇒ (w, z) ∈ W × Z .

(a2) h(w, z, α(w, z)) = 0 for all (w, z) ∈ ω(W ×Z).
(a3) Φ(k(w, z, ζ)) = ζ − α(w, z) for all (w, z, ζ) ∈

IRr × IRn × IR.

Remark Of course, in the case of system (1), where
h(w, z, ζ) = ζ and k(w, z, ζ) = ζ, Assumption 1-
wk is a trivial consequence of Assumption 1 (the
function α(w, z) being in this case the trivial function
α(w, z) = 0). �

Few words to explain the previous assumption are
in order. First of all note that assumption (a1) can
be interpreted as a stabilizability (by state feedback)
property of

ẇ = s(w)
ż = f(w, z, ζ)

in which the variable ζ is considered as “virtual”
control input. Indeed (see also [2], [12]) the condi-
tions presented in (a1) imply that the set ω(Z × W )
is asymptotically stable for (13) with a domain of
attraction containing Z × W . To take advantage of
this property, one may seek a steady state behavior of
the overall closed-loop system in which ζ converges
to α(w, z) and (w, z) converges to ω(Z×W ). Bearing
this in mind, also the two additional assumptions (a2)
and (a3) can be easily justified. In particular, in order
to have the regulated error asymptotically converging
to zero, assumption (a2) requires that the map h(·)
vanishes at the desired steady state. Finally, assump-
tion (a3) makes sure that the “mismatch” between
ζ and α(w, z) is available to the controller via the
measurable output y.

Change now variables as

χ = ζ − α(w, z)

in the dynamics of (12) to obtain

ẇ = s(w)
ż = f(w, z, χ + α(w, z))

χ̇ = q(w, z, χ + α(w, z)) − ∂α

∂w
s(w)−

∂α

∂z
f(w, z, χ + α(w, z)) + u .

(14)

The latter, viewed as a system with control u and
regulated output χ is a system which can be handled

by means of the design method presented in the first
part of the paper. In particular, as a consequence of
Assumption 1-wk , system (14) satisfies the two basic
Assumptions on which the results of Proposition 1
were based. Appealing to this Proposition it is there-
fore possible to conclude that there exist an integer m,
a controllable pair (F, G) with F a Hurwitz matrix and
a continuous map γ : IRm → IR such that, if (14) is
controlled by

ξ̇ = Fξ + Gu
u = γ(ξ) + v
v = −kχ ,

(15)

(with initial conditions in a compact set Ξ), the fol-
lowing properties hold:

• for every ε > 0, there exists a number k∗ such
that, if k ≥ k∗, the positive orbit of W×Z×E×Ξ
is bounded and there exists t̄ such that |χ(t)| ≤ ε
for all t ≥ t̄.

• if, in addition, ω(W ×Z) is locally exponentially
attractive for (13) and γ(ξ) is locally Lypschitz at
ξ = 0, there is a number k∗ such that, if k ≥ k∗,
the positive orbit of W ×Z ×E ×Ξ is bounded
and χ(t) → 0 as t → ∞.

This result clearly shows that a regulator of the form

ξ̇ = Fξ + Gu
u = γ(ξ) + v
v = −k(ζ − α(w, z)) = −kΦ(y) ,

(16)

is able to solve the problem of output regulation for
the plant (12). In fact, looking at the property (a2), it
is immediately concluded that the following holds.

Proposition 2: Consider system (12) controlled by
(16). Let W,Z,E,Ξ be fixed compact sets of initial
conditions and suppose Assumptions 0 and 1-wk hold.
There exist an integer m, a controllable pair (F, G)
with F a Hurwitz matrix and a continuous map γ :
IRm → IR such that the following properties hold.
For every ε > 0, there exists a number k∗ such that,
if k ≥ k∗, the positive orbit of W × Z × E × Ξ
is bounded and there exists t̄ such that |e(t)| ≤ ε
for all t ≥ t̄. If, in addition, ω(W × Z) is locally
exponentially attractive for (13) and γ(ξ) is locally
Lypschitz at ξ = 0, there is a number k∗ such that,
if k ≥ k∗, the positive orbit of W × Z × E × Ξ is
bounded and e(t) → 0 as t → ∞.
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V. CONCLUSIONS

In this paper the problem of nonlinear output reg-
ulation without immersion assumption has been ad-
dressed. It has been shown that, under only a suitable
“weakened” minimum-phase assumption, it is possible
to design a regulator solving the problem at issue.
The regulator design strongly relies upon the ideas
proposed in [16] and [1] in the context of nonlinear
state observers. It is also stressed that the weakened
assumptions make it possible to deal with output
regulation of nonminimum-phase systems. Future de-
velopments will deal with constructive procedures to
design the map γ whose existence is guaranteed by
Lemma 3.
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