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Abstract— This paper investigates the inherent robustness prop-
erties and the output-feedback problem of sampled-data open-
loop feedback control. One typical sampled-data open-loop
feedback scheme is nonlinear model predictive control. Specif-
ically, the influence on the stability of the closed loop for
model-plant mismatch, exogenous disturbances, unknown de-
lays, numerical errors, and state estimation errors is examined.
It is shown that if the decreasing function of the sampled-data
open-loop feedback is continuous, then the closed-loop possesses
inherent robustness properties. As one specific application of
the derived result conditions for the semi-regional practical
output-feedback stabilization via observer-based state-feedback
are derived.

I. INTRODUCTION

In this paper we investigate the inherent robustness properties
and the output-feedback problem for sampled-data open-loop
feedback control. Furthermore, we outline the implication of
these results to nonlinear model predictive control.
Since the advent of microprocessors the control of contin-
uous time systems using sampled-data inputs has become
increasingly important. By now most practically employed
controllers are implemented in discrete time using micropro-
cessors. Typically, the interconnection between the discrete
and continuous time is achieved using suitable A/D and
D/A converters (often referred to as sampler and zero-
order holds), compare Figure 1. Controlling a continuous

ZOHcontroller
discrete time
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Fig. 1. Sampled-data state-feedback.

time systems using a discrete time feedback is classically
referred to as sampled-data control [2, 6, 18]. Over the last
decades many results concerning sampled-data control of
continuous time systems have been derived, see [6, 20, 32,
33] and references therein.
In comparison to classical sampled-data control for continu-
ous time systems we consider a slightly modified problem.
We do not consider that the applied input is sampled/kept
constant in between the recalculation instants, compare Fig-
ure 2. There are several reasons for not considering to
sample-and-hold the input in between the recalculation times.
Firstly microprocessors and A/D and D/A converters are
becoming faster and faster. Frequently, the speed of the
A/D and D/A converters/microprocessors are not the limiting

factors for practical implementations anymore, at least for
control problems typically encountered in the process indus-
try. Rather than the speed of the A/D and D/A converters,
typically slow state “measurements” are key limiting factors.
Slow state measurements might for example be due to slow
sensors such as concentration measurements, or due to the
required extraction of the state information from secondary
measurements involving for example computationally intense
image processing. Furthermore, the recalculation time might
be, as for example in the case of nonlinear model predictive
control (NMPC), dictated by the time required to solve a
computationally expensive optimal control problem. Typi-
cally, the sampling time of the process control system, at
which the A/D and D/A converters operate, is in the order
of milli- or even micro-seconds, whereas the recalculation
time and availability of sensor measurements might be in the
order of seconds. If in this case the input is kept constant in
between recalculation instants, the achievable performance
can degrade significantly. One possibility to overcome this
problem is to open-loop apply an input signal obtained at
the recalculation time ti. Even so the D/A converters/sample-
and-hold elements will lead to an approximation error of the
open-loop input, these effects can often be neglected
Based on recent nominal stability results for sampled-data
open-loop feedback control [14], we analyze the influence
of model-plant mismatch, exogenous disturbances, unknown
delays, numerical errors, and state estimation errors on the
stability of the closed-loop. Is it still possible to achieve
stability and good performance, at least in the case of small
disturbances? Also, what type of performance and stability
can be expected, if the disturbances are persistent? As shown,
this question is closely connected to the continuity of the
decreasing/Lyapunov function. The results are of practical
interest as they underpin that small disturbances, for example
due to model-plant mismatch or numerical errors, can be
tolerated. Based on the inherent stability results we further-
more derive conditions for the semi-regional practical output-
feedback stabilization via observer-based state-feedback.
The paper is structured as follows: In Section II we state
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Fig. 2. Sampled-data open-loop feedback.
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the nominal problem setup and review the nominal stability
result obtained in [14]. The inherent robustness properties
of sampled-data open-loop are examined in Section III. Sec-
tion IV presents results related to the observer based output-
feedback sampled-data state-feedback problem, before some
final conclusions are drawn in Section V.

II. SETUP AND NOMINAL STABILITY

We consider time-invariant nonlinear systems given by

ẋ(t) = f (x(t),u(t)), t ≥ 0, x(0) = x0, (1)

where x(t) ∈ R
n denotes the system state, and u(t) ∈ R

m

denotes the input. With respect to the vector field f we
assume that:
Assumption 1: The vector field f :X ×U →R

n is continu-
ous in u and locally Lipschitz in x. Furthermore, f (0,0) = 0.
Here X ⊆ R

n denotes the set of feasible states and the
compact set U with U ⊆ R

m denotes the set of feasible
inputs. We assume, that
Assumption 2: (0,0)∈X ×U .
We consider the stabilization of (1) under sampled-data open-
loop feedback of the form:

u(t) = uSD(t;x(ti), ti). (2)

Here uSD denotes the open-loop input trajectory of the
sampled-data feedback controller given by a so called ad-
missible input generator as defined later. The input signal
is based on the state information x(ti) at the recalculation
instant ti. The recalculation times are assumed to be given
by a partition π of the time axis:
Definition 1: (Partition) A partition is a series π = (ti), i∈N

of (finite) positive real numbers such that t0 = 0, ti <ti+1 and
ti→∞ for i→∞.

Whenever t and ti occur together, ti should be taken as the
closest previous sampling instant with ti < t. We refer in the
following to an admissible input generator as
Definition 2: (Admissible input generator) An input genera-
tor is called admissible with respect to the sets X0⊆X ⊆R

n,
U ⊆R

m, and a partition π , if for any x∈X0 and any ti∈π:
1) uSD(·;x, ti) ∈ L ∞([ti, ti+1],U )
2) the solution x(·;x(ti),uSD(·;x(ti), ti)) of (1) under the

input uSD starting from x(ti) is absolutely continuous
on [ti, ti+1) with

a) x(τ;x(ti),uSD(·;x(ti), ti))∈X ∀τ ∈ [ti, ti+1)
b) x(ti+1;x(ti),uSD(·;x(ti), ti)) ∈ X0.

Here L ∞([a,b],U ) denotes Lebesgue measurable and es-
sentially bounded functions mapping from [a,b] into the
admissible input set U (a.e.). In other words, a feasible input
generator maps from an initial state inside the set X0 and a
sampling instant ti to an input for [ti, ti+1) that is measurable,
satisfies the input constraints almost everywhere (besides a
number of points with measure zero), keeps the state inside
of the allowed set of states X , and (at least) renders the set
X0 invariant at the recalculation instants.
Remark 1: (Admissible input generators) One question oc-
curring is, whether there are any controller designs available

that can provide for a single state measurement an input sig-
nal rather then a “fixed” input value? One classical example
is optimal control. Further examples are sampled-data open-
loop NMPC [16]or open-loop input generators as outlined
in [1, 26], which might for example be based on differential
flatness or other structural considerations. Furthermore, as
shown in [14], any stabilizing instantaneous feedback can
be used to obtain suitable open-loop input trajectories by
feed forward simulation.

A. Nominal Stability and Sampled-data Open-loop Feedback

With respect to the feedback uSD we assume that it stabilizes
the origin of the nominal system with a region of attraction
R ⊆ X , 0 ∈R, and that a Lipschitz assumption on the
corresponding decreasing function is satisfied. In the spirit
of the nominal stability results presented in[14] this is
guaranteed provided that the following assumptions hold:
Assumption 3: (Nominal stability)

1) The input generator uSD is admissible with respect to
a set R, the input and state constraint sets U , X , and
the partition π .

2) There exists a locally Lipschitz continuous positive
definite function α :R →R

+ and a continuous positive
definite function β :R → R

+, such that for all ti ∈π ,
x(ti)∈R and τ ∈ [0, ti+1 − ti)

a) α(x(ti + τ;x(ti),uSD(·;x(ti), ti)))−α(x(ti))

≤−
∫ ti+τ

ti
β (x(s;x(ti),uSD(·;x(ti), ti)))ds. (3)

b) For all compact strict subsets S ⊂R there is
at least one compact sub-level set Ωc = {x ∈
R|α(x)≤c} s.t. S ⊂Ωc.

We denote α in the following as decreasing or Lyapunov
like function. Given that Assumption 1- 3 hold, the following
theorem can be established:
Theorem 1: Assume that Assumption 1- 3 hold. Then for
all x(0)∈X0: 1.) The solution of (1) subject to (2) exists for
all times. 2.) The input and state constraints are satisfied.
3.) x(ti)∈X0 ∀ti ∈ π . 4.) ‖x(t)‖→ 0 as t → ∞.

For a proof of this result we refer to [13, 14]. Thus, under
the given conditions the sampled-data open-loop feedback
uSD nominally stabilizes (in the sense of convergence) the
origin. As shown in [14] the Lipschitz assumption on the
decreasing function α and the existence of compact level
sets Ωc is actually not necessary to achieve the desired
robustness properties. Rather we assume it here to derive
the robustness results for sampled-data open-loop feedback.
This requirement is in correspondence with recent results on
the stability and robustness of discontinuous feedbacks with
sample-and-hold [22, 23].

III. INHERENT ROBUSTNESS

The reviewed results only establish nominal stability. In real-
ity, however, model-plant mismatch, exogenous disturbances,
unknown delays, numerical errors, and state estimation er-
rors are present. Analyzing the influence of such unknown
disturbances is important since the state information is only
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fed back at the recalculation times, i.e. the controller cannot
immediately react to disturbances.
Note that we do not consider the design of robustly stabi-
lizing controllers. Rather we analyze the inherent robustness
properties of sampled-data open-loop feedback. Especially,
we show that sampled-data open-loop feedback possesses
inherent robustness properties if the decreasing function is
locally Lipschitz.
The derived results are related to robustness results for
discrete time systems [35] as well as to results on sampled-
data feedback considering sample-and-hold elements for the
input [7, 23].
Remark 2: We consider persistent disturbances and the re-
peated application of open-loop inputs, i.e. we cannot react
instantaneously to disturbances. Thus, asymptotic stability
cannot be achieved, and the nominal region of attraction R
can in general not be rendered invariant under disturbances.
As a consequence, we desire only “ultimate boundedness”
results, i.e. we desire that the norm of the state after some
time becomes small. Furthermore, we show that the bound
can be made arbitrarily small depending on the bound on the
disturbance and the sampling time (practical stability), and
that the region where this holds can be made an arbitrarily
inner approximation with respect to R (semi-regional). In
view of Assumption 3 and for simplicity of presentation, we
parameterize these regions with level sets.
Specifically, we derive bounds for the maximum allowable
disturbance and sampling time that ensure that the state
converges from any arbitrary level set of initial conditions
Ωc0 ⊂ R in finite time to an arbitrary small set Ωγ around
the origin without leaving a desired set Ωc ⊂ R, compare
Figure 3. Certainly, the maximum allowable disturbance

Ωc0

Ωc
x(0)

Ωγ

R

Fig. 3. Set of initial conditions Ωc0 , maximum attainable set Ωc, desired
region of convergence Ωγ and nominal region of attraction R.

depends on the size of the region of convergence Ωγ and
on the “distance” between Ωc and Ωc0 .
The results are based on the observation that small distur-
bances and model uncertainties lead to a (small) difference
between the nominal open-loop state and the real state. The
influence of the disturbance on the decreasing function α
can be bounded by

α(x(ti+1))−α(x(ti))≤−
∫ ti+1

ti
β (x(τ;x(ti),uSD(·;x(ti), ti)))dτ

+ ε(ti), (4)

where ε corresponds to the “disturbance contribution”. Thus,
if the disturbance contribution ε “scales” with the size of

the disturbance, one can achieve contraction of the level
sets, at least at the recalculation instants. Since the integral
contribution in (4) depends on the distance of the system
state to the origin, while the disturbance contribution mainly
depends on the size of the disturbances, the decrease cannot
continue until reaching the origin, i.e. in general only prac-
tical stability can be achieved. For the results we need the
function ∆αmin(c,γ) which is defined as:
Definition 3: ( ∆αmin) For any c> γ >0 with Ωc ⊂ R, the
value of ∆αmin(c,γ) is defined as

∆αmin(c,γ) = min
x0∈Ωc/Ωγ

ti∈π

∫ ti+1

ti
β (x̄(s;x0,uSD(·;x0, ti)))ds. (5)

Here x̄ is the state of the nominal system under the nominal
sampled-data open-loop feedback, i.e.

˙̄x(s) = f (x̄(s),uSD(s;x(ti), ti)), s∈ [ti, ti+1], x̄(ti) = x0.
Note that for any c > γ > 0 with Ωc ⊂ R, ∆αmin(c,γ) is
nontrivial and finite. In general it is difficult to obtain an
explicit expression or even a good lower bound for ∆αmin.

A. Additive Disturbances

We first examine the robustness with respect to additive
disturbances. Specifically, we consider additive disturbances
of the form:

ẋ(t) = f (x(t),uSD(t;x(ti), ti))+ p(t). (6)

All appearing disturbances and model-plant uncertainties are
lumped in the disturbance term p. With respect to the additive
disturbance p we can derive the following result
Theorem 2: (Additive disturbances) Given arbitrary level
sets Ωγ ⊂Ωc0 ⊂Ωc ⊂R and assume that Assumptions 1-
3 hold. Then, there exists a constant pmax > 0, such that for
any disturbance satisfying for all ti∈π∥∥∥∥

∫ ti+τ

ti
p(s)ds

∥∥∥∥ ≤ pmaxτ, τ ∈ [0, ti+1 − ti], (7)

the trajectories of the disturbed system for any x0∈Ωc0

ẋ(t) = f (x(t),uSD(t;x(ti), ti))+ p(t), x(0) = x0, (8)

exist for all times, will not leave the set Ωc, x(ti) ∈ Ωc0

∀i ≥ 0, and there exists a finite time Tγ such that x(τ)∈Ωγ
∀τ ≥ Tγ .

Due to space limitations we refer to [13] for the proof.
Remark 3: The bound (7) ensures existence of solutions and
convergence to the set Ωc. Examples are constant additive
disturbances and time varying disturbances. Note that it is not
necessary to require that the disturbance vanishes over time,
since we do not desire to achieve asymptotic convergence.
In general, the disturbances also depends on the state and
input or sampling time. The derived result can be used in
this case, if the integrability condition (7) on p holds.
Theorem 2 establishes robustness of sampled-data open-loop
feedbacks with respect to small additive disturbances. The
degree of robustness strongly depends on the dynamics of the
system, the Lipschitz condition on the decreasing function α ,
and on the minimum and maximum recalculation time.
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Remark 4: Calculating the robustness bound pmax is diffi-
cult, since it is necessary to at least know a lower bound on
the minimum decrease ∆αmin(c,γ/4), see[13]. Nevertheless,
the result is of value, since it underpins that small additive
disturbances can be tolerated.

B. Input Disturbances

The derived results can be tailored to disturbances that
directly act on the input. The consideration of disturbances
acting directly on u is of interest, since this covers a series
of practically important disturbances as discussed later.
To derive the results it is necessary to assume that f is locally
Lipschitz in u over a compact set Ũ which is slightly larger
then U with U ⊂Ũ , since the nominal controller could use
values on the boundary of U :
Assumption 4:
The vector field f :X ×Ũ →R

n is locally Lipschitz in x and
u. Furthermore, f (0,0) = 0.
We assume that the disturbed input is given by
uSD(t;x(ti), ti) + v(t). Under the given assumptions the fol-
lowing theorem can be established:
Theorem 3: (Robustness with respect to input disturbances)
Given arbitrary level sets Ωγ ⊂Ωc0 ⊂Ωc⊂R and assume that
Assumptions 2- 4 hold. Then, there exists a constant vmax > 0
such that for any disturbance satisfying for all ti∈π∥∥∥∥

∫ ti+τ

ti
v(s)ds

∥∥∥∥ ≤ vmaxτ, τ ∈ [0, ti+1 − ti], (9)

and
‖v(t)‖ ≤ vdistU ,Ũ , t ≥ 0, (10)

the trajectories of the disturbed system for any x0∈Ωc0

ẋ(t) = f (x(t),uSD(t;x(ti), ti)+ v(t)), x(0) = x0, (11)

exist for all times, will not leave the set Ωc, x(ti) ∈ Ωc0

∀i ≥ 0, and there exists a finite time Tγ such that x(τ)∈Ωγ
∀τ ≥ Tγ .

For the proof we refer to [13].
Besides the important case of disturbances that directly
act on the input, the derived result has a series of direct
implications.
a) Numerical approximation errors: One direct implication
of this result is that approximated solutions to the optimal
control problem in NMPC can be tolerated, if the approxima-
tion error is sufficiently small. Such approximated solutions
can for example result from the numerical integration of
the differential equations, or errors due to the application of
direct solution approaches for the optimal control problem
in NMPC. Related arguments have been used in [9, 10] to
establish stability of a NMPC scheme that employs approx-
imated solutions of the optimal control problem.
b) Computational delays: The derived result underlines that
sufficiently small computational delays can be tolerated.
Since the state on which the input calculation is based
on remains unchanged, it becomes immediately clear that
condition (9) is satisfied if the delay is sufficiently small. In
this case condition (10) vanishes, since the resulting input

is only shifted in time. This result is of special interest for
open-loop sampled-data NMPC, since delays will always be
present even for fast calculations.
c) Neglected fast actuator dynamics: One further application
of the derived result might be the question, if in the case of
neglected, but fast actuator dynamics, practical stability can
be guaranteed. In principle this is possible, following ideas
presented in [22] for the case of sampled-data feedback with
sample-and-hold elements.

C. Measurement and State Estimation Errors

In this section we consider the problem of measurement
and state estimation errors. The derived result lays the
basis for the output-feedback results given in Section IV.
Instead of the real system state x(ti) we assume that at
every sampling instant only a disturbed state x(ti)+ e(ti) is
available. The disturbance e(ti) could for example be the
result of measurement noise, small measurement delays, or
state estimation errors. Instead of the nominal open-loop
feedback the following “disturbed” feedback is applied:

u(t; x̂(ti))=uSD(t;x(ti)+ e(ti), ti), t∈ [ti, ti+1) . (12)

Note that only the state and disturbance e(ti) at the recalcu-
lation time is of interest for the robustness. The influence
of disturbances in between recalculation times does not
influence the feedback immediately.
Similar considerations as for the other disturbances lead to
the following theorem:
Theorem 4: (Measurement/state estimation errors)
Given arbitrary level sets Ωγ ⊂Ωc0 ⊂Ωc ⊂R and assume
that Assumptions 1- 3 hold. Then, there exists a constant
emax > 0 such that for any measurement disturbance and state
estimation error e(ti) satisfying for all ti∈π

‖e(ti)‖ ≤ emax, (13)

the trajectories of the system for any x0∈Ωc0

ẋ(t) = f (x(t),uSD(t;x(ti)+ e(ti), ti)), x(0) = x0, (14)

exist for all times, will not leave the set Ωc, x(ti) ∈ Ωc0

∀i ≥ 0, and there exists a finite time Tγ such that x(τ)∈Ωγ
∀τ ≥ Tγ .

This result underpins that sufficiently small measure-
ment/estimation errors can be tolerated to achieve stability
in a practical sense. Thus, small measurement noise, but
also state observation errors can be tolerated. One direct
application of this result is the sampled-data open-loop
feedback separation principle as outlined in the next section.

D. Robustness and NMPC

In the case of NMPC some inherent robustness results
already exist [5, 25, 27, 35]. However, these results are either
only valid for instantaneous NMPC [5, 25, 27], or discrete
time NMPC [35], or they consider special NMPC imple-
mentations, such as dual-mode predictive control [30] or
contractive predictive control formulations [8, 38].
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The inherent robustness results derived in this section are
also applicable to NMPC. Many NMPC approaches that
guarantee stability already satisfy the decrease condition (3).
However, it is in general not possible to answer the question
if a given sampled-data open-loop NMPC schemes satisfies
the Lipschitz condition on the decreasing function, which in
the case of NMPC is the value function. This problem stems
from the fact that the applied input is based on the solution of
an optimal control problem, which can be discontinuous as a
function of the considered state [16, 17, 28]. There are only
a few NMPC schemes that guarantee that the value function
is locally Lipschitz [19, 21]. Most of these do not consider
constraints.

IV. SAMPLED-DATA OPEN-LOOP OUTPUT-FEEDBACK

The results on nominal stability and on inherent robust-
ness of sampled-data open-loop feedback are based on the
assumption that the full state information is available. In
practical applications it is, however, often not possible to
measure all states. In practice the problem of output-feedback
is often “solved” according to the certainty equivalence
principle, i.e. instead of the true, but unknown, system state,
a state estimate provided by a state observer is used for
feedback. However, since no general separation principle
for nonlinear systems exists, the stability of the closed-
loop cannot be deduced from the stability of the observer
and the state-feedback separately. In this Section we outline
conditions ensuring semi-regional practical stability of the
closed-loop for a combination of of sampled-data open-loop
state-feedback controllers and state observers.
The results are inspired by special nonlinear separation
principles for instantaneous feedbacks employing high-gain
observers, see e.g. [3, 36]. The state estimation error is
basically considered as a disturbance acting on the nominal
closed-loop. It is shown that if the sampled-data feedback
possesses inherent robustness properties and if the observer
error converges sufficiently fast, it is possible to achieve
stability stability of the closed loop.

A. Setup and Stability

In addition to the state equations (1) we consider an out-
put/measurement equation of the form

y(t) = h(x(t),u(t)) (15)

where y(t) ∈ R
p are the measured outputs. The input to

the system is given by a sampled-data open-loop feedback
controller

u(t) = uSD(t; x̂(ti), ti). (16)

Here x̂(ti) is the estimated state provided by the used state
observer. In the following we denote the state estimation
error by e = x− x̂.
In addition to Assumption 3 we assume that:
Assumption 5: For all x(ti) 	∈ R, ti ∈ π the sampled-data
open-loop feedback uSD is defined as uSD(τ;x(ti), ti) =
uc, τ ∈ [ti, ti+1], where uc ∈ U is constant.
This is necessary, since the state estimate of the observer can
be outside of R, at least in some initial phase.

On the observer we require that:
Assumption 6: (Observer error convergence) For any de-
sired maximum state estimation error emax > 0 there exist ob-
server parameters such that ‖x(ti)− x̂(ti)‖ ≤ emax, ∀ti ≥
tkconv . Here kconv >0 is a freely chosen, but fixed number of
recalculation instants after which the observer error has to
satisfy the error bound.
Remark 5: Depending on the observer, further conditions on
the system might be necessary (e.g. observability assump-
tions). Also, note that the observer does not have to operate
continuously since the state information is only required at
the recalculation instants ti. Thus, it is in principle possible
to apply a discrete time observer for the continuous time
system, or a state estimator utilizing a certain piece of
the output trajectory at once, such as moving horizon state
estimation [31, 34].
In principle we follow the ideas used for inherent robustness
with respect to measurement errors in the previous section,
i.e. we show that if emax is sufficiently small, then a decrease
of the disturbed decreasing function α from recalculation
time to recalculation time can be retained. However, in com-
parison to the previous results we must take into account that
the observer requires a certain convergence time to achieve
the desired maximum observer error emax. To avoid that the
system state leaves the set Ωc during this time it might
thus be necessary to sufficiently decrease the maximum
recalculation time π̄ . Under the given setup the following
theorem holds
Theorem 5: (Semi-regional practical stability) Given level
sets Ωγ , Ωc, and Ωc0 with Ωγ ⊂Ωc0 ⊂Ωc⊂R. Then, under
the Assumptions 2-6 there exists a maximum allowable
observer error emax and a maximum recalculation time
π̄ such that for all initial conditions x0 ∈ Ωc0 the state
trajectories of the closed-loop satisfy x(τ)∈Ωc τ ≥ 0, and
there exists a finite time Tγ such that x(τ)∈Ωγ ∀τ ≥ Tγ .

The proof can be found in [13], or for the special case of
sampled-data NMPC in[15].
The most critical conditions for the application of the derived
semi-regional practical stability result is the requirement
that the observer satisfies Assumption 6. Even so this as-
sumption is rather strong, a series of observer designs exist
achieving the desired properties. Examples are high-gain
observers [37], optimization based moving horizon observers
with contraction constraint [31], observers possessing a linear
error dynamics where the poles can be chosen arbitrarily (e.g.
based on normal form considerations and output injection [4,
24]), and observers achieving finite convergence time such
as sliding mode observers [11] or the approach presented
in [12, 29].

V. CONCLUSIONS

Based on nominal stability results for sampled-data open-
loop feedback we investigated the question of the inherent
robustness with respect to external disturbances, model-
plant mismatch, and measurement/state estimation errors.
Specifically, we showed that that under certain continuity
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assumptions, sampled-data open-loop feedbacks possesses
inherent robustness properties. Of practical importance are
the robustness to small input uncertainties such as numerical
optimization errors, the robustness to small input delays,
the robustness to measurement and state estimation errors,
and the robustness to neglected fast actuator and sensor
dynamics. The results have direct implications to nonlinear
model predictive control, since they underline that under
certain conditions optimization errors, state estimation errors,
and model plant mismatch can be tolerated. Analyzing the in-
fluence of such unknown disturbances is important since the
state information is only fed back at the recalculation times,
i.e. the controller cannot immediately react to disturbances.
As a direct application of the presented results we outlined a
separation principle like stability theorem for observer based
state-feedback sampled-data open-loop control.
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