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Abstract— This paper is concerned with quantification of
noise induced errors in estimates of zeros of dynamic systems.
Preceding work on this problem has provided variance expres-
sions that are asymptotic in data length and model order for
non-minimum phase zeros. This paper presents expressions that
are asymptotic only in data length and they are therefore ’exact’
for arbitrarily small true model orders. These expressions are
also valid for both minimum phase and non-minimum phase
zeros. A key insight is that the variance error quantification
problem is equivalent to deriving a reproducing kernel for a
space that depends on the employed model structure.

I. INTRODUCTION

Quantification of the variance of estimated poles and zeros
is closely related to variance quantification for estimated
frequency functions as all these problems deal with quadratic
forms based on the covariance matrix of the underlying
parameter estimate. The latter problem has received sig-
nificant interest. In the mid-eighties, an expression for the
asymptotic (as the sample size grows) variance of estimated
frequency functions was presented in [1], [2]. It showed
that the variance increases proportionally to the model order
regardless of model structure as the model order becomes
large. An alternative asymptotic variance expression with,
for many model structures, improved accuracy was proposed
in [3]. In [4] and [5] expressions that are exact for finite
model orders were derived for the variance of estimated
frequency functions. Closed loop estimation is treated in the
same framework in [6].

Parallel to this, there has been a series of results regard-
ing the accuracy of estimated non-minimum phase zeros.
As mentioned above, the variance of an estimate usually
increases proportionally with the model order, but estimates
of non-minimum phase zeros only suffer from a moderate
increase in the variance. This was shown for FIR-models
in [7] and ARX-models in [8]. More general models, such
as output-error and Box-Jenkins, were treated in [9]. Closed
loop identification of non-minimum phase zeros and unstable
poles was treated in [10]. These contributions provide vari-
ance expressions that are asymptotic in model order and the
key observation here is that the variance of estimated non-
minimum phase zeros and unstable poles, asymptotically,
does not depend on the model order.

This paper presents variance expressions that are exact for
finite model orders and it uses the same methods as in [5].
The variance quantification problem is shown to be equal to
that of deriving a reproducing kernel for a space that depends
on the model structure. Estimation of both minimum phase
and non-minimum phase zeros in general model structures
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as output-error and Box-Jenkins can be treated in this frame-
work and the variance expressions presented here are more
accurate than the asymptotic expression derived earlier. Exact
variance expressions can only be found for certain model
structures and input excitations. As a complement to this we
show that upper bounds can be found for more general model
structures and input signals.

The outline of this paper is as follows. Parametric system
identification and its statistical properties is presented in
Section II. In Section III this is related to the properties of
the corresponding zero estimates. Reproducing kernels are
introduced in Section IV and it is shown how a reproducing
kernel can be used to quantify the variance of an estimated
zero. For some specific model structures these methods can
be used to derive a variance expression that is exact for finite
model orders. This is presented in Section V. More general
model structures, for which an upper bound of the variance
can be derived (also for finite model orders), are treated in
Section VI. An asymptotic (in model order) expression is
also presented here. Some simulations are used in Section
VII to illustrate the improved accuracy obtained with the
’exact’ expression compared to the asymptotic. Finally, some
concluding remarks are given in Section VIII.

II. SYSTEM IDENTIFICATION

In this section the settings of the system identification is
briefly outlined and some well-known statistical properties
of the estimated model is presented. The method used is
the standard prediction error method, see e.g [11]. In this
contribution we focus on systems where the noise model is
independently parameterized so that distinction is made from
start.

The model structure is parameterized by the two vectors
and and it can be described with the rational transfer

functions G(q, ) and H(q, ) in the input-output relation

yt = G(q, )ut +H(q, )et (1)

where H(q, ) is monic and {et} is a zero-mean white noise
sequence. Here q is the forward shift operator qut = ut+1,
(q−1ut = ut−1). The parameter vectors are estimated by
minimizing the sum of squared prediction errors,

[ ˆN , ˆN ] = argmin
,

1
N

N

t=1

2
t ( , ), (2)

where the prediction error is given by

t( , ) =
1

H(q, )
(yt −G(q, )ut) . (3)

Assume that the true system can be described with vectors
o and o and a white noise sequence {eo

t } with variance
0, such that

yt = G(q, o)ut +H(q, o)eo
t . (4)
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The true system will sometimes be denoted without the
second argument as Go(q) � G(q, o). An analogue notation
will be used for other functions that regard the true system.

Under some mild conditions the parameter estimates have
the following statistical properties. The estimates ˆN and ˆN
are asymptotically uncorrelated and ˆN has an asymptotic
distribution

√
N( ˆN − o) ∈ AsN(0, 0P) (5)

where

P−1 = E t( o, o) T
t ( o, o) (6)

and

t( , ) =
1

H(q, )
G(q, )

ut . (7)

Let the input ut have a spectrum u(ei ) = Q(ei )Q∗(ei )
for some minimum phase filter Q(q) and denote

(q) � Q(q)
H(q, o)

G(q, )
∣∣∣∣

= o
. (8)

Now the parameter covariance can be expressed as

P−1 =
1
2

∫
−

(ei ) ∗(ei )d . (9)

The inverse exists provided that no pole-zero cancellations
occur in G(q, o) or H(q, o).

III. IDENTIFICATION OF ZEROS

The main interest in this contribution is the variance of
the zeros of the estimated system G(q, ˆN). The system is
assumed to be a linear time-invariant (LTI) rational transfer
function defined by the two polynomials A(q, ) and B(q, )
as

G(q, ) =
B(q, )
A(q, )

. (10)

The polynomials are given by

A(q, ) = 1+a1q
−1 + · · ·+anaq

−na ,

B(q, ) = b1q
−1 + · · ·+bnbq

−nb
(11)

where the parameter vector is

= [a1, · · · ,ana ,b1, · · · ,bnb ]
T . (12)

The noise model H(q, ) and the vector will be defined
in a similar way as

H(q, ) =
C(q, )
D(q, )

=
1+ c1q−1 + · · ·+ cncq

−nc

1+d1q−1 + · · ·+dnd q
−nd

,

= [c1, · · · ,cnc ,d1, · · · ,dnd ]
T .

(13)

The nb−1 zeros of the system, denoted {zi}nb−1
i=1 , are defined

as the roots of the polynomial

p(z, ) � b1z
nb−1 + · · ·+bnb (14)

where bnb �= 0 which implies that zi �= 0. A zero at z = 0 is a
pure time delay and here, time delays are not included in the
zeros. The system is modelled with one time delay, cf. (11),
and any additional time delays can be modelled by shifting

the input signal. The zeros will be functions of the parameter
vector . The estimated zeros will be denoted ẑi � zi( ˆN) and
the true zeros will be denoted zo

i � zi( o). The asymptotic
variance of the estimated zero will in this presentation be
denoted as var ẑi � limN→ NE(ẑi − zo

i )
2. Assume that all

zeros are distinct and that the system has no zeros on the
unit circle. Consider one particular zero zk. In [9] it is shown
that the asymptotic variance of the estimated zero ẑk can be
expressed as

var ẑk = 0|zo
k |2

|B̃o(zo
k)|2

∗(zo
k)P (zo

k) (15)

where
(q) = [0, · · · ,0,q−1, · · · ,q−nb ]T (16)

and

B̃o(q) =
Bo(q)

1− zo
kq

−1 . (17)

In the following sections it will be shown how the quantity
∗P can be evaluated. That result will be used to evaluate

the variance of estimated zeros, but in order to do so, (15)
must be reformulated since it involves (z) and not (z).
First we look at the gradient of G(q, ) with respect to

G(q, )
ai

∣∣∣∣
= o

= −Bo(q)
A2

o(q)
q−i,

G(q, )
bi

∣∣∣∣
= o

=
1

Ao(q)
q−i.

(18)

Now, since zo
k is a zero of Bo(q), (zo

k) can be expressed by
using (8) as

(zo
k) =

Q(zo
k)

Ho(zo
k)Ao(zo

k)
(zo

k) (19)

and together with (15) we get

var ẑk = 0|zo
k |2|Ho(zo

k)|2
|G̃o(zo

k)|2|Q(zo
k)|2

∗(zo
k)P (zo

k) (20)

where

G̃o(z) =
B̃o(z)
Ao(z)

. (21)

IV. REPRODUCING KERNELS

In this section the concept of reproducing kernels is
introduced and some properties of the reproducing kernel
is presented. The reason for involving reproducing kernels is
that they give a means to evaluate the quantity ∗P which
is part of the expression for the variance of an estimated
zero, see (20).

Suppose that Xn is a complex vector space with elements
being complex valued functions

Xn = span{g1(z), · · · ,gn(z)} (22)

with an inner product defined as

〈 f ,g〉 � 1
2

∫
−

f (ei )g∗(ei )d . (23)
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The reproducing kernel for the space Xn, denoted n(z, ),
is a family of functions with the properties

n(·, ) ∈ Xn, ∈ C (24)

〈 f (·), n(·, )〉 = f ( ), ∀ f ∈ Xn. (25)

The reproducing kernel for a space is unique and hence
independent of which basis functions are used to describe
the space. The following lemma shows how the reproducing
kernel can be expressed in terms of the basis functions.

Lemma 4.1: The reproducing kernel of the space spanned
by the functions {g1(z), · · · ,gn(z)} is given by

n(z, ) = ∗
n( )Pn n(z) (26)

where

n(z) = [g1(z), · · · ,gn(z)]T , (27)

Pn =
(

1
2

∫
− n(ei ) ∗

n(e
i )d

)−1

. (28)

Proof: See [5].
Now the variance of an estimated zero can be expressed

in terms of a reproducing kernel as

var ẑk = 0|zo
k |2|Ho(zo

k)|2
|G̃o(zo

k)|2|Q(zo
k)|2

(zo
k ,z

o
k) (29)

where (·, ·) is the reproducing kernel for the space spanned
by the elements of the prediction error gradient (8).

The following lemma shows how the reproducing kernel
can be expressed if an orthonormal basis for the space is
found.

Lemma 4.2: Suppose that {B1, · · · ,Bn} is an orthonormal
basis for the space Xn. Then the reproducing kernel for Xn
can be expressed as

n(z, ) =
n

j=1
B∗

j( )B j(z). (30)

Proof: See [5].
Now consider the space spanned by the na +nb elements of
the vector

Q(z)
H(z, o)

G(z, )
∣∣∣∣

= o
(31)

and suppose that {Bk}na+nb
k=1 is an orthonormal basis for that

space. Then Lemma 4.1 and 4.2 can be used to express the
variance of an estimated zero as

lim
N→

NE(ẑk−zo
k)

2 = 0|zo
k |2|Ho(zo

k)|2
|G̃o(zo

k)|2|Q(zo
k)|2

na+nb

j=1
|B j(zo

k)|2. (32)

A. Spaces induced by model structure

The model structure (1) in consideration has an indepen-
dently parameterized noise model and includes commonly
used models as FIR, output-error and Box-Jenkins. We will
show that all these model structures can be treated in the
same framework and to do so we start with the most general
one, Box-Jenkins. The space that is spanned by the elements
of the prediction error gradient (8) is given by

span
{

Q(z)Go(z)z−1

Ho(z)Ao(z)
, · · · , Q(z)Go(z)z−na

Ho(z)Ao(z)
, Q(z)z−1

Ho(z)Ao(z)
, · · · , Q(z)z−nb

Ho(z)Ao(z)

}
(33)

TABLE I

A† AND n FOR DIFFERENT MODEL STRUCTURES

FIR OE BJ

A† 1/Q A2
o/Q HoA2

o/Q
n nb na +nb na +nb

and this space can be shown to be equal to

span
{

Q(z)z−1

Ho(z)A2
o(z)

, · · · , Q(z)z−(na+nb)

Ho(z)A2
o(z)

}
(34)

provided that Ao(z) and Bo(z) are co-prime [5]. The FIR and
output-error structures are special cases of (34) and all cases
can be expressed as

span

{
z−1

A†(z)
, · · · , z−n

A†(z)

}
(35)

where A† and n take on different roles for each model
structure, see Table I. The reproducing kernel for the space
(35) will be further studied in the following sections.

V. SPACES WITH FIXED POLES

In this section we treat the space (35) where the elements
have a fixed set of poles, and zeros only at the origin. This
imposes some restrictions on the system {Go(q),Ho(q)} and
the input filter Q(q) but we will come back to that later.

Consider the space

Xn � span

{
z−1

M(z)
, · · · , z−n

M(z)

}
(36)

where

M(z) �
m

i=1
(1− iz

−1), | i| < 1 (37)

and n ≥ m. In [12] it is shown that an orthonormal basis
{Bi(z)}n

i=1 for the space Xn can be formed by the functions

Bi(z) �
√

1−| i|2
z− i

i−1(z), i(z) �
i

j=1

1− jz

z− j
(38)

where i = 0 for i > m and 0(z) = 1. Now it is also possible
to express the reproducing kernel for the space Xn in terms
of the function n(z) in what is called a Christoffel-Darboux
formula [13]. The reproducing kernel for Xn is given by

n(z, ) =
n

i=1
B∗

i ( )Bi(z) =
1− n( ) n(z)

z −1
(39)

and it can also be expressed in terms of the function M(z)
by noting that

n(z) =
M(z−1)
M(z)

z−n. (40)

Especially, this means that the reproducing kernel can be
written as

n(z,z) =
|z|−2

1−|z|−2

(
1− |M(1/z)|2

|M(z)|2 |z|−2n
)

. (41)

The results above can now be used to form an expression
for the variance of an estimated zero. Unlike the expressions
presented in [9] this is valid for finite model orders and for
both minimum and non-minimum phase zeros.
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Theorem 5.1: Assume that the input filter Q(q) is an AR-
filter given by

Q(q) =
F(q)

, F(q) � 1+ f1q
−1 · · ·+ fn f q

−n f (42)

and that the model order constraints nb ≥ na + nc + n f and
nd = 0 hold. Then the variance of an estimated zero is given
by

var ẑk = 0|Ho(zo
k)|2

(1−|zo
k |−2)|G̃o(zo

k)|2|Q(zo
k)|2

(
1− |A‡(1/zo

k)|2|zo
k |−2(na+nb)

|A‡(zo
k)|2

)
(43)

where A‡(z) = A2
o(z)Co(z)F(z).

Proof: With this choice of system we get the function
space

Xn = span

{
z−1

A‡(z)
, · · · , z−(na+nb)

A‡(z)

}
, (44)

c.f (34), where A‡(z) is a polynomial of degree 2na +nc +n f .
The expression (43) is formed by combining (29) and (41).
Remark: For FIR models it holds that na = nc = nd = 0 and
for output-error models it holds that nc = nd = 0.

Theorem 5.1 gives an expression for the variance of an
estimated zero and the expression is asymptotic only in the
number of data and not in model order. However, it does
suffer from the restriction that the noise and input signals
must be described as AR-filtered white noise.

The variance expression (43) shows how the variance
depends on the model order. For a minimum phase zero,
(|z| < 1), the variance grows as |z|−2nb . For a non-minimum
phase zero, (|z| > 1), the variance approaches a constant
value with the rate |z|−2nb when the model order increases.
Also note that the variance increases as 1

1−|z|−2 when the zero
approaches the unit circle

VI. SPACES WITH FIXED POLES AND ZEROS

In this section we will derive an upper bound on the
variance of an estimated zero in the case when the model
structure {Go(q),Ho(q)} and input filter Q(q) induce a space
of functions that have both specified poles and zeros. There
will still be a model order requirement for this result to hold.
We will also present results that are asymptotic in model
order which will confirm the work in [7] and [9].

But first we present two important lemmas that relate
reproducing kernels of different spaces to each other.

Lemma 6.1: Let the two spaces X and X+ have repro-
ducing kernels (z, ) and +(z, ) and let X ⊆ X+. Then
it holds that

(z,z) ≤ +(z,z). (45)
Proof: Let {Bk}n

k=1 be an orthonormal basis for the
space X. By Gram-Schmidt orthonormalization these func-
tions can form the n first basis functions in an orthonormal
basis for X+ so that {Bk}n+m

k=1 is an orthonormal basis for
X+. Now it is clear, by using Lemma 4.2, that

(z,z) =
n

k=1

|Bk(z)|2 ≤
n+m

k=1

|Bk(z)|2 = +(z,z).

(46)
Lemma 6.2: Let the spaces X and X̃ have reproducing

kernels (z, ) and ˜(z, ). Suppose that there exists a

constant such that for every function f ∈ X there exists
a function g ∈ X̃ that fulfills

| f (z)−g(z)| < , ∀z. (47)

Then it holds that√
(z,z) ≤

√˜(z,z)+ +
√

. (48)

Proof: See the appendix.

A. Upper bound on the zero estimate variance

Here we derive an upper bound on the variance of esti-
mated zeros. The only restriction is a model order require-
ment on B(q, ). This result is presented in the following
theorem.

Theorem 6.1: Suppose that the input filter is given by

Q(q) =
E(q)
F(q)

=
e0 + e1q−1 + · · ·eneq

−ne

1+ f1q−1 + · · · fn f q
−n f

(49)

and that the model order constraint nb+nd +ne ≥ na+nc+n f
holds. Then the variance of an estimated zero is bounded
above by

var ẑk ≤ 0|Ho(zo
k)|2

(1−|zo
k |−2)|G̃o(zo

k)|2|Q(zo
k)|2

(
1− |A†(1/zo

k)|2|zo
k |−2n†

|A†(zo
k)|2

)
(50)

where A†(z) = A2
o(z)Co(z)F(z) and n† = na +nb +nd +ne.

Proof: First consider the space

Xn � span

{
L(z)
M(z)

z−1, · · · , L(z)
M(z)

z−n
}

(51)

where M(z) is given by (37) and

L(z) � l0 + l1z
−1 + · · ·+ lnl z

−nl . (52)

A larger space that contains Xn can be defined as

X+
n � span

{
z−1

M(z)
, · · · , z−(n+nl)

M(z)

}
(53)

where now Xn ⊆ X+
n . With n(z, ) and +

n (z, ) denoting
the reproducing kernels for Xn and X+

n , Lemma 6.1 gives
that n(z,z) ≤ +

n (z,z) where +
n (z,z) can be expressed by

using the results in Section V.
Now with M = A† � A2

oCoF and L = DoE we get that Xn
is the space induced by the Box-Jenkins structure, c.f (34),
and the upper bound on the variance of an estimated zero is
formulated by combining Theorem 5.1 and Lemma 6.1.

B. Asymptotic results for non-minimum phase zeros

We have previously presented a number of results ([7], [8]
and [9]) where the variance of estimated non-minimum phase
zeros has been investigated. Those results are asymptotic in
model order and many model structures have been treated.
For output-error and Box-Jenkins models there has been a
flaw in the proof, but here, by using reproducing kernels,
this will be rectified.

The result is stated in the following theorem.
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Theorem 6.2: Let zk be a non-minimum phase zero of the
system G and let the model order nb go to infinity. Then the
variance of the estimated zero is given by

lim
nb→

var ẑk = 0|Ho(zo
k)|2

(1−|zo
k |−2)|G̃o(zo

k)|2|Q(zo
k)|2

. (54)

Proof: Consider the two spaces Xn and X+
n given by

(51)-(53) and let n(z, ) and +
n (z, ) be the associated

reproducing kernels. Take an arbitrary function f ∈ X+
n

which can be written as f (z) = 1
M(z)

n+nl
k=1 kz−k for some

parameters k. A function g ∈ Xn can be written as g(z) =
1

M(z)
n+nl
k=1 kz−k where only n of the n+nl parameters k can

be assigned arbitrarily. To approximate the function f ∈ X+
n

with a function g∈Xn the first n parameters can be chosen as
k = k and the difference between the functions is bounded

by

| f (z)−g(z)| ≤ 1
|M(z)|

∣∣∣∣∣ n+nl

k=n+1

( k − k)z−k

∣∣∣∣∣
≤ |z|−n

|M(z)|

∣∣∣∣∣ nl

k=1

( n+k − n+k)z−k

∣∣∣∣∣ ≤ c|z|−n

(55)

for some constant c. Lemma 6.2 can now be applied and we
get (for any n)√

+
n (z,z) ≤

√
n(z,z)+ c|z|−n +

√
c|z|−n. (56)

Let z be a non-minimum phase zero, i.e |z| > 1, and let the
model order n go to infinity. This means that limn→ c|z|−n =
0 and that gives

lim
n→

+
n (z,z) ≤ lim

n→ n(z,z). (57)

Together with Lemma 6.1 which states that

lim
n→ n(z,z) ≤ lim

n→
+
n (z,z) (58)

we finally get that

lim
n→

+
n (z,z) = lim

n→ n(z,z). (59)

Letting the model order n go to infinity in (41) gives that

lim
n→ n(z,z) =

|z|−2

(1−|z|−2)
(60)

The asymptotic expression for the variance of an estimated
non-minimum phase zero (54) is achieved by letting Xn be
the space induced by the Box-Jenkins structure, i.e by letting
M = A† � A2

oCoF and L = DoE and then combining (29) and
(60).

VII. SIMULATIONS

In this section, the relevance of the variance expressions
(43), (50) and (54) will be evaluated with Monte Carlo
simulations. Two simulation experiments will be presented
here: one example for which Theorem 5.1 is applicable to
give an ’exact’ expression of the variance and one where the
upper bound in Theorem 6.1 must be used instead.

A system G(q) with a non-minimum phase zero at
z1 = −1.1 and a minimum phase zero at z2 = −0.9 is used
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0 5 10 15 20
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Model order, n
b

V
a
r
i
a
n
c
e

(c) FIR, var ẑ1
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Fig. 1. Simulation results that show the variability of zero estimates.
Fig.1a-b shows the simulation results for the OE system and Fig.1c-d for the
FIR system. The solid lines show the ’true’ variance from (43) in Theorem
5.1 for the OE system and the upper bound from (50) in Theorem 6.1 for the
FIR system. The dotted lines in Fig.1c-d show the ’true’ variance calculated
from (15). For the non-minimum phase zero, z1, the asymptotic variance
(54) in Theorem 6.2 is indicated with a dashed line. The dots show the
sample variances from the simulated experiments.

to generate an input/output data record with 10,000 samples.
The output {yt} is corrupted by white Gaussian noise with
variance 0 = 10−4 and the input {ut} is generated as filtered
unit-variance Gaussian white noise. The system G(q) and the
input filter Q(q) for the two experiments and the simulation
results are described further in Sections VII-A and VII-B.

The observed data is used to estimate a model with the
method described in Section II and the corresponding zero
estimates, ẑ1 and ẑ2, are calculated. The sample variance
of 1,000 identification experiments, with different noise and
input realizations, is used as an estimate of var ẑ1 and var ẑ2
and they are plotted as dots in Fig.1. The experiment is
repeated for different model orders nb.

A. Simulation of an output error system

The simulated output error (OE) system is given by
G(q) = q−1+2q−2+0.99q−3

1−0.8q−1+0.25q−2 and the input filter is Q(q) =
1

1−0.6q−1 . The sample variance of the estimated zeros are
plotted as dots in Fig.1a-b and the ’true’ variance (43) from
Theorem 5.1 is shown as a solid line. The agreement between
the simulated variance and the theoretic variance is very
good in these simulations, but if more noise is added or
the model order is increased further, the approximation (15)
is less accurate, which results in an underestimation of the
variance. See also [14] for more comments on the accuracy
of (15).

For the non-minimum phase zero, z1, the asymptotic
variance expression (54) is plotted as a dashed line. The
simulations show that, for moderate model orders, the ’ex-
act’ expression (43) is significantly more accurate than the
asymptotic expression.

Remark: To ensure that the model is globally identifiable,
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the model order na is always equal to the order of true system
and only the model order nb is allowed to vary.

B. Simulation of a FIR system

The simulated FIR system is given by G(q) = q−1 +
2q−2 + 0.99q−3 and the input filter is Q(q) = 1+0.4q−1

1−0.6q−1 . In
this example, Theorem 5.1 can not be applied to get an
expression for the variance, but the variance expression (15)
is calculated and plotted as dotted lines in Fig.1c-d. The
upper bounds from Theorem 6.1 are plotted as solid lines
and the asymptotic variance for the non-minimum phase
zero, from Theorem 6.2, is indicated with a dashed line. The
sample variance from the simulations are plotted as dots.

The simulations show that the variance of an estimated
non-minimum phase zero may be approximated with the
upper bound given in Theorem 6.1. The approximation gets
better for higher model orders, but even for low model orders
it is significantly more accurate than the asymptotic variance
from Theorem 6.2. For minimum phase zeros, the upper
bound is perhaps not a very good approximation of the true
variance, but at least it gives an indication of the magnitude
of the variability.

VIII. CONCLUSIONS

The main theme of this paper was to show how variance
expressions for estimates of zeros of dynamic systems can
be derived by finding a reproducing kernel of a specific
space that depends on the model structure. The method is
applicable to model structures that have an independently
parameterized noise model, e.g the output-error and Box-
Jenkins model structures.

Variance expressions that are exact for arbitrarily small
model orders have been derived for certain model structures
and input excitations. In addition to that, we have also
derived an expression for an upper bound on the variance.
This expression is valid for general models and inputs.

The asymptotic variance expression for non-minimum
phase zeros, first presented in [9], has also been proved by
using reproducing kernels.
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APPENDIX

PROOF OF LEMMA 6.2

Proof: Let ‖ · ‖ be the norm induced by the inner
product 〈·, ·〉, i.e ‖ · ‖ �

√〈·, ·〉. Since (z, ) ∈ X there is a
family of functions g ∈ X̃ such that

| (z, )−g (z)| < , ∀z, (61)

and we can write

(z, ) = g (z)+ (z), | (z)| < , ∀z, . (62)

Now by using the Cauchy-Schwarz inequality and the fact
that 〈 (·, ), (·,z)〉 = (z, ) we get

| (z, )| ≤ |g (z)|+ (63)

= |〈g (·), ˜(·,z)〉|+ (64)

≤ ‖g (·)‖‖˜(·,z)‖+ (65)

= ‖g (·)‖
√˜(z,z)+ (66)

= ‖ (·, )− (·)‖
√˜(z,z)+ (67)

≤ (‖ (·, )‖+‖ (·)‖)√˜(z,z)+ (68)

≤ (‖ (·, )‖+ )
√˜(z,z)+ (69)

=
(√

( , )+
)√˜(z,z)+ . (70)

For = z it holds that (z,z) = | (z,z)| and the inequality
above can be written as

(z,z)−
√

(z,z)˜(z,z)+
˜(z,z)

4
≤

√˜(z,z)+
˜(z,z)

4
+
(71)

which is the same as(√
(z,z)− 1

2

√˜(z,z)
)2

≤
(

1
2

√˜(z,z)+
)2

+ − 2

≤
(

1
2

√˜(z,z)+ +
√ )2

.

(72)

Now this implies that√
(z,z) ≤

√˜(z,z)+ +
√

(73)

which concludes the proof.
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