
Supremal Sublanguages of General Specification Languages
Arising in Modular Control of Discrete-Event Systems

J. Komenda J.H. van Schuppen
Institute of Mathematics, Czech Academy of Sciences,

Brno Branch, Zizkova 22, 616 62 Brno, Czech Republic
komenda@ipm.cz

CWI, P.O. Box 94079,
1090 GB Amsterdam, The Netherlands

J.H.van.Schuppen@cwi.nl

Abstract— For supervisory control of large-scale modular
DES the possibility of performing control-related computation
locally (in components) is of utmost importance to compu-
tational complexity. Unlike our previous results, where the
specification language is decomposable into local specification
languages, this paper concerns the case of general specification
languages that are neither necessarily decomposable nor
contained in the global plant language. Still the conditions
are found under which building of the global plant is avoided
for the computation of the supremal normal sublanguages of
the (global) specification language.

Keywords— Modular supervisory control, Partial normal-
ity, Coalgebra, Supremal sublanguages

I. INTRODUCTION

Modular control of DES represented by finite automata
has been introduced by P.J. Ramadge and W.M. Wonham
in [9]. Large scale systems are typically composed of a
large number of relatively small (in size) local components
(subsystems) that run concurrently (in parallel). Global
systems are formed as a synchronous product of these
local components. Unlike the first papers on the topic,
where the input alphabets of the local components were
identical ([12]), the general case of different local inputs is
considered. In [10] and [2] a very restrictive condition is
imposed on events shared by several local alphabets: they
must be controllable for all subsystems. This assumption
has been generalized recently in [11] to the condition that
the shared events must have the same control status for
all subsystems that share a particular event. Specification
languages for the global plant that are not decomposable
into local specification languages are considered in this
paper.

Our attention is restricted to modular control synthesis
without blocking as the blocking issue requires different
concepts and methods. Preliminary results on coalgebra
and coinduction can be found in the apppendix. After the
introductory Section 1, Section 2 is devoted to the problem
formulation. Section 3 concerns the computation of the
supremal normal sublanguage of a general specification
language. Two novel sufficient conditions (a specification

The research was supported by the EU Esprit LTR Project Control and
Computation, ISO-2001-33520 and Acad. of Sci. of Czech Republic, Inst.
Research Plan No. AV0Z10190503.

dependent and a structural one) are derived under which
supremal normal sublanguage can be computed without
building the global plant itself.

II. PROBLEM FORMULATION

In modular control the concurrent behavior of local
subplants (partial automata) G1, . . . , Gn is considered. The
notation Zn = {1, 2, . . . , n} is used. The global plant is the
synchronous product G =‖n

i=1 Gi. Denote A = ∪n
i=1Ai

the global alphabet and Pi : A∗ → A∗
i the projections

to the local alphabets. The concept of inverse projection:
P−1

i : Pwr(A∗
i) → Pwr(A∗) is also used.

Denote the global plant and specification (partial) lan-
guages by L and K, respectively. In our modular setting,
L is decomposable into local plant languages: L = L1 ‖
· · · ‖ Ln. In most of the works on this topic K is
similarly decomposable into local specification languages
and K ⊆ L. The general case is when this condition is
not satisfied and moreover K may not be included in L.
This has been considered in [2] for complete observations
under restrictive structural conditions (all shared events are
controllable). We assume that each module Si has only
partial observation of its events. The main goal of the paper
is to find methods for computation of supremal normal
sublanguages that cope with the computational difficulty
of this problem. We are looking for conditions that enable
computation of the supremal normal sublanguage which
avoid any manipulation with the global plant. In this way
the modularity can be used to break down considerably the
computational complexity.

III. SUPREMAL NORMAL SUBLANGUAGES OF GENERAL

SPECIFICATION LANGUAGES

Let Ai = Ao,i ∪ Auo,i be the decomposition of local
events into locally observable (Ao,i) and locally unob-
servable (Auo,i) event subsets. The global system has the
observation set Ao = ∪n

i=1Ao,i ⊆ A = ∪n
i=1Ai. Globally

unobservable events are denoted by Auo = A \ Ao. We
assume in this section that ∀i �= j ∈ {1, . . . , n} we
have Ao,i ∩ Aj = Ai ∩ Ao,j , i.e. observational status of
a shared event must be the same for all modules that
share a particular event. Therefore we have also Auo =
∪n

i=1Auo,i. The corresponding global projection that erases
unobservable events is denoted by P : A∗ → A∗

o.

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

TuB01.6

0-7803-9568-9/05/$20.00 ©2005 IEEE 2775

Recall that the projections of the global alphabet into the
local ones are denoted by Pi : A∗ → A∗

i , i ∈ Zn. Partial
observations in individual modules are expressed via local
projections from A∗

i to A∗
o,i, but due to the handling of

general indecomposable (global) specification languages
only the afore mentioned global projection P : A∗ → A∗

o

is considered in this section. The concept of ε−transitions
is needed.

Definition 3.1: (ε−transitions.) For s ∈ S we define s
ε⇒

s′ if ∃τ ∈ A∗
uo : s

τ→ sτ = s′.

Denote the initial state of the DES generator S by s0. An
auxiliary concept that reflects the fact that due to partial
observations it is not possible to distinguish between states
is recalled from [3]:

Definition 3.2: (Observational indistinguishability rela-
tion on S.) A binary relation Aux(S) on S, called the
observational indistinguishability relation is the smallest
relation satisfying:

(i) 〈s0, s0〉 ∈ Aux(S)
(ii) ∀〈s, t〉 ∈ Aux(S) : (s

ε⇒ s′ and t
ε⇒ t′) ⇒

〈s′, t′〉 ∈ Aux(S)
(iii) ∀〈s, t〉 ∈ Aux(S) and ∀a ∈ Ao : (s a→

sa and t
a→ ta) ⇒ 〈sa, ta〉 ∈ Aux(S).

Next we recall the concept of state-partition automaton,
which we define here as follows:

Definition 3.3: (State-partition automaton) A partial au-
tomaton S is called a state-partition automaton if ∀s ∈ S:
s = (s0)w1 = (s0)v1 for w1 ∈ A∗ and v1 ∈ A∗ and
∀s′ ∈ S: s′ = (s0)v2 for v2 ∈ A∗ with P (v2) = P (v1) there
exists w2 ∈ A∗ with P (w2) = P (w1) and s′ = (s0)w2 .

Note that if P (w1) = P (v1) then it is sufficient to put
w2 = v2, i.e. it is equivalent to require the above condition
only for P (w1) �= P (v1).

We assume that partial language L is represented by
partial automaton S with initial state s0. We mean by this
that the corresponding behavior homomorphisms l : S → L
(see appendix) satisfies l(s0) = L. A characterization of
Aux(S) follows:

Lemma 3.1: For any s, s′ ∈ S: 〈s, s′〉 ∈ Aux(S) iff there
exist w,w′ ∈ L2 such that P (w) = P (w′), s = (s0)w and
s′ = (s0)w′ . Moreover, if S is a state-partition automaton
then ∀v ∈ L2 and s′ ∈ S we have 〈(s0)v, s′〉 ∈ Aux(S)
iff there exists v′ ∈ L2 such that P (v) = P (v′) and s′ =
(s0)v′ .

Proof: The first part is very easy and has been shown in
our previous works on the topic. The second part follows
from the assumption that S is a state-partition automaton:
if for v ∈ L2 we have 〈(s0)v, s′〉 ∈ Aux(S) an application

of the first part of this lemma yields there exist w,w′ ∈ K2

such that P (w) = P (w′), (s0)v = (s0)w and s′ = (s0)w′ ,
the assumption that S is a state-partition automaton yields
that there exists v′ ∈ L2 such that P (v) = P (v′), and
s′ = (s0)v′ , which is the second claim.

Local plant languages will be denoted by Li,
i ∈ Zn = {1, . . . , n}. We assume that global specification
K is not decomposable into local specifications.
Recall from [1] that K is called (L,P)−normal if
K2 = P−1P (K2) ∩ L2. It is known that normal
languages are closed under unions, hence supremal normal
sublanguages always exist.

Remark 3.2: An order relation on partial languages in-
duced by second components only is used: we write K ⊆ L
iff K2 ⊆ L2.

We denote the supremal (L,P)−normal sublanguage of K
by sup N(K,L, P). Since K is not in general included in
L we investigate sup N(K ∩ L,L, P). For any i ∈ Zn

we can consider language Ki := K ∩ P−1
i (Li), which

will play the role of local specification in the case of
indecomposable specification K. Note however that Ki is
a partial language over the global alphabet A. Supremal
normal sublanguages of Ki with respect to P−1

i (Li) and P ,
i.e. sup N(Ki, P

−1
i (Li), P), are considered for any i ∈ Zn.

It will be shown in the sequel that under certain conditions
their intersection yields sup N(K∩L,L, P). It is natural that
such an approach is not always possible and the optimality
(supremality) is in general lost.

We are looking for conditions that enable computa-
tion of sup N(K ∩ L,L, P) without having to build the
recognizer of L itself, i.e. using only given K and
P−1

i (Li), i ∈ Zn. In order to make possible the computa-
tion of sup N(K ∩ L,L, P) using sup N(Ki, P

−1
i (Li), P),

(P−1
i (Li), P)−normality of Ki for any i ∈ Zn is required.

This condition will be called G−normality.
Now we recall from [5]:

Algorithm 1: (Supremal normal sublanguage) Let (par-
tial) automata S and T representing K ∩ L and L, respec-
tively, be such that S is a subautomaton of T and S is a
state-partition automaton. The transition functions of S and
T are denoted by →1 and →, respectively. Partial automaton
S̃ = 〈õ, t̃〉, subautomaton of S, is constructed with t̃ denoted
by →′ .
Define the auxiliary condition (1) consisting of (1a) and
(1b) as follows:
(1a) if a ∈ Auo then ∀u ∈ A∗

uo: sa
u→ ⇒ sa

u→1;
(1b) if a ∈ Ao then ∀s′ ≈Aux(S) s : s′ a→ ⇒ s′ a→1, in
which case also ∀u ∈ A∗

uo: s′a
u→ ⇒ s′a

u→1.
Below are the steps of the algorithm.

1. Put S̃ := {s0}.
2. For any s ∈ S̃ and a ∈ A we put s

a→′ sa if s
a→1 and

condition (1) is satisfied. We put in the case s
a→′ sa also

2776

S̃ := S̃ ∪ {sa}.
3. For any s ∈ S̃ we put õ(s) = o(s).

Let l̃ : S̃ → L be the unique (behavior) homomorphism
given by finality of L. We know from [5]

Theorem 3.3: (Algorithm 1 is correct) l̃(s0) =
sup N(K ∩ L,L, P).

The same auxiliary algorithm (based on Algorithm
1) with modified data is used for computation of
sup N(Ki, P

−1
i (Li), P). It is explicitly stated below in

order to make clear our notation. Thus the proof of our
main theorem becomes easier to follow.

Algorithm 2: Let partial automata Si = (Si, 〈o1i, t1i〉)
and Ti = (Ti, 〈oi, ti〉) representing Ki and P−1

i (Li), i ∈
Zn, respectively, be such that for all i ∈ Zn: Si is a
subautomaton of Ti, and Si is a state-partition automaton.
The common initial state of these automatata is denoted by
si
0 and the transition functions t1i and ti are denoted by →1i

and →i, respectively. Denote by Aux(Si) the observation
indistinguishability relation with respect to the projection
P .

Let us construct partial automata S̃i = (S̃i, 〈õi, t̃i〉),
subautomata of Si, with t̃i denoted by →′i.
Define the auxiliary condition (2) consisting of (2a) and
(2b) as follows:
(2a) if a ∈ Auo then ∀u ∈ A∗

uo: sa
u→i ⇒ sa

u→1i;
(2b) if a ∈ Ao then ∀s′ ≈Aux(Si) s : s′ a→i ⇒ s′ a→1i, in
which case also ∀u ∈ A∗

uo: s′a
u→i ⇒ s′a

u→1i.
Below are the steps of the algorithm.

1. Put S̃i := {si
0}.

2. For any s ∈ S̃i and a ∈ A we put s
a→′i sa if s

a→1i sa

and condition (2) is satisfied and we put in the case s
a→′i sa

also S̃i := S̃i ∪ {sa}.
3. For any s ∈ S̃i we put õi(s) = oi(s).

Let us denote by l̃i : S̃i → L the unique (behavior)
homomorphism given by finality of L. It follows from
Theorem 3.3 that

Theorem 3.4: (Algorithm 2 is correct) l̃i(si
0) =

sup N(Ki, P
−1
i (Li), P).

Now we formulate the concept of G−normality.

Definition 3.4: K ⊆ L is called G−normal if for all
i ∈ Zn:
Ki := K ∩ P−1

i (Li) is (P−1
i (Li), P)−normal.

We are ready to state the following simple theorem.

Theorem 3.5: (Sufficient conditions) Assume that ∀i �=
j ∈ {1, . . . , n} we have Ao,i ∩ Aj = Ai ∩ Ao,j and K is

G−normal. Then

sup N(K ∩ L,L, P) =

=
n⋂

i=1

sup N(Ki, P
−1
i (Li), P).

Proof: Algorithm 1 is used for the computation of
sup N(K ∩ L,L, P) and Algorithm 2 for computation of
sup N(Ki, P

−1
i (Li), P). This enables us to consider the

behaviors of the corresponding output automata S̃ and S̃i

of Algorithms 1 and 2, i.e. coinductive proof principle can
be used (see appendix). The notation is as follows: let S
representing K ∩L and T representing L be the same as in
Algorithm 1. Similarly, for i ∈ Zn, Si and Ti representing
Ki = K ∩P−1

i Li and P−1
i Li be the same as in Algorithm

2. We show that

R = {〈[l̃(s0)]w, [
n⋂

i=1

l̃i(si
0)]w〉 | w ∈ (l̃(s0))2}

is a bisimulation relation, from which the claim of the
theorem follows by coinduction. Take a w ∈ (l̃(s0))2

arbitrary, but fixed.
(i) is trivial: marking is not considered.
(ii) Let [l̃(s0)]w

a→ for a ∈ A, i.e. (s0)w
a→′ . Thus,

according to step 2 of Algorithm 1 (s0)w
a→1 and condition

(1) of Algorithm 1 is satisfied. It must be shown that
[∩n

i=1 l̃i(s
i
0)]w

a→. We need show that for any i ∈ Zn we
have [l̃i(si

0)]w
a→, i.e. (si

0)w
a→′i. According to Algorithm

2 this amounts to show that for any i ∈ Zn we have
(si

0)w
a→1i and condition (2) of Algorithm 2 holds. First

of all note that (si
0)w

a→1i. Indeed, (s0)w
a→′ implies

that (s0)w
a→1, i.e. wa ∈ (K ∩ L)2. Since we have

also that (s0)w
a→, i.e. wa ∈ L2 = ∩n

i=1P
−1
i (L2

i),
it follows that wa ∈ K2

i = K2 ∩ P−1
i (L2

i), which is
equivalent to (si

0)w
a→1i. We also need to show that the

implications (2) of Algorithm 2 hold in order to prove
that (si

0)w
a→′i. If a ∈ Auo then it must be shown that

condition (2a) of Algorithm 2 holds true: ∀u ∈ A∗
uo:

(si
0)wa

u→i ⇒ (si
0)wa

u→1i. Let u ∈ A∗
uo: (si

0)wa
u→i. This

is equivalent to wau ∈ P−1
i (L2

i). Since P (wau) = P (wa)
and wa ∈ K2

i (which is shown above) we obtain from
G−normality that wau ∈ K2

i , i.e. (si
0)wa

u→1i. If a ∈ Ao

then it must be shown that condition (2b) of Algorithm
2 holds true: ∀s′ ≈Aux(Si) (si

0)w : s′ a→i ⇒ s′ a→1i,
in which case also ∀u ∈ A∗

uo: s′a
u→i ⇒ s′a

u→1i.
Let s′ ≈Aux(Si) (si

0)w : s′ a→i. Since Si is a state-
partition automaton, according to Lemma 3.1 there exists
w′ ∈ A∗ such that P (w′) = P (w) and s′ = (si

0)w′ . Hence,
s′ a→i is equivalent to w′a ∈ P−1

i (L2
i). Recall again that

wa ∈ K2
i and notice that P (w′a) = P (wa). An application

of G−normality yields w′a ∈ K2
i , i.e. s′ a→1i. The rest is

the same as for a ∈ Auo: if u ∈ A∗
uo such that s′a

u→i, then
w′au ∈ P−1

i (L2
i) and w′a ∈ K2

i yield by G−normality
w′au ∈ K2

i , i.e. s′a
u→1i. We conclude that (si

0)w
a→′i,

which was to be shown.
(iii) Assume that ∩n

i=1 l̃i(s
i
0)w

a→. We know that for any

2777

i ∈ Zn we have [l̃i(si
0)]w

a→, i.e. (si
0)w

a→′i. We must
show that [l̃(s0)]w

a→ for a ∈ A, i.e. (s0)w
a→1 and

condition (1) of Algorithm 1 applied to automata S and
T is satisfied. Firstly, according to step 2. of Algorithm 1
we must show that (s0)w

a→1. It follows from ∀i ∈ Zn

(si
0)w

a→′i that in particular (si
0)w

a→i and (si
0)w

a→1i.
These claims are equivalent to ∀i ∈ Zn: wa ∈ P−1

i (Li)2

and wa ∈ K2
i . Thus, we have wa ∈ L2 =

⋂n
i=1 P−1

i (Li)2

and wa ∈ (K ∩ L)2 =
⋂n

i=1 K2
i . The last two statements

are equivalent to (s0)w
a→ and (s0)w

a→1. Secondly, we
must show that condition (1) of Algorithm 1 holds true: if
a ∈ Auo then ∀u ∈ A∗

uo: (s0)wa
u→ ⇒ (s0)wa

u→1; and
if a ∈ Ao then ∀s′ ≈Aux(S) (s0)w : s′ a→ ⇒ s′ a→1, in
which case also ∀u ∈ A∗

uo: s′a
u→ ⇒ s′a

u→1. Let a ∈ Auo

and u ∈ A∗
uo: (s0)wa

u→. Hence, we have wau ∈ L2, i.e.
∀i ∈ Zn: wau ∈ P−1

i (Li)2. The last statement is equivalent
to ∀i ∈ Zn: (si

0)wa
u→i. Our assumption that ∀i ∈ Zn:

(si
0)w

a→′i implies according to condition (2a) of Algorithm
2 that (si

0)wa
u→i implies (si

0)wa
u→1i, which is equivalent

to wau ∈ K2
i . Hence wau ∈ K2, which together with

wau ∈ L2 yields wau ∈ (K ∩ L)2, which is equivalent to
(s0)wa

u→1.
Now, let a ∈ Ao and s′ ≈Aux(S) (s0)w : s′ a→.

According to condition (1b) of Algorithm 1 we must show
that s′ a→1 and ∀u ∈ A∗

uo: s′a
u→ ⇒ s′a

u→1. It follows
from Lemma 3.1 and s′ ≈Aux(S) (s0)w that there exists
w′ ∈ A∗ such that P (w′) = P (w) and s′ = (s0)w′ ∈ S.
Hence, s′a

u→ is equivalent to w′a ∈ L2. An application of
Lemma 3.1 to Si yields also (si

0)w′ ≈Aux(Si) (si
0)w. We

notice that w′a ∈ L2 ⊆ P−1
i (Li)2. Therefore (si

0)w′
a→,

i.e. according to condition (2b) of Algorithm 2 (si
0)w′

a→1i.
The last statement is equivalent to w′a ∈ K2

i . Therefore
w′a ∈ ∩n

i=1K
2
i = (K ∩ L)2. But this is equivalent to

a→1.
The rest is similar to the case a ∈ Auo: if u ∈ A∗

uo:
s′a

u→, then w′au ∈ L2 with the same w′ as above.
Thus, ∀i ∈ Zn: w′au ∈ P−1

i (Li)2. The last statement is
equivalent to ∀i ∈ Zn: (si

0)w′a
u→i. Our assumption that

∀i ∈ Zn: (si
0)w

a→′i implies according to the second part
of condition (2b) of Algorithm 2 that (si

0)w′a
u→i (playing

the role of s′a
u→i) implies (si

0)w′a
u→1i, which is equivalent

to w′au ∈ K2
i . Hence w′au ∈ (K∩L)2, which is equivalent

to s′a
u→1. The conclusion is (s0)w

a→′ , which is equivalent
to [l̃(s0)]w

a→.

Remark 3.6: It is easy to see that (iii) of
the above proof (corresponding to the inclusion⋂n

i=1 sup N(Ki, P
−1
i (Li), P loc

i , P) ⊆ sup N(K ∩L,L, P))
has been proven without the assumption of G−normality.
Otherwise stated, this inclusion is true in a very general
setting.

G-normality is a very strong condition which may hold
only in very special cases. Indeed, G-normality of the
specification implies that Ki = supN(Ki, P

−1
i (Li), P).

Since K = ∩n
i=1Ki this means that the result of the last

theorem is reduced to

sup N(K ∩ L,L, P) = K,

i.e. K is (L,P)−normal. Otherwise stated, the last theorem
is not so effective. However, it is useful for a low com-
plexity test for normality of indecomposable specification
languages. Modular verification of normality is indeed very
important. An effective result is presented in the sequel of
this paper using a structural condition that does not depend
on K.

In the forthcoming theorem G−normality is replaced by
a structural condition called global mutual normality. It is
similar to mutual normality in the case of decomposable
specification ([5]), but concerns P−1

i (Li) instead of Li

themselves.

Definition 3.5: (Global mutual normality) The local plant
(partial) languages Li ⊆ (A∗

i × A∗
i), i ∈ Zn are called

globally mutually normal if for any i �= j ∈ Zn we have

(P−1PP−1
j)(L2

j) ∩ P−1
i L2

i ⊆ P−1
j L2

j .

We obtain the following result:

Theorem 3.7: (Sufficient structural conditions) Assume
that Li, i ∈ Zn are globally mutually normal and ∀i �=
j ∈ {1, . . . , n} we have Ao,i ∩ Aj = Ai ∩ Ao,j . Then
sup N(K ∩ L,L, P) =

=
n⋂

i=1

sup N(Ki, P
−1
i (Li), P).

Proof: The proof is very similar to that of the last theorem.
The main difference is the use of global mutual normality
instead of G−normality. First of all, according to Remark
3.6 only (ii) of the proof above is different. Thus, we only
need to show that (ii) of bisimulation relations correspond-
ing to (the more difficult) inclusion holds true. Consider
again the relation R from the proof of Theorem 3.5. Let
[l̃(s0)]w

a→ for a ∈ A, i.e. (s0)w
a→′ . Thus, according to

step 2 of Algorithm 1 (s0)w
a→1 and condition (1) of Algo-

rithm 1 is satisfied. It must be shown that [∩n
i=1 l̃i(s

i
0)]w

a→.
We need show that for any i ∈ Zn we have [l̃i(si

0)]w
a→,

i.e. (si
0)w

a→′i. According to Algorithm 2 this amounts
to show that for any i ∈ Zn we have (si

0)w
a→1i and

condition (2) of Algorithm 2 holds. It has been shown
in the proof of Theorem 3.5 that (si

0)w
a→1i without any

use of G−normality. Next we show that condition (2) of
Algorithm 2 is satisfied. If a ∈ Auo then according to
(2a) of Algorithm 2 it must be checked that ∀v ∈ A∗

uo:
(si

0)wa
v→i ⇒ (si

0)wa
v→1i.

Let v ∈ A∗
uo: (si

0)wa
v→i. This is equivalent to wav ∈

P−1
i L2

i . Recall that (si
0)w

a→1i sa, which is equivalent to
wa ∈ K2

i . Now we use global mutual normality. Since
P (wav) = P (wa) and wa ∈ L2 ⊆ P−1

j L2
j for any

j �= i ∈ Zn, an application of global mutual normality

2778

yields wav ∈ (P−1PP−1
j)(L2

j) ∩ P−1
i L2

i ⊆ P−1
j L2

j .

Hence, wav ∈ ⋂n
i=1 P−1

i L2
i = L2, which is equivalent

to (s0)wa
v→. Using the assumption (s0)w

a→′ , we obtain
according to condition (1a) of Algorithm 1 that (s0)wa

v→1,
which is equivalent to wav ∈ (K ∩ L)2. Therefore wav ∈
K2

i = K2 ∩ P−1
i L2

i , which shows that (si
0)wa

v→1i.
If a ∈ Ao then according to condition (2b) of Algorithm

2 it must be checked that ∀s′ ≈Aux(Si) (si
0)w : s′ a→i ⇒

s′ a→1i, in which case also ∀v ∈ A∗
uo: s′a

v→i ⇒ s′a
v→1i.

Let s′ ≈Aux(Si) (si
0)w : s′ a→i. According to Lemma

3.1 there exists r ∈ A∗ such that P (w) = P (r) and
s′ = (si

0)r. Thus, s′ a→i is equivalent to ra ∈ P−1
i L2

i .
Recall that wa ∈ K2

i and P (wa) = P (ra). Hence for
any j �= i ∈ Zn we obtain using global mutual normality
that ra ∈ (P−1PP−1

j)(L2
j) ∩ P−1

i L2
i ⊆ P−1

j L2
j . Note that

again ra ∈ (P−1PP−1
j)(L2

j), because wa ∈ L2 ⊆ P−1
j L2

j

and P (wa) = P (ra). Thus, we have ra ∈ L2, which is
equivalent to (s0)r

a→. Since by Lemma 3.1 (s0)r ≈Aux(S)

(s0)w, condition (1b) of Algorithm 1 (applied to (s0)r

playing the role of s′) implies that (s0)r
a→1, which is

equivalent to ra ∈ (K ∩ L)2 ⊆ K2
i , i.e. s′ a→1i. The rest

is the same as for a ∈ Auo: second part of condition (2b)
of Algorithm 2 is similar to condition (2a) of Algorithm
2. We conclude that (si

0)w
a→′i for any i ∈ Zn, i.e.

[∩n
i=1 l̃i(s

i
0)]w

a→.

The last theorem is very useful, because we have found
structural conditions under which supremal (L,P)−normal
sublanguages can be computed without manipulating with
the global plant L, but using only P−1

i Li for i ∈ Zn.
Hence the combinatorial explosion in terms of n (number
of modules) is avoided.

Now we present an example, where it is shown that global
mutual normality (GMN) is not a necessary condition. This
should not be surprising, because GMN condition does not
depend on the specification.

Example 1: Let A = {a, a1, a2, τ, τ1, τ2}, A1 =
{a1, τ1, a, τ}, A2 = {a2, τ2, a, τ}, Ao = {a1, a2, a},
Ao,1 = {a1, a}, and Ao,2 = {a2, a}. Consider the following
local plant languages, where only second (prefix-closed)
components are considered:

L1 L2

��
�
�a �

�
�
a1

� ��
�
�a �

�
�
a2

�
(L1)a (L1)a1 (L2)a (L2)a2

(L1)aτ

τ
�

(L1)a1τ1

τ1
�

(L2)aτ

τ
�

(L2)a2τ2

τ2
�

Let K2 = {ε, a, a1, a1a2}. One can easily verify
that K is not decomposable. Indeed, the inclusion
K2 ⊂ P−1

1 P1(K2) ∩ P−1
2 P2(K2) is strict, i.e. K2 �=

P−1
1 P1(K2) ∩ P−1

2 P2(K2). Computing further parallel

product L = L1 ‖ L2 yields:

sup N(K ∩ L,L, P) = {ε}.
Note that in this example Ki = K ∩ P−1

i Li = K for i =
1, 2. It is also easy to see that sup N(Ki, P

−1
i (Li), P) =

{ε} as well for i = 1, 2. i.e. the commutativity holds
trivially true.

On the other hand, global mutual normality does not hold.
We have e.g.

τ1 ∈ (P−1PP−1
1 (L2

1) ∩ (P2)−1(L2
2) \ P−1

1 (L2
1).

IV. CONCLUSION

New methods for modular computation of supremal
normal sublanguages of indecomposable specification lan-
guages have been presented. The structural condition of
global mutual normality does not depend on the particu-
lar specification, which is very important because general
indecomposable specifications are studied.

On the other hand further research is needed in order
to improve our results: the sufficient conditions we have
obtained might be weakened at least in special cases. An-
other open direction is a possible extension of the concept
of partial controllability to our setting of modular control
with partial observations. Such a notion of partial normality
may prove to be useful in a future refinement of our results.

REFERENCES

[1] S.G. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems, Kluwer Academic Publishers, 1999.

[2] B. Gaudin and H. Marchand. Modular Supervisory Control of a Class
of Concurrent Discrete Event Systems. Proceedings WODES’04,
Workshop on Discrete-Event Systems, pp. 181-186, Reims, Septem-
ber 22-24, 2004.

[3] J. Komenda. Computation of Supremal Sublanguages of Supervisory
Control Using Coalgebra. Proceedings WODES’02, Zaragoza, pp. 26-
33, October 2-4, 2002.

[4] Jan Komenda and Jan H. van Schuppen: Control of Discrete-Event
Systems with Partial Observations Using Coalgebra and Coinduction.
Discrete Event Dynamical Systems: Theory and Applications 15(3),
257-315, 2005.

[5] J. Komenda and J.H. van Schuppen. Supremal Normal Sublan-
guages of Large Distributed Discrete-Event Systems. Proceedings
WODES’04, pp. 73-78, Reims, September 22-24, 2004.

[6] J.J.M.M. Rutten. Coalgebra, Concurrency, and Control. Research
Report CWI, SEN-R9921, Amsterdam, November 1999. Available
also at http://www.cwi.nl/˜janr.

[7] J.J.M.M. Rutten. Universal Coalgebra: A Theory of Systems. Theo-
retical Computer Science 249:3-80, 2000.

[8] K. Rohloff and S. Lafortune. On the Computational Complexity of
the Verification of Modular Discrete-Event Systems. In Proc. 41 st
IEEE Conference on Decision and Control, Las Vegas, Nevada, USA,
December 2002.

[9] P.J. Ramadge and W.M. Wonham. The Control of Discrete-Event
Systems. Proc. IEEE, 77:81-98, 1989.

[10] Y. Willner and M. Heymann. Supervisory Control of Concurrent
Discrete-Event Systems. International Journal of Control, 54:1143-
1166, 1991.

[11] K.C. Wong and S. Lee. Structural Decentralized Control of Concur-
rent Discrete-Event Systems. European Journal of Control, 8:477-
491, 2002.

[12] W.M. Wonham and P.J. Ramadge. Modular Supervisory Control
of Discrete-Event Processes, Mathematics of Control, Signal and
Systems, 1:13-30, 1988.

2779

APPENDIX

A. Partial automata

Partial automata as generators of DES are formulated
coalgebraically as in [6]. Let A be the set of events. The
empty string will be denoted by ε. Denote by 1 = {∅} the
one element set and by 2 = {0, 1} the set of Booleans. A
partial automaton is a pair S = (S, 〈o, t〉), where S is a set
of states, and a pair of functions 〈o, t〉 : S → 2× (1+S)A,
consists of an output function o : S → 2 and a transition
function t : S → (1 + S)A. The output function o
indicates whether a state s ∈ S is accepting (or terminating)
: o(s) = 1, denoted also by s ↓, or not: o(s) = 0, denoted by
s ↑. The transition function t associates to each state s in S
a function t(s) : A → (1+S). The set 1+S is the disjoint
union of S and 1. The meaning of the state transition
function is that t(s)(a) = ∅ iff t(s)(a) is undefined, which
means that there is no a−transition from the state s ∈ S.
t(s)(a) ∈ S means that the a−transition from s is possible
and we define in this case t(s)(a) = sa, which is denoted
mostly by s

a→ sa. This notation can be extended by
induction to arbitrary strings in A∗. Assuming that s

w→ sw

has been defined, we define s
wa→ iff t(sw)(a) ∈ S, in which

case swa = t(sw)(a) and s
wa→ swa.

A homomorphism between partial automata S = (S, 〈o, t〉)
and S′ = (S′, 〈o′, t′〉) is a function f : S → S′ with, for
all s ∈ S and a ∈ A:

o′(f(s)) = o(s) and s
a→ sa iff f(s) a→ f(s)a,

in which case: f(s)a = f(sa).

(1 + S)A �t
S

�����
o

�
2

					o
′

(1 + S′)A

�

(1 + f)A

�t′
S′

f

�

A partial automaton S′ = (S′, 〈o′, t′〉) is a subautomaton
of S = (S, 〈o, t〉) if S′ ⊆ S and the inclusion function
i : S′ → S is a homomorphism.

A bisimulation between two partial automata S =
(S, 〈o, t〉) and S′ = (S′, 〈o′, t′〉) is a relation R ⊆ S × S′

such that: if 〈s, s′〉 ∈ R then
(i) o(s) = o(s′), i.e. s ↓ iff s′ ↓
(ii) ∀a ∈ A : s

a→⇒ (s′ a→ and 〈sa, s′a〉 ∈ R),
(iii) ∀a ∈ A : s′ a→⇒ (s a→ and 〈sa, s′a〉 ∈ R).
We write s ∼ s′ whenever there exists a bisimulation R with
〈s, s′〉 ∈ R. This relation is the union of all bisimulations,
i.e. the greatest bisimulation also called bisimilarity.

There is the following simple characterization of bisimilar-
ity on a partial automaton S.

For any partial automaton S = (S, 〈o, t〉) and any states
s, s′ ∈ S:
s ∼ s′ iff ∀w ∈ A∗ : s

w→ ⇐⇒ s′ w→,
in which case o(sw) = o′(s′w).

B. Final automaton of partial languages

Below we define the partial automaton of partial lan-
guages over an alphabet (input set) A, denoted by L =
(L, 〈oL, tL〉). More formally,

L = {(V,W) | V ⊆ W ⊆ A∗, W �= ∅,
and W is prefix-closed}.

The transition function tL : L → (1 + L)A is defined
using input derivatives. Recall that for any partial language
L = (L1, L2) ∈ L, La = (L1

a, L2
a), where Li

a = {w ∈
A∗ | aw ∈ Li}, i = 1, 2. If a �∈ L2 then La is undefined.
Given any L = (L1, L2) ∈ L, the partial automaton
structure of L is given by:

oL(L) =
{

1 if ε ∈ L1

0 if ε �∈ L1

tL(L)(a) =
{

La if La is defined
∅ otherwise

Notice that if La is defined, then L1
a ⊆ L2

a, L2
a �= ∅, and

L2
a is prefix-closed. The following notational conventions

will be used: L ↓ iff ε ∈ L1, and L
w→ Lw iff Lw is defined

iff w ∈ L2.
Recall from [6] that L = (L, 〈oL, tL〉) is final among all

partial automata: for any partial automaton S = (S, 〈o, t〉)
there exists a unique homomorphism l : S → L. This
homomorphism identifies bisimilar states: for s, s′ ∈ S:
l(s) = l(s′) iff s ∼ s′.

Another characterization of finality of L is that it satisfies
the principle of coinduction: for all K and L in L, if
K ∼ L then K = L. Since the converse implication
holds trivially true this means that bisimilarity coincides
with equality in the automaton of partial languages. This is
a general property of final coalgebras that enables proofs
by coinduction. In order to show that two elements of a
final coalgebra (e.g. two partial languages) are equal, it is
sufficient to construct a bisimulation relation that relates
them.

Recall that the unique homomorphism l given by finality of
L maps a state s ∈ S to l(s) = (L1

s, L
2
s) = ({w ∈ A∗ | s

w→
and sw ↓}, {w ∈ A∗ | s

w→}) ∈ L.

Inclusion of partial languages that corresponds to a simula-
tion relation (a relation that we obtain by dropping condition
(iii) in the definition of bisimulation relation) is meant
componentwise.

2780

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

