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Abstract— Repetitive processes are a distinct class of 2D
systems (i.e. information propagation in two independent direc-
tions) of both systems theoretic and applications interest. They
cannot be controlled by direct extension of existing techniques
from either standard (termed 1D here) or 2D systems theory.
Here we give new results on the design of physically based
control laws and, in particular, the first results on a mixed
H2/H∞ approach and on H2 control in the presence of
uncertainty in the process model.

I. INTRODUCTION

Repetitive processes are a distinct class of 2D systems of
both system theoretic and applications interest. The essential
unique characteristic of such a process is a series of sweeps,
termed passes, through a set of dynamics defined over a
fixed finite duration known as the pass length. On each
pass an output, termed the pass profile, is produced which
acts as a forcing function on, and hence contributes to, the
dynamics of the next pass profile. This, in turn, leads to the
unique control problem for these processes in that the output
sequence of pass profiles generated can contain oscillations
that increase in amplitude in the pass-to-pass direction.

To introduce a formal definition, let α < +∞ denote the
pass length (assumed constant). Then in a repetitive process
the pass profile yk(t), 0 ≤ t ≤ α, generated on pass k acts as
a forcing function on, and hence contributes to, the dynamics
of the next pass profile yk+1(t), 0 ≤ t ≤ α, k ≥ 0.

Physical examples of repetitive processes include long-
wall coal cutting and metal rolling operations (see, for exam-
ple, [9]). Also in recent years applications have arisen where
adopting a repetitive process setting for analysis has distinct
advantages over alternatives. For example, they can be used
to analyze include classes of iterative learning control (ILC)
schemes [5]. More recently another application has arisen in
the context of self-servo writing in disk drives [4]).

Attempts to control these processes using standard (or
1D) systems theory/algorithms fail (except in a few very
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restrictive special cases) precisely because such an approach
ignores their inherent 2D systems structure, i.e. information
propagation occurs from pass-to-pass and along a given pass.
In seeking a rigorous foundation on which to develop a
control theory for these processes, it is natural to attempt to
exploit structural links which exist between these processes
and other classes of 2D linear systems.

The case of 2D discrete linear systems recursive in the
positive quadrant (i, j) : i ≥ 0, j ≥ 0 (where i and j
denote the directions of information propagation) has been
the subject of much research effort over the years using, in
the main, the well known Roesser and Fornasini Marchesini
state space models. More recently, productive research has
been reported on H∞ and H2 approaches to analysis and
controller design – see, for example, [1] and [11].

A key distinguishing feature of repetitive processes is that
information propagation in one of the independent directions,
along the pass, only occurs over a finite duration — the
pass length. Moreover, in this paper the subject is so-called
differential linear repetitive processes where the dynamics
along the pass are governed by a linear matrix differential
equation. This means that results for 2D discrete linear
systems are not applicable.

The structure of linear repetitive processes means that
there is a natural way to write down control laws for them
which can be based on current pass state or output (pass
profile) feedback control and feedforward control from the
previous pass profile. For example, in the ILC application,
one such family of control laws is composed of output
feedback control action on the current pass combined with
information ‘feedforward’ from the previous pass (or trial
in the ILC context) which, of course, has already been
generated and is therefore available for use.

Previous work has established the basic feasibility of
this general approach and provided some algorithms for the
design of these (and other) control laws (see, for exam-
ple, [2]). This paper considers control law design based on
the use mixed H2/H∞ and robust H2 approaches to augment
existing results using, for example, H∞ and H2 settings.

Throughout this paper, the null matrix and the identity
matrix with appropriate dimensions are denoted by 0 and I ,
respectively. Moreover, M > 0 (respectively, ≥ 0) denotes a
real symmetric positive definite (respectively, semi-definite)
matrix. Similarly, M < 0 (respectively, ≥ 0) denotes a
real symmetric negative definite (respectively, semi-definite)
matrix.
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II. BACKGROUND

The state space model of the differential linear repetitive
processes considered in this paper has the following form
over 0 ≤ t ≤ α, k ≥ 0

ẋk+1(t) = Axk+1(t) + Buk+1(t) + B0yk(t)
yk+1(t) = Cxk+1(t) + Duk+1(t) + D0yk(t) (1)

Here on pass k, xk(p) is the n × 1 state vector, yk(p) is
the m × 1 pass profile vector and uk(p) is the l × 1 vector
of control inputs. To complete the process description, it is
necessary to specify the boundary conditions i.e. the state
initial vector on each pass and the initial pass profile (i.e. on
pass 0). For the purposes of this paper, no loss of generality
occurs from assuming these to be zero.

The stability theory [9] for linear repetitive processes is
based on an abstract model in a Banach space setting which
includes all such processes as special cases. In this model it
is the pass-to-pass coupling (noting again the unique control
problem) which is critical. This is of the form yk+1 = Lαyk,
where yk ∈ Eα (Eα a Banach space with norm || · ||) and
Lα is a bounded linear operator mapping Eα into itself. Two
concepts of stability can be defined but it is the stronger
of these, so-called stability along the pass which is usually
required. This holds if, and only if there exists numbers
M∞ > 0 and λ∞ ∈ (0, 1) independent of α such that
||Lk

α|| ≤ M∞λk
∞, k ≥ 0 (where ||·|| also denotes the induced

operator norm) and can be interpreted as bounded-input
bounded-output stability independent of the pass length.

Several equivalent sets of conditions for stability along
the pass are known but here it is one expressed in terms
of the 2D transfer function matrix description of the process
dynamics, and hence the 2D characteristic polynomial, which
is the basic starting point. Since the state on pass 0 plays no
role, it is convenient to re-label the state vector as xk+1(t) �→
xk(t) (keeping of course the same interpretation). Also define
the pass-to-pass shift operator as z2 applied e.g. to yk(t) as
yk(t) := z2yk+1(t), and for the along the pass dynamics
we use the Laplace transform variable s, where it is routine
to argue that finite pass length does not cause a problem
provided the variables considered are suitably extended from
[0, α] to [0,∞], and here we assume that this has been done.

Let Y (s, z2) and U(s, z2) denote the results of applying
these transforms to the sequences {yk}k and {uk}k respec-
tively. Then the process dynamics can be written as

Y (s, z2) = G(s, z2)U(s, z2)

where the 2D transfer function matrix G(s, z2) is given by

G(s, z2)=
[
0 I

][ sI−A −B0

−z2C I−z2D0

]−1 [
B
D

]
The 2D characteristic polynomial is given by

C(s, z2) := det
([

sI − A −B0

−z2C I − z2D0

])
and it has been shown elsewhere [9] that stability along the
pass holds if, and only if,

C(s, z2) �= 0 (2)

in U(s, z2) := {(s, z2) : Re(s) ≥ 0, |z2| ≤ 1}.
It also possible to use the Laplace transform to conclude

that stability along the pass requires each frequency compo-
nent of the previous pass profile is attenuated from pass-to-
pass. In 1D control systems theory and design, the H2 norm
of the system, i.e. the average gain over all frequencies, is
a very powerful analysis and controller design tool and the
new results here include ones which address the question
of what H2 control means for differential linear repetitive
processes.

Here we will use the sufficient condition for stability along
the pass of Lemma 1 below which is based on the following
Lyapunov function

V (k, t) = xT
k+1(t)P1xk+1(t) + yT

k (t)P2yk(t)

with associated increment

∆V (k, t) =ẋT
k+1(t)P1xk+1(t) + xT

k+1(t)P1ẋk+1(t)

+ yT
k+1(t)P2yk+1(t) − yT

k (t)P2yk(t)
(3)

where P1 > 0 and P2 > 0. The proof of this result is omitted
here as it follows from a routine extension of results in, for
example, [2].

Lemma 1: A differential linear repetitive process de-
scribed by (1) is stable along the pass if

∆V (k, t) < 0 (4)
We will also use the following signal space.
Definition 1: Consider a q × 1 vector sequence {wk(t)}

defined over the real interval 0 ≤ t ≤ ∞ and the nonnegative
integers 0 ≤ k ≤ ∞, which is written as {[0,∞], [0,∞]}
Then the L2 norm of this vector sequence is given by

‖w‖2 =

√√√√ ∞∑
k=0

∫ ∞

0

wT
k (t)wk(t) dt

and this sequence is said to be a member of
Lq

2{[0,∞], [0,∞]}, or Lq
2 for short, if ||w||2 < ∞.

III. H2 NORM AND STABILITY

Using the 1D case as motivation, consider a single input
stable along the pass process (note that this can be analyzed
mathematically by letting the pass length α → ∞) and let
the m × 1 vector g(k, t) denote the response to an impulse,
denoted by δ(k, t), applied at t = 0 on pass k. Then, by
invoking Parseval’s theorem in the along pass direction on
each pass and summing over the pass index, the H2 norm is
given by

‖G‖2 =
√

‖g(k, t)‖2
2 =

√√√√ ∞∑
k=0

∫ ∞

0

gT (k, t)g(k, t)dt (5)

This last result is easily extended to the multiple input case
and leads to the following result — see [7] for the details.

Theorem 1: A differential linear repetitive process de-
scribed by (1) is stable along the pass and has H2 disturbance

7901



attenuation γ2 > 0, i.e. ‖G‖2 < γ2, if there exist matrices
P1 > 0 and P2 > 0 such that the following LMIs hold⎡⎣ −P2 P2C P2D0

CT P2 AT P1+P1A+CT C P1B0+CT D0

DT
0 P2 BT

0 P1+DT
0 C −P2+DT

0 D0

⎤⎦<0

and

trace(DT D + BT P1B + DT P2D) − γ2
2 < 0 (6)

Some applications areas will clearly require the design of
control laws which guarantee stability along the pass and also
have the maximum possible disturbance attenuation (here as
measured by the H2 norm). How to address this question in
an H2 setting for processes described by the following state
space model over 0 ≤ t ≤ α, k ≥ 0, is now considered

ẋk+1(t)=Axk+1(t)+Buk+1(t)+B0yk(t)+B11wk+1(t)
yk+1(t)=Cxk+1(t)+Duk+1(t)+D0yk(t)+B12wk+1(t)

(7)

In this model, wk+1(t) is an r × 1 disturbance vector
which belongs to Lr

2, i.e. the model of the previous section
with disturbance terms added to the state and pass profile
vector updating equations and without loss of generality zero
boundary conditions are assumed. Also it is easy to see that
stability along the pass for such a process is also governed
by the 2D characteristic polynomial condition given by (2).

The control law employed is given by

uk+1(t) =
[

K1 K2

] [
xk+1(t)
yk(t)

]
(8)

where K1 and K2 are appropriately dimensioned matrices
to be designed.

Applying Theorem 1 to the state space model resulting
from application of the control law now yields the following
sufficient condition for stability along the pass⎡⎣ −P2 P2C + P2DK1

KT
1 DT P2+CT P2 Λ1

KT
2 DT P2+DT

0 P2 BT
0 P1+KT

2 BT P1+DT
0 C

P2D0 + P2DK2

P1B0 +P1BK1 + CT D0

−P2 + DT
0 D0

⎤⎦ < 0

(9)

where Λ1 = AT P1+P1A+KT
1 BT P1+P1BK1+CT C. Pre-

and post-multiplying (9) by diag(P−1
2 , P−1

1 , P−1
2 ) and then

setting W1 = P1, W2 = P−1
2 , N1 = K1W1 and N2 =

K2W2 yields the following result which gives a solution to
this problem with an algorithm for designing the control law.

Theorem 2: Suppose that a control law of the form (8) is
applied to a differential linear repetitive process described by
(7). Then the resulting process is stable along the pass and
has the prescribed H2 disturbance rejection bound γ2 > 0 if
there exist matrices W1 > 0, W2 > 0, N1 and N2 such that

the following LMIs hold⎡⎢⎢⎣
−W2 CW1 + DN1

NT
1 DT +W1C

T W1A
T+AW1+NT

1 BT +BN1

NT
2 DT +W2D

T
0 W2B

T
0 +NT

2 BT

0 CW1

D0W2 + DN2 0
B0W2 +BN2 W1C

T

−W2 W2D
T
0

D0W2 −I

⎤⎥⎥⎦ < 0

(10)

and

trace(X) < γ2
2 − trace(DT D)⎡⎣ X BT

11 BT
12

B11 W1 0
B12 0 W2

⎤⎦ > 0
(11)

where X is additional symmetric matrix variable of com-
patible dimensions. If these conditions hold, the control law
matrices K1 and K2 are given by

K1 = N1W
−1
1 , K2 = N2W

−1
2 (12)

IV. THE MIXED H2/H∞ CONTROL PROBLEM

Consider a differential linear repetitive process represented
by the following state space model over 0 ≤ t ≤ α, k ≥ 0,

ẋk+1(t) = Axk+1(t) + B0yk(t) + Buk+1(t)
+ B11wk+1(t) + B21νk+1(t)

yk+1(t) = Cxk+1(t) + D0yk(t) + Duk+1(t)
+ B12wk+1(t) + B22νk+1(t) (13)

where the vectors xk+1(t), yk(t) and uk+1(t) are defined as
in (1), and wk+1(t) and νk+1(t) are disturbance vectors.

Now we address the question of when does there exist a
control law of the form (8) which minimizes the H2 norm
from w to y, denoted here by ||Gd2||2, and keeps the H∞
norm from ν to y, denoted here by ||Gd1||2, below some
prescribed level. Note also that if only w is present then this
problem reduces to the H2 control problem already solved
in [7]. Similarly, if only ν is present then we obtain the H∞
control problem which is treated next.

First, we have the following so-called bounded real lemma
for differential linear repetitive processes.

Theorem 3: [6] A differential linear repetitive process
described by (13) is stable along the pass and has H∞
disturbance attenuation γ∞ > 0 if there exist matrices
R1 > 0, R2 > 0 and R3 > 0 such that⎡⎢⎢⎣

−S SÂ2 SD̂1 0
ÂT

2 S ÂT
1 P + PÂ1 − R PB̂1 LT

D̂T
1 S B̂T

1 P −γ2
∞I 0

0 L 0 −I

⎤⎥⎥⎦ < 0 (14)

where

P = diag (R1, 0) , S = diag (R3, R2) , R = diag (0, R2)

B̂1 =
[

B21

0

]
, D̂1 =

[
0

B22

]
, L =

[
0 I

]
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Â1 =
[

A B0

0 0

]
, Â2 =

[
0 0
C D0

]
(15)

Equivalently, since the matrix R3 has no influence on the
result and can hence be deleted, we have the following result.

Theorem 4: A differential linear repetitive process de-
scribed by (13) is stable along the pass and ‖Gd1‖∞ < γ∞,
for given γ∞ > 0 if there exist matrices R1 > 0, and R2 > 0
such that the following LMI holds⎡⎢⎢⎣

−R2 R2C R2D0 R2B22

CT R2 AT R1+R1A R1B0 R1B21

DT
0 R2 BT

0 R1 −R2+I 0
BT

22R2 BT
21R1 0 −γ2

∞I

⎤⎥⎥⎦<0 (16)

Now, based on the results listed in the previous section
and [6], it is clear that there exists a control law of the
form (8) which minimizes the H2 norm from w to y and
keeps the H∞ norm of the closed loop from ν to y below
γ∞ if the inequalities (6), (9) and⎡⎢⎢⎢⎢⎣

−R2 CR1+DK1R1

R1C
T +R1K

T
1 DT R1A

T +R1K
T
1 BT +AR1+BK1P1

R2D
T
0 +R2K

T
2 DT R2B

T
0 +R2K

T
2 BT

BT
22 BT

21

0 0
D0R2+DK2R2 B22 0
B0R2+BK2R2 B21 0

−R2 0 R2

0 −γ2
∞I 0

R2 0 −I

⎤⎥⎥⎥⎥⎦ < 0

are satisfied for some P1 > 0, P2 > 0, R1 > 0 and R2 > 0.
The main problem now is that we cannot linearize si-

multaneously the terms K1R1, K1P1 and K2R2, K2P2.
This can be overcome (at the possible cost of increased
conservativeness) by enforcing P1 = R1 and P2 = R2.

Under these assumptions, the following result provides the
LMI condition for mixed H2/H∞ control law design.

Theorem 5: Suppose that a control law of the form (8) is
applied to a differential linear repetitive process described
by (13). Then the resulting process is stable along the pass
and has prescribed H2 and H∞ norms bounds γ2 > 0 and
γ∞ > 0 respectively if there exist matrices W1 > 0, W2 > 0,
N1 and N2 such that the LMIs (10), (11) and⎡⎢⎢⎢⎢⎣

−W2 CW1+DN1

W1C
T+NT

1 DT W1A
T+NT

1 BT +AW1+BN1

W2D
T
0+NT

2 DT W2B
T
0 +NT

2 BT

BT
22 BT

21

0 0
D0W2+DN2 B22 0
B0W2+BN2 B21 0

−W2 0 W2

0 −γ2
∞I 0

W2 0 −I

⎤⎥⎥⎥⎥⎦<0

(17)

hold. If this is the case, then the H2/H∞ control law matrices
K1 and K2 are given by (12).

Proof: This follows immediately from the results given
or referenced above and hence the details are omitted.

Remark 1: This result is based on choosing a single
Lyapunov function for both the H2 and H∞ criteria. In the
1D systems case this is a well known procedure termed the
“Lyapunov shaping paradigm” in the literature [10].

Recall that in 1D system theory the H∞ norm is used
as a measure of system robustness. In the same spirt, this
last result can be interpreted as follows; keeping the H∞
norm of the 2D transfer function matrix from ν to y less
than γ∞ guarantees that the example considered is robust to
unstructured perturbations of the form

ν = ∆y, ‖∆‖∞ ≤ γ∞

and, simultaneously, the performance cost (in the H2 norm
sense) is minimized. This means that choosing a lower value
of γ∞ reduces the process robustness and vice versa.

Remark 2: Note that by adjusting γ∞ we can trade-
off between H∞ and H2 performance. Hence, a trade-off
curve can be constructed for a given example which allows
the designer to choose the control law which satisfies the
compromise between robustness (measured with the H∞
norm) and performance (measured with the H2 norm).

V. H2 CONTROL OF UNCERTAIN PROCESSES

In this section we extend the results of previous two sec-
tions to the control of differential linear repetitive processes
in the case when there is uncertainty in the matrices A, B0,
C and D0. The analysis will make use of the following well
known result.

Lemma 2: [3] Let Σ1, Σ2 be real matrices of appropriate
dimensions. Then for any matrix F satisfying FTF ≤ I and
a scalar ε > 0 the following inequality holds

Σ1FΣ2 + ΣT
2 FT ΣT

1 ≤ ε−1Σ1ΣT
1 + εΣT

2 Σ2. (18)
Consider now a differential linear repetitive process with the
uncertainty modelled as additive perturbations to the nominal
model matrices, resulting in the state space model over 0 ≤
t ≤ α, k ≥ 0

ẋk+1(t) = (A + ∆A)xk+1(t) + Buk+1(t)
+ (B0 + ∆B0)yk(t) + B11wk+1(t)

yk+1(t) = (C + ∆C)xk+1(t) + Duk+1(t)
+ (D0 + ∆D0)yk(t) + B12wk+1(t) (19)

where ∆A, ∆B0, ∆C, ∆D0 represent admissible uncertain-
ties. We also assume that these uncertainty matrices can be
expressed in the form[

∆A ∆B0

∆C ∆D0

]
=

[
H1

H2

]
σ−1F [

E1 E2

]
(20)

where H1, H2, E1, E2 are known constant matrices and F
is an unknown matrix with constant entries which satisfies

FTF ≤ I (21)

The design parameter σ here can be considered as a term
available for use to attenuate the effects of the uncertainty.
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The process model (19) can be rewritten in a form similar
to (13) as

ẋk+1(t) =Axk+1(t) + B0yk(t) + Buk+1(t)
+ B11wk+1(t) + H1νk+1(t)

yk+1(t) =Cxk+1(t) + D0yk(t) + Duk+1(t)
+ B12wk+1(t) + H2νk+1(t)

zk+1(t) =E1xk+1(t) + E2yk(t)

νk+1(t) =σ−1Fzk+1(t)

(22)

where the parametric uncertainty is viewed as a fictitious
feedback between the exogenous output zk+1(t) and the
exogenous input νk+1(t) (see e.g. [8] for further details
on such an analysis for uncertain 1D systems). Hence on
applying the control law (8), the resulting process state space
model can be written in the form[

ẋk+1(t)
yk+1(t)

]
= A

[
xk+1(t)
yk(t)

]
(23)

where

A=
[

A+BK1 B0+BK2

C+DK1 D0+DK2

]
+

[
∆A ∆B0

∆C ∆D0

]
and we have the following result.

Theorem 6: Suppose that a control law of the form (8) is
applied to a differential linear repetitive process described
by (19) with uncertainty structure satisfying (20) and (21).
Then the resulting process is stable along the pass and has
prescribed H2 disturbance attenuation γ2 > 0 if there exist
matrices W1 > 0, W2 > 0, N1 and N2 such that the
LMIs (10) and (11) of Theorem 2 and⎡⎢⎢⎢⎢⎣

−W2 (�) (�) (�) (�)
W1C

T +NT
1 DT Θ (�) (�) (�)

W2D
T
0 +NT

2 DT W2B
T
0 +NT

2 BT −W2 (�) (�)
HT

2 HT
1 0 −σ2I (�)

0 E1W1 E2W2 0 −I

⎤⎥⎥⎥⎥⎦<0

(24)
hold (where Θ = W1A

T+AW1+BN1+NT
1 BT ). Also when

these hold, the stabilizing control law matrices K1 and K2

are given by (12).
Proof: Introduce the matrices

A1 =
[

A+BK1 B0+BK2

0 0

]
, A2 =

[
0 0

C+DK1 D0+DK2

]
,

H1 =
[

H1

0

]
, H2 =

[
0

H2

]
, E =

[
E1 E2

]
Then it follows immediately that (22) is stable along the
pass if there exist matrices P1 > 0, P2 > 0 such that the
following LMI holds(

A1 + H1σ
−1FE

)T
P +P

(
A1 + H1γ

−1FE
)

+
(
A2 + H2σ

−1FE
)T

S
(
A2 + H2γ

−1FE
)−R < 0

An obvious application of the Schur’s complement formula
to this last expression now yields[

−S−1
(
A2 + H2σ

−1FE
)(

A2 + H2σ
−1FE

)T
ΩT P + PΩ − R

]
< 0

where Ω = A1 + H1σ
−1FE, or⎡⎣ −P2 (�) (�)

CT P2+KT
1 DT P2 Θ1 (�)

DT
0 P2+KT

2 DT P2 BT
0 P1+KT

2 BT P1 −P2

⎤⎦
+

⎡⎣ 0
ET

1

ET
2

⎤⎦FT
[
σ−1HT

2 P2 σ−1HT
1 P1 0

]

+

⎡⎣σ−1P2H2

σ−1P1H1

0

⎤⎦F[
0 E1 E2

]
< 0

where Θ1 = AT P1+P1A+P1BK1+KT
1 BT P1. Now make an

obvious application of the result of Lemma 2, and pre- and
post-multiply the result by diag(ε−

1
2 I, ε−

1
2 I, ε−

1
2 I). Also

introduce the notation P 1 = ε−1P1, P 2 = ε−1P2 and
Θ2 = AT P 1+P 1A+P 1BK1+KT

1 BT P 1, and then an obvious
application of the Schur’s complement formula gives⎡⎢⎢⎢⎢⎣

−P 2 (�) (�) (�) (�)
CT P 2+KT

1 DT P 2 Θ2 (�) (�) (�)
DT

0 P 2+KT
2 DT P 2 BT

0 P 1+KT
2 BT P 1 −P 2 (�) (�)

HT
2 P 2 HT

1 P 1 0 −σ2I (�)
0 E1 E2 0 −I

⎤⎥⎥⎥⎥⎦<0

Note that this last condition is not linear in P 1, P 2, P 3,
K1 and K1. However, this difficulty can be avoided by em-
ploying the following transformations. First, pre- and post-
multiply the last expression by diag(P

−1

2 , P
−1

1 , P
−1

2 , I, I)
and finally set W1 = P−1

1 , W2 = P
−1

2 , N1 = K1P
−1

1 ,
N2 = K2P

−1

2 to obtain (24).
Remark 3: The term σ in the LMI of (24) can be mini-

mized by using linear objective minimization procedure

min
W1>0,W2>0,X,N1,N2

µ

subject to (10), (11) and (24) with µ = σ2

which, due to the presence of the term σ−1 in the uncertainty
model of (20), provides an essential advantage of allowing
us to extend the uncertainty boundaries, i.e. increase the
robustness.
The last result (i.e. the LMI (24)) shows that there exists a
link between mixed H2/H∞ and robust H2 control problems.
This means that the same control law solves the mixed
H2/H∞ and robust H2 control problems.

To see this, assume that σ = γ∞ and apply the same
transformation used to obtain (17) from (14) where the
matrices B̂1, D̂1 and L are now given by

B̂1 =
[

H1

0

]
, D̂1 =

[
0

H2

]
, L =

[
E1 E2

]
This link can also be established using the Lyapunov

stability condition of Lemma 1. In particular from (21)

σ−2FTF ≤ σ−2I

and hence, assuming σ = γ∞, we have

νT
k+1(t)νk+1(t) = γ−2

∞ zT
k+1(t)FTFzk+1(t)

≤ γ−2
∞ zT

k+1(t)zk+1(t)
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which can be rewritten as

γ2
∞νT

k+1(t)νk+1(t) − zT
k+1(t)zk+1(t) ≤ 0 (25)

Hence the inequality

∆V (k, t)+zT
k+1(t)zk+1(t) − γ2

∞νT
k+1(t)νk+1(t) < 0 (26)

can hold only if the term ∆V (k, t) < 0, i.e. stability along
the pass holds. Also this inequality can be regarded as
arising from the associated Hamiltonian for differential linear
repetitive processes — see [6] for further details. Moreover,
if (26) holds then the process is stable along the pass and
the H∞ norm from ν to z is kept below the prescribed
level γ∞ > 0. Finally, routine manipulations establish the
link between robust H2 control and H2/H∞ control detailed
above.

VI. NUMERICAL EXAMPLE

As a numerical example, consider the case when

A =
[−0.0050 −5.8077

1 −0.0050

]
, B0 =

[
0

0.0494

]
C =

[
1 0

]
, D0 = 0.7692

and

B =
[

0.9
0.2

]
, B11 =

[
0.9
1.3

]
, B21 =

[
0.6
1.1

]
D =0.6, B12 = 1.2, B22 = 0.9

(27)

Executing the design procedure for Theorem 5 for γ∞ = 1.9
gives the solution as γ2 = 3.3397 and

W1 =
[

2.2752 −0.1238
−0.1238 0.2470

]
, W2 = 0.5070

N1 =
[−5.8572 −0.4243

]
, N2 = −0.7337

(28)

The corresponding control law matrices are

K1 =
[ −2.7427 −3.0925

]
, K2 = −1.4472 (29)

Furthermore, suppose that the H∞ disturbance rejection
bound is set as βγ∞, where β is a given positive scalar.
Then, by adjusting β we can trade off the H∞ versus H2

performance. This leads to a trade-off between ‖Gd1‖∞ ≤
γ∞ and ‖Gd2‖2 ≤ γ2 as shown in Figure 1.

VII. CONCLUSIONS

In this paper we have formulated and solved mixed
H2/H∞ control problem for linear differential repetitive
processes. Furthermore, the solution to the H2 control prob-
lem of uncertain processes has also been developed and a
link between them established. Finally, by introducing an
additional positive scalar we can trade off the H∞ versus H2

performance, as illustrated in the given numerical example.
On going work is aimed at a dynamic pass profile controller
design with H2 and H∞ performance specifications and this
will be reported on in due course.

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

γ∞

γ 2

Fig. 1. Trade-off between ‖Gd1‖∞ ≤ γ∞ and ‖Gd2‖2 ≤ γ2

REFERENCES

[1] C. Du and L. Xie. H∞ Control and Filtering of Two-dimensional
Systems, volume 278 of Lecture Notes in Control and Information
Sciences. Springer-Verlag, Berlin, Germany, 2002.

[2] K. Gałkowski, W. Paszke, E. Rogers, S. Xu, J. Lam, and D. H. Owens.
Stability and control of differential linear repetitive processes using an
LMI seting. IEEE Transactions on Circuits and Systems - II: Analog
and Digital Signal Processing, 50(9):662–666, 2003.

[3] P. P. Khargonekar, I. R. Petersen, and K. Zhou. Robust Stabilization of
Uncertain Linear Systems: Quadratic Stabilizability and H∞ Control
Theory. IEEE Transactions on Automatic Control, 35(3):356–361,
1990.

[4] H. Melkote, B. Cloke, and V. Agarwal. Modeling and compensator
designs for self-servowriting in disk drives. Proceedings of the
American Control Conference (ACC), 1:737–742, 4-6 June 2003.

[5] D. H. Owens, N. Amann, E. Rogers, and M. French. Analysis of linear
iterative learning control schemes - a 2D systems/repetitive processes
approach. Multidimensional Systems and Signal Processing, 11(1-
2):125–177, 2000.

[6] W. Paszke, K. Gałkowski, E. Rogers, and D. H. Owens. H∞ Control
of Differential Linear Repetitive Processes. In Proceedings of the
American Control Conference (ACC), pages 1386–1391, Boston, USA,
30 June - 2 July 2004.

[7] W. Paszke, K. Gałkowski, E. Rogers, and D. H. Owens. H2 Control
of Differential Linear Repetitive Processes. In Proceedings of the
IFAC Congres, Prague, Czech Republic, 4-8 July 2005. CD-Rom
Proceedings.

[8] D. Peaucelle and D. Arzelier. Robust performance analysis with
LMI-based methods for real parametric uncertainty via parameter-
dependent Lyapunov functions. IEEE Transactions on Automatic
Control, 46(4):624–630, 2001.

[9] E. Rogers and D. H. Owens. Stability Analysis for Linear Repetitive
Processes, volume 175 of Lecture Notes in Control and Information
Sciences. Springer-Verlag, Berlin, Germany, 1992.

[10] C. Scherer, P. Gahinet, and M. Chilali. Multiobjective output-feedback
control via LMI optimization. IEEE Transactions on Automatic
Control, 42(7):896–911, 1997.

[11] H. D. Tuan, P. Apkarian, T. Q. Nguyen, and T. Narikiyo. Robust
Mixed H2/H∞ Filtering of 2-D Systems. IEEE Transactions on
Signal Processing, 50(7):1759–1771, 2002.

7905


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




