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Abstract— In this paper, a software package for computing
the maximal invariant set of constrained linear parameter
varying (LPV) systems is presented. The theoretical details at
the basis of the proposed algorithm are first briefly illustrated
along with the extensions which allow to deal with systems
affected by disturbances and different kinds of uncertainty.
Then, the algorithm is presented together with some comments
on its actual implementation.

I. INTRODUCTION

In this work, the software package MAXIS-G, developed
for the computation of invariant sets for constrained linear
parameter varying (LPV) systems is presented. Though this
class of systems (and the determination of invariant sets
which can be associated to them) has received a great deal of
attention in the literature (see [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14]), there are few software
packages available for the computation of invariant sets.

The software package presented here is a contribution in
this area and deals exclusively with polyhedral invariant sets.
This interactive presentation is organized as follows: first, in
Section II, the theoretical background of the determination of
polyhedral invariant sets for the considered class of systems
is presented, then, in Section III, the algorithms used for
the effective computation of an invariant set are illustrated,
and finally, in Section IV, the numerical aspects of the
implemented software software as well as some heuristics
to reduce the computational load are given. Some examples
in section V complete the present work.

II. NOTATION AND PRELIMINARIES

In this paper the considered discrete time systems are of
the form:

x(t + 1) = A(w(t))x(t)+ B(w(t))u(t) (1)

where x(t)∈ R n and u(t)∈ R q are respectively the state and
the input vectors. w(t)∈W ∈ R m is a time varying parameter
belonging to the compact set W = {w : wi ≥ 0, ∑s

i=1 wi = 1}
where s is finite.

The matrices A(w(t)) ∈ R n×n and B(w(t)) ∈ R n×q satisfy

A(w(t)) =
s

∑
i=1

Aiwi(t), B(w(t)) =
s

∑
i=1

Biwi(t) (2)

where the matrices Ai and Bi are given.

From the control design point of view, different cases
can be distinguished depending on the knowledge of w(t).
When the current value of w(t) is not available for synthesis
purposes, we will talk about robust synthesis, otherwise
we will talk about gain scheduling synthesis. Concerning
this latter case, another important distinction can be made
depending on which are the values that w(t) attains: if
w(t) doesn’t belong point-wise to W but it attains values
only on the vertices we will talk about switched gain
scheduling synthesis. We do not consider such distinction
for robust synthesis since switched and non switched systems
are equivalent in this case (see [15] for more details).

As previously mentioned, the sets dealt with are polyhe-
dral, say whose form is

X = {x ∈ Rn : f T
i x ≤ gi, i = 1 . . . ,m} (3)

where fi are vectors in Rn, the superscript T in f T
i denotes the

transpose and each of the gi > 0 is a scalar value. Denoting
by F ∈ Rm×n the matrix F = [ f1, f2, . . . , fm]T and by g ∈ Rm

the vector g = [g1,g2, . . . ,gm]T , it is possible to adopt a more
compact representation for (3)

X = {x ∈ Rn : Fx ≤ g} (4)

The above, is known as constraints representation. Another
equivalent way to represent a given polyhedron is the one
obtained from its r vertices xi. Denoting by X ∈ Rn×r the
matrix X = [x1,x2, . . . ,xr], we obtain the vertices representa-
tion:

X = {x : x = Xα,

r

∑
i=1

αi ≤ 1, αi ≥ 0}. (5)

In the standard terminology X is referred to as the convex-
hull of the vertices.

The algorithms used in the software are based on the
concept of pre-image set.

Definition 2.1: Given the dynamic system (1), the one
step pre-image set of the set X (0) ⊂ Rn is given by all the
states that can by brought in one step in X (0) when a suitable
control action is applied. The pre-image set, called X (1), can
be shown to be (see [16], [17])

• in the robust case

X (1) = {x ∈ Rn : ∃u : F(Aix+ Biu) ≤ g, ∀i} (6)
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• in the switched gain scheduling case

X (1) = {x ∈ Rn : ∃ui : F(Aix+ Biui) ≤ g, ∀i} (7)
Remark 2.1: It is important to notice the difference be-

tween (6) and (7). In the robust case the value of the input
is independent of the value of i, while in the switched gain
scheduling case the knowledge of such value is actively used
in the determination of the value of the input ui.

Concerning the gain scheduling synthesis, it is worth
saying that the present work deals only with the switched
gain scheduling case, since up to now no numerical results
concerning the computation of pre-image sets for the general
gain scheduling case are available.

Other useful definitions which will be used in the sequel
are reported next.

Definition 2.2: Given the dynamic system (1), a set X ⊂
R n is said to be invariant if for every value of x(t) there is
a proper value of the control u(t) such that x(t + 1) ∈ X .

Note 2.1: The previous definition can be given in this
equivalent way: an invariant set is a set that is contained
in its pre-image.

A concept similar to invariance, but with possibly stronger
requirements, is the concept of contractivity introduced in the
following definition.

Definition 2.3: Given the dynamic system (1) and 0 < λ≤
1, a set X ⊂ R n is said to be λ-contractive if for every value
x(t) of the state there is a proper value of the control u(t)
such that x(t + 1) ∈ λX = {x ∈ R n : x

λ ∈ X }.
Looking at the definitions (2.2) and (2.3), it can be noticed

how these are equivalent when λ = 1. We can therefore say
that an invariant set is 1-contractive. From now on we will
speak only about contractive sets.

In [16] it has been shown how it is possible to compute
a λ-contractive polyhedron for the robust case. Starting
from an initial polyhedral set X (0) containing the origin ,
and recursively computing the pre-image sets X (k) for the
dynamic system

x̃(t + 1) =
A(w(t))

λ
x̃(t)+

B(w(t))
λ

ũ(t) (8)

the λ-contractive set for the original system can be calculated
as

X (∞) =
k=∞
\

k=0

X (k) (9)

An important fact is that X (∞) is the largest λ-contractive
set contained in X (0) for system (1). This means that all the
other λ-contractive sets are contained in it.

Generally, this recursive technique can be used also in
the switched gain scheduling case. Therefore, the following
result holds:

Theorem 2.1: Given a polyhedral set X (0), the maximal
λ-contractive set contained in it for the switched system (1)
can be computed as X (∞) =

T∞
k=0 X

(k), where X (k), k > 1, is
the pre-image set of X (k−1) for the switched system (8).

A. λ-contractive sets and Lyapunov functions

A bounded λ-contractive set corresponds to the level set
of a polyhedral control Lyapunov function1 (see [16] and
[18]). Therefore, by choosing a bounded X (0), the recursive
approach for the computation a λ-contractive set can return
a Lyapunov function.

III. ALGORITHMS

Based on the previous results we are now going to show
in more detail which are the algorithms used in the software
for calculating a contractive set for (1). To avoid storing all
the pre-image sets and intersecting them all at the end, the
intersection between X (k) and X (k+1) is performed at each
step.

Algorithm 3.1: Robust case
1) Set the initial polyhedra X (0) = {x : F (0)x ≤ g(0)} and

the parameters λ and ε such that ε ≥ 0 and 0 < λ ≤
λ + ε ≤ 1. k = 0;

2) compute the expanded set Q (k) ⊂ R (n+m):

Q (k) = {(x,u) : F (k)[Aix+ Biu] ≤ λg(k)
, ∀i};

3) compute the projection of Q (k) on Rn :

P (k) = {x : ∃u : (x,u) ∈ Q (k)};

4) compute the polyhedron

X (k+1) = X (k)
\

P (k)

and let the matrices F(k+1) and g(k+1) be those associ-
ated to the constraints representation of the set X (k+1),
say X (k+1) = {x : F(k+1)x ≤ g(k+1)}

5) check if X (k+1) is (λ+ε)-contractive. In the affirmative
case set P = X (k+1) and stop, else set k = k + 1 and
go to 2).

Differently from section (II), the variable ε has been
introduced. This tolerance, that leads to produce a (λ + ε)-
contractive set P , is necessary to bypass a possibly infinite
computation. As a matter of fact, it may happen that without
introducing ε, starting form a certain value of k, the following
iterations of the algorithm do not change X (k) significantly.
Therefore, relaxing the condition in step 5), the stop criterion
is met more easily.

To accommodate the switched gain scheduling case the
previous algorithm must be slightly modified as follows.

Algorithm 3.2: Switched gain scheduling case
1) Set the initial polyhedra X (0) = {x : F (0)x ≤ g(k)} and

the parameters λ and ε such that ε ≥ 0 and 0 < λ ≤
λ + ε ≤ 1. k = 0;

2) compute the expanded sets Q (k)
i ⊂ R (n+m):

Q
(k)

i = {(x,u) : F(k)[Aix+ Biu] ≤ λg(k)};

3) compute the projection of Q (k)
i on Rn :

P
(k)
i = {x : ∃u : (x,u) ∈ Q

(k)
i };

1the term control refers to the fact that the function considered is a
Lyapunov function only for a properly chosen value of the control input
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4) compute the polyhedron

X (k+1) = X (k)
\

i=1...s

P (k)
i

and let the matrices F(k+1) and g(k+1) be those associ-
ated to the constraints representation of the set X (k+1),
say X (k+1) = {x : F(k+1)x ≤ g(k+1)}

5) check if X (k+1) is (λ+ε)-contractive. In the affirmative
case set P = X (k+1) and stop, else set k = k + 1 and
go to 2).

For a better understanding of the two algorithms it is
important to underline where the pre-image set is calculated.
In algorithm (3.1) such set is represented by P (k), while
in algorithm (3.2) the pre-image set corresponds to the
intersection

T

i=1...s P
(k)
i .

Remark 3.1: When no inputs are present (m = 0) the
algorithm can still be used. To handle such situation it is
sufficient to skip the projection step (the ”expansion” step
produces polyhedra that belong to R n).

A. Constrained systems

Most interesting synthesis problems in general have to
cope with state an input constraints. Concerning state con-
straints only, if X (0) is the set given by the constraints on
the state variables, then algorithms (3.1) and (3.2) produce
as output (if any) the maximal set of initial states such that
x(t) respects the constraints when a proper feedback control
is used.

Some small changes on the algorithms are required when
input constraints are also to be dealt with. Assume the input
constraint is of the form u(t) ∈ U , where U is a polyhedral
set with constraints representation U = {u : Fuu ≤ gu}. In
this case it is sufficient to notice that the pre-image set for
system (1) becomes

X (1) = {x ∈ Rn : ∃u ∈ U : F(Aix+ Biu) ≤ g, ∀i} (10)

in the robust case and

X (1) = {x ∈ Rn : ∃ui ∈ U : F(Aix+ Biui) ≤ g, ∀i} (11)

in the switched gain scheduling case. This added conditions
can be easily incorporated in the proposed algorithms by
replacing the computation of the expanded set Q (k) by

Q (k) = {(x,u) :

{
F (k)[Aix+ Biu], ≤ λg(k), ∀i,
Fuu ≤ gu

(12)

in the robust case and by

Q (k)
i = {(x,u) :

{
F (k)[Aix+ Biu], ≤ λg(k),

Fuu ≤ gu
(13)

in the gain scheduling case.
Another interesting kind of constraints which can be

dealt with are mixed input and state variables constraints
of the form Cxx + Cuu ≤ gxu. These constraints are also
accommodated in the software, but for brevity we will not
give here any further detail.

B. Systems with disturbances

Another practical issue for synthesis problems is the
presence of disturbances in the system. A well established
way of modeling the disturbance action for linear systems is
the following

x(t + 1) = A(w(t))x(t)+ B(w(t))u(t)+ Ed(t) (14)

where d(t) ∈ D ⊂ R p represents the unknown disturbance
input and E ∈ R (n×p) is the disturbance matrix. D is a
bounded set containing the origin. To take into account also
the disturbance effect, some small modifications need once
again to be introduced, precisely the expansion set has to be
changed to accomplish a worst case procedure:

Q (k) = {(x,u) : F(k)[Aix+ Biu] ≤ λ(g(k)−max
d∈D

F (k)Ed), ∀i}

(15)
for the robust case and

Q
(k)

i = {(x,u) : F (k)[Aix+ Biu] ≤ λ(g(k)−max
d∈D

F (k)Ed)}

(16)
for the switched gain scheduling case.

The newly introduced expression maxd∈D has to be in-
tended component-wise. If the value of g(k)−maxd∈D F(k)Ed
turns out to be not positive, the algorithm is stopped because
there is no invariant set with the required characteristics.

C. Continuous-time case: Euler discretization

Continuous-time synthesis problems (even in the presence
of state/input constraints and disturbances) for systems of the
form

ẋ = Ac(w(t))x(t)+ Bc(w(t))u(t) (17)

(c stands for continuous) can be handled by the techniques
already presented by using the discrete-time Euler Approxi-
mating System (EAS for short), say

x(t + 1) = (I + τAc(w(t)))x(t)+ τB(w(t))u(t) (18)

where I is the identity matrix in Rn×n and τ > 0 is a
discretization parameter. We refer the reader to [19] for
the technical details concerning the approximation of the
maximal domain of attraction for input/state constrained dy-
namic systems and to [20] for the use of EAS discretization
schemes for suboptimal control problem solution.

IV. NUMERICS

In this section a deeper insight on the implementation of
the algorithms is given. Before giving any detail we make a
coarse analysis of which are the hardest points from a com-
putational point of view. Since the two algorithms are similar,
we can look at them together considering each step. Basi-
cally, the algorithms manipulate the matrices representing
the various sets involved and iterate on such representations
until a stopping condition is met. Unfortunately, the number
of steps needed for the program termination together with
the dimensions of such matrices is not known a priori and
this prevents a worst case analysis even if the state dimension
is restricted to n = 3. Due to this reason, an estimate of the
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computational complexity will be reported just for the first
three steps.

• step 1) is trivial since only some initializations are
performed;

• step 2) is also quite simple since the expansion of X (k)

corresponds to s matrix multiplications, precisely those
needed to form the products

F(K)
[

Ai Bi
]

The number of flops involved depends on the dimension
of the matrix F (K) (say on its number of rows nF(K) , on
the number of system vertices s and on the state and in-
put dimensions, n and q respectively. The computational
complexity is O (nF(K)n(n + q)).

• step 3) is the most critical one since it requires the
projection of the expanded sets on the state space.
This operation can be carried out by using the Fourier-
Motzkin elimination method (see [21] for details) that
iteratively combines q+1 inequalities of Q (K) (or Q (K)

i
in the switched case), to obtain a projected constraint
on the n dimensional space. The method used in the
current implementation is the basic one whose worst
case complexity is O (nF(K)

2q
) (see [22] for a general

overview on polyhedral set projection). The set of
the projected inequalities can form a redundant rep-
resentation (say a representation in which not all the
inequalities are necessary to describe the polyhedron)
of P (k) (or P (k)

i in the switched case). Eliminating a
redundant inequality corresponds to a standard linear
programming (LP) problem whose complexity clearly
depends on the dimensions of the data and are in general
not computable a-priori.

• step 4) requires an intersection to be performed. This
operation can also be carried by a sequence of LP
problems (when we intersect two polyhedrons described
by respectively j and k inequalities, to have a non-
redundant representation of the polyhedron given by the
intersection, j + k LP problems need to be executed).

• step 5) can be dealt with by executing the steps from 2)
to 4), where λ+ε instead of λ is used, and check if the
obtained X (k+1) ⊆ λX (k+2) (this means checking if all
the inequalities of λX (k+2) are redundant with respect to
X (k+1)). Another way of carrying out the contractivity
test is checking if for every x(t) ∈ X (k+1) there exists a
control input value u(t) (or a discrete set of control input
values ui(t) for the gain scheduling switched case) such
that x(t +1)∈ (λ+ε)X (k+1). The latter solution is a bad
choice since it is really time consuming (implementing
it would amount to enumerate the vertices of X (k+1) and
check the existence of a control input for everyone of
them).

A. Speeding up the algorithm

MAXIS-G uses some techniques to make the computation
of the invariant sets faster:

• we have already seen how step 5) can be carried out by
repeating steps from 2) to 4). This consideration leads

to the possibility of incorporate the redundancy test of
the iteration k with the steps 2)-4) of the iteration k+1
with small overheads;

• the intersection of two polyhedra X 1 and X2 has to
be carried out intersecting every constraint of X 1 w.r.t.
X2. A fast intersection test (e.g. made w.r.t. a reduced
complexity polyhedron that contains X 2) can be pre-
liminarily performed to quickly eliminate some of the
redundant constraints;

• in step 4) we have seen that X (k+1) is defined as the
intersection of X (k) and P (k). It’s easy to figure out
how some of the constraints of X (k+1) are new (say
generated from the expansion-projection step in the
iteration k) and some of them are ”inherited” from
X (k). In steps 2) and 3) it can be observed how every
constraint of P (k) is generated from only a certain
number of constraints in X (k), let’s say j. Every j-
tuplet in X (k+1) that is inherited from X (k) produces
a constraint that has already been generated in the
previous algorithm iteration. Avoiding such redundant
calculation drastically reduces the computational load.

It is worth noting that all the algorithms are implemented
in C++ in MAXIS-G by using two different polyhedron
representation:

• double-description representation (the informations
about vertices and inequalities are stored);

• constraints representation (no information about the
vertices of the polyhedron are stored).

B. Software availability

MAXIS-G is available under GPL2 license and can be
freely downloaded [23].

The software package is composed by two parts:

• a command line program that can be used to execute all
the calculations (like writing the input files and calculate
the invariant sets);

• a simple interface that has been designed to
ease the input and output operations within the
MatlabTMenvironment.

together with a short user manual.

V. EXAMPLES AND SOFTWARE PERFORMANCE

A. Maximum invariant set for a system with disturbance

Consider the 2-dimensional uncertain system with distur-
bance

x(t +1) = [w(t)A1 +(1−w(t))A2]x(t)+Bu(t)+Ed(t) (19)

with

A1 =

[
1.3 2.1
0 1.5

]
; A2 =

[
1.3 1
0 1.5

]
(20)

B =

[
0
1

]
; E =

[
0
1

]
(21)

The disturbance is bounded as |d(t)| ≤ 0.1 and x(t) is
constrained to the closed polyhedron given by ‖x(t)‖∞ ≤ 1.
Suppose that the uncertain variable attains only two values
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w(t) = {0,1}. We want to study which are the advantages
given by the knowledge of w(t) when synthesizing a control.
MAXIS-G can be used to calculate the maximum invariant
set contained in ‖x(t)‖∞ ≤ 1 in the robust and the switched
gain scheduling case. In the former case we find a polyhedron
with 12 vertices and in the latter a polyhedron with 8 vertices.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

Fig. 1. Maximum invariant set for system (19).

Figure 1 shows the result of such computation: the dashed
line represents the robust case, the solid line the switched
gain scheduling case. The calculation time is 0.008 s when
using the double-description representation and 0.09 s when
using the constraints representation2.

B. Lyapunov function for an uncertain system

Consider the 2-dimensional continuous-time uncertain sys-
tem proposed in [11].

ẋ(t) = [w(t)A1 +(1−w(t))A2]x(t) (22)

with

A1 =

[
0 1
−2 −1

]
; A2 =

[
0 1

−(2 + σ) −1

]
(23)

and 0 ≤ w(t) ≤ 1 for all t ≥ 0. For the above system it can
be shown that the maximum value of σ that assures stability
is 7. The goal of this example is calculating a Lyapunov
function for the greatest value of σ. By using MAXIS-G
with the initial set X (0) = {x : ‖x‖∞ ≤ 1} and discretizing the
system with τ = 2.5×10−4. Using λ = 1−1×10−9 and ε =
9×10−10 a polyhedral Lyapunov function can be computed
when σ = 6.97. The computed polyhedron is really complex
since it is given by over 12000 constraints (see figure 2). The
calculation time is 22.5 s when using the double-description
representation while it is greater than one hour when using
the constraints representation.

2All the tests on MAXIS-G have been performed on a P4 2.66 GHz
computer. The measurements have been made by using the utility time.
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Fig. 2. Lyapunov function for system (22).

C. A software comparison

So far we have not been able to find any comparable
software. In a search for comparison results, the work [24]
can be cited. In such work the authors, which did not seem
to be aware of the present developments, proposed some
results on invariant set calculation for autonomous systems.
The example we will take into account, which is the same
as in the cited paper, is the following. Consider the discrete
time system characterized by the matrices

A1 =

[
1 0.1
0 1

]
; A2 =

[
1 0.2
0 1

]
(24)

B1 =

[
0
1

]
; B2 =

[
0

1.5

]
(25)

This system can be stabilized by the state feedback u =
[−0.3 −0.1]x. The calculation of the maximal invariant set in
the presence of the constraints ‖xi‖1 ≤ 10, ‖u‖1 ≤ 1 produces
a polyhedron bounded by 30 inequalities. In [24] such set
has been calculated in 14.4 s by using MatlabTM6.5 on a
P4 2 GHz computer. The calculation time obtained by using
MAXIS-G is 0.008 s when using the double-description
representation and 0.087 s when using the constraints rep-
resentation.

VI. CONCLUSIONS

A software for the computation of polyhedral invariant
sets for discrete time systems has been presented, paying
attention on the algorithms used and on how they cope with
disturbances, uncertainties. It has been shown also how we
can use such algorithm for continuous time systems and to
calculate Lyapunov functions.
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