
Receding Horizon Control for a Class of Discrete Event Systems with
Real-Time Constraints

Lei Miao
Dept. of Electrical and Computer Engineering

Boston University, Boston, MA 02215
leimiao@bu.edu

Christos G. Cassandras
Dept. of Manufacturing Engineering and

Center for Information and Systems Engineering
Boston University, Brookline, MA 02446

cgc@bu.edu

Abstract—We consider Discrete Event Systems (DES) in-
volving the control of tasks with real-time constraints. When
event times are unknown, we propose a Receding Horizon (RH)
controller in which only some future event information is avail-
able within a time window. Analyzing sample paths obtained
under this scheme and comparing them to optimal sample
paths (obtained when all event times are known), we derive a
number of attractive properties of the RH controller, including
the fact that it still guarantees all real-time constraints; there
are segments of its sample path over which all controls are still
optimal; the error relative to the optimal task departure times is
non-increasing under certain conditions. Simulation results are
included to verify the properties of the controller and show that
its performance can be near-optimal even if the RH window
size is relatively small.
Index Terms—Discrete event system, Hybrid system, Reced-

ing Horizon, power-limited system, Optimization

I. INTRODUCTION
A large class of Discrete Event Systems (DES) involves

the control of resources allocated to tasks according to
certain operating specifications (e.g., tasks may have real-
time constraints associated with them). The basic modeling
block for such DES is a single-server queueing system
operating on a first-come-first-served basis, whose dynamics
are given by the well-known max-plus equation

= max(1) + () (1)

where is the arrival time of task = 1 2 is the
time when task completes service, and is its (generally
random) service time, determined by the physical state ()
and some control () defined over [1).
The design of the controller depends on the mode of

operation of the system. In an off-line scheme, the sequence
of task arrival times { }, = 1 , is known in
advance, whereas in the case of on-line control no such
prior information is available. The controller is dynamic
when () is allowed to vary over all [1); it
is called static when () is kept fixed over [1); it
may, however, change with every = 1 .
It has been shown in [1] that static control is the unique

optimal control of an off-line problem in the general context

The authors’ work is supported in part by the National Science Founda-
tion under Grant DMI-0330171, by AFOSR under grants FA9550-04-1-0133
and FA9550-04-1-0208, and by ARO under grant DAAD19-01-0610.

of (1) with tasks required to satisfy deadline constraints
of the form for given , = 1 . This
result is significant since it asserts the optimality of a
simple controller that does not require any data collection or
processing in environments where the cost of such actions is
high.
In this paper, we turn our attention to the on-line control

problem, given a specific cost function for the system. For
instance, in power-limited wireless systems such as sensor
networks, the objective is to minimize energy consumption
while satisfying some operating constraints and applications
include Dynamic Voltage Scaling (DVS) and Dynamic Trans-
mission Control (DTC), in which one controls the processing
voltage and the transmission power respectively.
For on-line control, we can no longer assume that task

arrival information is known; instead, only real-time event
information obtained over the evolution of a sample path is
used and one can no longer expect that a static controller
would be optimal. We must then seek on-line controllers
which guarantee the required task deadlines and, if they are
not optimal, it is possible to quantify their deviation from
optimal performance. Our main contribution is to develop a
Receding Horizon (RH) controller, based on the assumption
that some future information over a limited time window
is available or can be estimated with good accuracy; such
controllers were proposed and analyzed in [2] for systems
with no real-time constraints. We establish a number of
attractive properties of the RH controller, including () the
fact that it still guarantees all real-time constraints (if the
original off-line optimization problem is feasible), and ()
the fact that the error introduced relative to the optimal
control can actually be zero over segments of the sample
path of the system. Our results are general and apply to
all optimal control settings described above, as long as the
cost function of interest is strictly convex and monotonically
increasing (or decreasing, depending on the control variables
we use).
In section II, we present our system model and formu-

late the optimization problem. The RH control approach is
described in Section III. Section IV discusses a number of
properties of the RH controller. Finally, we present some
numerical results in Section V. Due to limited space, all
proofs are omitted; they are, however, provided in [3].

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThC01.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 7714

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system we consider is characterized by the event-
driven dynamics (1), where is the arrival time of task
= 1 2 , and is the time when task completes ser-
vice. We assume a first-come-first-served and nonpreemptive
queueing model, which is suitable for power-limited wireless
devices where operational simplicity must be maintained.
Let us first briefly introduce the off-line version of the

problem where a static controller is optimal [1]. Let be
a control variable representing the processing time per oper-
ation for task = 1 which is kept fixed throughout
[1). We require that min max, = 1 ,
where min max are given. We also require that each task
be constrained to be completed by a given deadline and
consider the optimization problem

(1) : min
1

P
=1 ()

min = 1

= max(1) + = 1 0 = 0

where is the number of operations of task and the
function () represents the cost per operation associated
with task under control (e.g., the energy consumed).
Note that the constraints max are removed in (1)
above. This will not affect the optimal solution to the
problem with these constraints included [1]. Throughout our
work, we will assume the following.
Assumption 2.1: () is strictly convex, differentiable,

and monotonically decreasing in .
An explicit form of () can be obtained depending on

the application of interest. For example, in DTC one controls
the transmission power of a wireless node based on the state
of the system [4].
This problem formulation was used in [5] in addressing

the DVS problem discussed earlier. (1) is similar to
the general class of problems studied in [6] without the
constraints , where a decomposition algorithm termed
the Forward Algorithm (FA) was derived. As shown in
[6], instead of solving this complex nonlinear optimization
problem, we can decompose the optimal sample path to a
number of busy periods. A busy period (BP) is a contiguous
set of tasks { } such that the following three conditions
are satisfied: 1 , +1, and +1,
for every = 1. The FA decomposes the entire
sample path into BPs and replaces the original problem by a
sequence of simpler convex optimization problems, one for
each BP; as shown in [6], the solution is identical to that
of the original problem. In [5], it is shown that the presence
of in (1) leads to an efficient algorithm [5]
that decomposes the sample path even further and does not
require solving any optimization problem. We shall also
make use of the concept of a “critical” task: a task is said
to be critical if it departs at the arrival time of the next
task + 1, i.e. = +1. This helps us define a block as
a contiguous set { }, 1 , such that

1 , +1, and the set { 1} contains
no critical tasks.

In what follows, we shall make use of some results in [5]
and [1]. We will also use { } and { }, = 1 ,
to denote an optimal solution of problem (1) and the
corresponding task departures respectively.

III. THE RECEDING HORIZON (RH) CONTROL SCHEME
Whereas in off-line control all { }, = 1 , are

known in advance, the main challenge for on-line control is
the lack of any future task information. This leads to two
difficulties in designing an on-line controller: () optimiza-
tion is hard to carry out, and () real-time constraints are
hard to satisfy. Our goal in this paper is to develop an on-line
controller that addresses both difficulties.
In developing a Receding Horizon (RH) framework, we

assume the knowledge of future task information at time is
limited to a “lookahead window” [+] for some given
, including each task’s deadline and number of operations.

Task information beyond this window is unknown. The RH
approach works in a recursive way: at each decision point,
the controller solves an optimization problem over the plan-
ning horizon based on all collected information; control
is applied to the next task only, and the same procedure
is repeated at the next decision point. Since continuously
adjusting the control based on new information available in
the RH window is costly, we need to determine decision
points over which to perform on-line control. Based on
[1], we know that the optimization problem over has
an optimal solution given by static control. Therefore, it is
natural to pick all task departures as our decision points to
make the on-line control for each task static.
However, because of the lack of future information, RH

control cannot guarantee the satisfaction of the real-time
constraints in our system. This motivates us to incorporate a
worst-case estimation process into our RH controller. We will
show in Theorem 4.1 that doing so can guarantee all dead-
lines, provided a feasible solution exists for off-line control.
In particular, we will show that the RH controller gives rise to
task departures that occur no later than those on the optimal
sample path. Moreover, if no feasible solution exists, the RH
controller attempts to complete task processing as early as
possible.
Before explaining the worst case estimation process, we

define the following. Let ˜ denote the departure time of task
evaluated by the RH controller when the planning horizon
contains task . If ˜ is the departure time of task on the
RH sample path, then it is also a decision point. When task
+1 starts a new BP (i.e., +1 ˜), then the RH controller
does not need to act until +1 rather than ˜ ; for notational
simplicity, we will still use ˜ to represent the decision point
for task + 1. Let denote the last task included in the
window that starts at the current decision point ˜ , i.e.,

= argmax { : ˜ + }
Finally, let ˜ be the control associated with task which is

determined by the RH controller for all = +1 . The
values of ˜ and ˜ are initially undefined, and are updated
at each decision point ˜ for all = + 1 . Control is

7715

applied to task +1 only. That control and the corresponding
departure time are the ones showing in the final RH sample
path. In other words, for any given task , ˜ and ˜ may
vary over different planning horizons, since optimization is
performed based on different available information. It is only
when task is the next one at some decision point that its
control and departure time become final.
Given these definitions, we are now ready to discuss

the worst case estimation process. If = , then the
optimization procedure will be finished. In what follows, we
consider the more interesting case when . Then, our
worst case estimation pertains to task + 1, the first one
beyond the current planning horizon determined by . Define
task arrival times and task deadlines for = +1 +1
as follows:

˜ =

½
if + 1

˜ + if = + 1
(2)

˜ =

½
if

˜ +1 + min +1 if = + 1
(3)

where min is the minimum feasible time per operation,
and +1 is the number of operations of task + 1. Note
that +1 is in fact unknown at time ˜ , but this will not
affect our optimization process as the value of ˜ +1 is not
actually required. In (2), we introduce an estimate for the
first unknown task beyond ˜ + and set it to be precisely
that value, i.e., the earliest it could possibly occur. In (3),
we set its corresponding deadline to be the tightest possible.
We do not have to worry about the unknown tasks that
will arrive after task + 1 (this is because of the FCFS
nature of our system). Therefore, the optimization problem
the RH controller faces is over tasks + 1 with the
added constraint that they must all be completed by time
˜ +1 = ˜ + . This is equivalent to redefining ˜ as

˜ =

½
if

min(˜ +1) if =

Our on-line RH control problem at decision point ˜ will
be denoted by ˜(+ 1) and can now be formulated as
follows:

˜(+ 1) : min
˜ +1 ˜

P
= +1 (˜)

˜ min = + 1

˜ = max(˜ 1) + ˜ ˜ = + 1

˜ known

Note that setting = 0 and = yields the off-line
problem (1) defined earlier. In fact, we can see that
˜(+ 1) is just an off-line optimization problem with
exact information provided for tasks +1 . The optimal
solution to ˜(+ 1) gives the controls over the planning
horizon at decision point ˜ The corresponding departure
times are ˜ = + 1 , for all tasks within the
planning horizon. We emphasize again that at decision point
˜ , although ˜(+1) is solved for all tasks = +1 ,
control is applied to task + 1 only.

Due to worst case estimation, ˜(+ 1) may not be
feasible, even if the off-line problem (1) is feasible (see
an example in [3]). In this case, the performance of the RH
controller can be further improved. Recall that we use worst
case estimation to guarantee the deadline of task + 1 is
met, but as long as some task and all tasks before it are
completed by the arrival time of its next task, this is sufficient
to guarantee that future tasks can meet their deadlines.
To apply the idea above, we define for all = +1 :

min = max(min
1) + min

min = ˜

and observe that min is the departure time of task over
the planning horizon starting at decision time ˜ obtained by
applying the “fastest” possible control ˜ = min to all tasks
such that + 1 . We also define:

= { : + 1 min min(+1)

for all + 1 }

ˆ =

½
sup if 6=

otherwise (4)

˜ = min(ˆ) (5)

˜ =

½
+ 1 6= ˜

min(˜ +1) = ˜

The RH controller uses information up to task ˜ for optimiza-
tion. Task ˆ is defined in such a way that the RH controller
has a choice of using it when ˜(+ 1) is infeasible.
At decision point ˜ the proposed RH controller solves

an optimization problem (the solution was shown to be
efficiently obtained in [5]) over the planning horizon based
on the current available task information and worst case esti-
mation of the next unknown task. The optimization problem
is defined as ˜(+ 1 ˜) with ˜ given in (5). By defining
˜, the performance of the RH controller can be improved
when ˜(+ 1) is infeasible due to worst case estimation
for task +1. Solving ˜(+1 ˜) gives us the solution over
the planning horizon, but we only apply it to task +1. The
same procedure is performed when the controller moves to
the next decision point ˜ +1

IV. PROPERTIES OF THE RH CONTROLLER

Clearly, the RH sample path and the optimal sample path
are generally different. Recalling that { }, = 1 ,
is the optimal solution of the off-line problem (1), we
introduce the error in departure times evaluated by the RH
controller relative to the optimal controller as follows:
Definition 4.1: The departure time error of task is =
˜ .

When applying RH control, we would like to be as
small as possible and possibly have = 0 for at least
some segments of the RH sample path. In this section, we
explore the properties of the RH controller by addressing
the following questions: ()What is the relationship between
and ˜ ? () Can we identify some departure points on

7716

the RH sample path such that ˜ = ? () What are the
properties of the error ?
Relationship between the optimal and the RH sample

paths. We formulate a generalized optimization problem
(; 1 2), which is convenient in deriving the results

that follow:

(; 1 2) : min
P

= ()

min =

= max(1 ¯) + ¯ = 1 = 0

¯ = max(1) ¯ = min(2) =

(; 1 2) is a generalization of problems we have al-
ready defined. For example, the off-line problem (1)
is identical to (1 ; 1) and the RH controller’s
optimization problem ˜(+ 1) is identical to (+
1 ; ˜ ˜ +1).
Definition 4.2: (; 1 2) is the optimal cost of

processing tasks { }, from time 1 to 2

(; 1 2) is the optimal cost obtained by solving
(; 1 2) if it is feasible, by setting the processing

starting time of task to (1) and requiring that
task depart at time (2) If the problem does not
have a feasible solution, (; 1 2) is undefined.
Lemma 4.1: Under Assumption 2.1, (; 1 2) has a

unique optimal solution.
While it has been shown in [6] that the optimal sample

path of the system we are considering can be decomposed
into busy periods and blocks defined by certain tasks termed
“critical”, the next lemma shows another decomposition
property of the optimal sample path of (; 1 2)

Lemma 4.2: Let be the optimal departure time of task
{ } in (; 1 2) For any such that

, the unique optimal solution to (; 1)
is , and the corresponding optimal departures are

.
This lemma shows that the optimal sample path of
(; 1 2) can be decomposed by optimal departure

points. Solving this control problem is equivalent to com-
bining the optimal solutions to the sub-problems obtained
by partitioning through these optimal departure points. Ob-
viously, this decomposition cannot be used to calculate the
optimal sample path directly, since 1 are unknown; it
is, however, very helpful in our ensuing analysis. Because
(; 1 2) is the general form of the optimization prob-

lems we are dealing with, the results above apply to (1),
˜(+ 1 ˜) as well.
The next lemma is an auxiliary one which is crucial in

our analysis:
Lemma 4.3: Let

0
and

00
be the optimal departure time

of task { } in (;
0
1

0
2) and (;

00
1

00
2)

respectively. Suppose
0
1

0
2

00
1

00
2

0
1

00
1

0
200

2 Then
0 00

for all .
With the help of Lemmas 4.1 through 4.3, we can char-

acterize the relationship between departure times on the RH
sample path and the optimal sample paths as follows:

Lemma 4.4: At any decision point ˜ ˜ { +
1 ˜}
This lemma shows that the departure times evaluated by

the RH controller at ˜ are upper bounded by the optimal
departure times. Recall, however, that at ˜ we solve an
optimization problem over all tasks in the current planning
horizon defined by ˜, but only apply control to the next task
+ 1. Thus, this result does not imply that all departure
times in the final RH sample path satisfy this relationship.
This more general result is established next.
Theorem 4.1: ˜ 1
This result shows that the RH controller is more conserva-

tive than the optimal controller. Therefore, our RH controller
can guarantee all task deadlines, provided feasible solutions
exist for (1).
Identification of optimal departure points on the RH

sample path. We shall next address the second issue men-
tioned at the beginning of this section: how to identify
possibly optimal departure points on the RH sample path.
As we will see, accomplishing this has two major benefits:
() prevent departure time errors from accumulating, and ()
save considerable computation time in our RH optimization
process. We begin by showing that under certain conditions,
and when the RH window size is large enough, the RH
controller yields optimal controls.
Lemma 4.5: Let () be a BP on the optimal sample

path and ˜ 1 be the current decision time on the RH sample
path with + 1 Let ˜ , { ˜}, be the optimal
solution to ˜(˜), and ˜ be the corresponding departure
time. Then ˜ = and ˜ = for all =
Lemma 4.6: Let () be a block on the optimal sample

path and ˜ 1 be the current decision time on the RH sample
path with ˜ + 1 Let ˜ { ˜}, be the optimal
solution to ˜(˜) and ˜ be the corresponding departure
time. Then ˜ = , ˜ = for all =
These results show that at certain decision points, when

the RH window size is large enough, our control over the
planning horizon is error-free. In Lemma 4.5, the condition
that () is a BP on the optimal sample path can be easily
checked by the fact that = +1 established in
[5]. Therefore, the RH controller may apply all controls
determined at ˜ 1 to all , instead of applying
control to task only. In Lemma 4.6, recall that a block
may end with a critical task, i.e., = +1 on the optimal
sample path, but the RH controller cannot identify such
points. However, as shown next, even if the RH controller
operates one task at a time, the RH controls for the block
() are still optimal in the final RH sample path. In
fact, we show that even when is not large enough, the
RH planning horizon can still contain departure times that
coincide with the optimal ones.
The next lemma is very helpful in further decomposing the

optimal sample path from the viewpoint of the RH controller.
Lemma 4.7: At any decision point ˜ , let ˜ , { +

1 ˜}, be the optimal solution to ˜(+ 1 ˜) and ˜ be
the corresponding departure time. If there exists some
{ + 1 ˜} such that ˜ = then = .

7717

Thus, as long as we find a task within the current planning
horizon which departs at its deadline, this task must also
depart at its deadline on the optimal sample path. This lemma
helps us prevent errors from accumulating on the RH sample
path. Moreover, by knowing this future optimal departure
time, we will see that we do not have to perform any further
computation until that time.
Lemma 4.7 provides one way to identify optimal departure

points on the RH planning horizon. In what follows, we will
determine another way, based on critical tasks on the optimal
sample path, i.e., tasks such that = +1. Therefore, if
we can find a task which is critical on the optimal sample
path, then we can identify its optimal departure point which
is given by +1. As we will see, under some conditions and
at the expense of some extra work, we can indeed identify
a critical task on the optimal sample path. Let us start with
an auxiliary lemma.
Lemma 4.8: At any decision point ˜ , let ˜ { +

1 ˜}, be the optimal solution to ˜(+ 1 ˜) and ˜ be
the corresponding departure time. If () ˜ +1 6= ˜ for
all , and () task is critical on the optimal sample path
of (+ 1 ˜; ˜ ˜), + 1 ˜ then ˜ = +1.
This lemma helps us establish the following result which

provides an alternative to Lemma 4.7 for identifying depar-
ture times on the planning horizon that are optimal.
Theorem 4.2: At any decision point ˜ , let ˜ , { +

1 ˜}, be the optimal solution to ˜(+1 ˜) and ˜ be the
corresponding departure time. Suppose ˜ +1 6= ˜ for
all Then, the necessary condition for task , +1 ˜,
to be critical on the optimal sample path is that ˜ = +1.
A sufficient condition for task to be critical on the optimal
sample path is that ˜ = and task is critical on the
optimal sample path of (+ 1 ˜; ˜ ˜).
This theorem shows that once we find some tasks are

critical over the planning horizon and the current decision
point coincides with the corresponding optimal departure,
we have a chance to identify critical tasks on the optimal
sample path at the expense of solving (+ 1 ˜; ˜ ˜): if
a task is critical on the optimal sample path of (+ 1 ˜;
˜ ˜) then it is also critical on the optimal sample path.
We now have two ways to identify optimal departure

points on the RH planning horizon. One way is to find
a departure point ˜ in the planning horizon such that

= . The other way is to find a critical task on the
optimal sample path of (+ 1 ˜; ˜ ˜) when ˜ = .
The next theorem shows that if a decision point is such

that ˜ = , then, regardless of how large the RH window
is, if we can identify some { + 1 ˜} such that
˜ = , then the optimal controls for tasks (+ 1) are
immediately obtained over the current planning horizon.
Theorem 4.3: At any decision point ˜ let ˜ , { +

1 ˜}, be the optimal solution to ˜(+ 1 ˜) and ˜ be
the corresponding departure time. If () ˜ = , and ()
there exists some { + 1 ˜} such that ˜ = ,
then ˜ = , ˜ = for all = + 1
One advantage of identifying these optimal departure

points is that we can prevent errors from accumulating. An-

other advantage is that once two such points are identified we
do not need to perform any computation between them, thus
saving time and computational effort. In energy-constrained
applications (such as in wireless sensor networks), this can
become quite critical. However, a question still remains:
although we can identify a set of optimal controls over the
planning horizon, will these controls remain the same over
future planning horizons? Before we answer this question,
let us introduce the following convenient notation:

˜ () departure time of task evaluated at ˜

At decision point ˜ let ˜ , { + 1 ˜}, be the
optimal solution of ˜(+ 1 ˜) and ˜ be the corresponding
departure time. Then, we can write ˜ () = ˜ .
We will start with an auxiliary lemma:
Lemma 4.9: At any decision point ˜ suppose there exists

some { + 2 ˜} such that ˜ () = or some
{ + 2 ˜ 1} such that ˜ () = = +1

Then ˜ () = at decision point ˜ , + 1 1
Theorem 4.4: At any decision point ˜ suppose there

exists some { + 2 ˜} such that ˜ () = or
some { + 2 ˜ 1} such that ˜ () = =

+1 Then ˜ () = ˜ () for = + 1 1,
= + 1
This theorem shows that once an optimal departure point

is identified over the RH planning horizon by Lemma 4.7
or Theorem 4.2, all the RH controls between the current
decision point and this optimal departure point will be the
ones in the final RH sample path. This implies two nice
properties of our RH control: () Once an optimal departure
point is identified over the RH planning horizon by Lemma
4.7 or Theorem 4.2, we can apply the RH controls to all tasks

{ +1 } and skip the optimization procedures for
all tasks + 2 ; () As in Lemma 4.6, when the RH
window size is larger than a block on the optimal sample
path and the RH controller does not know this fact, we can
still obtain optimal controls for all tasks within the block.
Error Properties of the RH Controller. So far, we have

shown how to identify departure times on the RH sample
path that are optimal. Our next step is to study the departure
error properties of the RH controller.
It has been shown that when the RH controller happens to

act at the starting point of a block on the optimal sample path,
there are conditions under which the error is monotonically
non-decreasing over the planning horizon (Lemma 4.10 in
[3]). However, since we only apply ˜ +1 at decision time
˜ , it is possible that the error may decrease at the next
execution point of the RH controller. The next theorem shows
that under some conditions, the error will in fact be non-
increasing.
Theorem 4.5: At any decision point ˜ let ˜ , { +

1 ˜}, be the optimal solution to ˜(+ 1 ˜) and ˜ be
the corresponding departure time. If there exists some =
argmin +1 ˜{˜ : ˜ = }, then +1 for all =

1.
This theorem asserts that once an optimal departure

is identified by the RH controller, the error will be non-

7718

increasing from the current decision point to on the RH
sample path.
Finally, we will also show that when applying RH control

the departure error of each task is a non-increasing function
of the RH window size .
Theorem 4.6: Suppose we have two RH controllers with

window sizes 1, 2 Let ˜ 1, ˜ 2 be the corresponding
departure times of task , ˜ 1, ˜ 2 the corresponding RH
controls of task , and 1, 1 the corresponding departure
errors of task . If 1 2 then ˜ 1 ˜ 2 and 1 1

for = 1 .
In practice, the RH window size is usually associated

with resources such as memory or communication energy.
In general, the larger the RH window size, the more re-
sources are required. Therefore, it is natural to expect the
performance of the RH controller to improve with larger RH
window size, as confirmed by Theorem 4.6.

V. NUMERICAL RESULTS
In this section, we present some numerical results ob-

tained from application of our RH control approach to some
simulated systems. We begin by establishing some notation
associated with different controllers we shall compare:
Optimal: Off-line controller with exact task information.
RH1: RH controller with ˜ =
RH2: RH controller with ˜ = min(ˆ)
RH3: RH controller with ˜ = min(ˆ), and decision

point skipping (Recalling the results we obtained in Theorem
4.4, once an optimal departure point is identified over a
planning horizon, the controller will not have to perform any
additional optimization until this point. This controller skips
the decision points between the current one and an optimal
departure point identified over the current planning horizon).
Experiments were performed for two different traffic pat-

terns: Poisson arrivals and bursty arrivals. The deadline of
each task is uniformly distributed in [5 20] The mean
inter-arrival time of Poisson arrivals is set to 5 . For bursty
arrivals, the length of a burst is randomly chosen between
integers from 10 to 20, the interval between two adjacent
bursts is uniformly distributed in [50 100], the interval be-
tween two adjacent tasks within the same burst is uniformly
distributed in [1 2].

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performace of RH controllers

RH Window size(s)

R
el

at
iv

e
co

st
 e

rr
or

Optimal
RH

1
RH

2
RH

3

Fig. 1. Bursty arrivals, tight deadlines.

Figure 1 shows the relative cost error as a function of
the RH window size in the case where tasks arrive in a
bursty fashion. The relative cost error is defined as: (cost of
a controller - optimal cost) / optimal cost. The results are
from 10 simulation runs with 500 tasks in each run. It can
be seen that the RH controllers approach the optimal off-line
controller with increasing .
Figure 2 is a plot of the departure errors . The result

is obtained with Poisson arrivals over 100 tasks. It is worth
observing that there exist intervals over which = 0.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16
Departure errors of RH Controllers

Task Departures

D
ep

ar
tu

re
 e

rr
or

s

RH
1

RH
2

RH
3

Fig. 2. Poisson arrivals, tight deadlines, H=10s.

Based on these numerical results, () We verify that RH
controllers using the window boundary ˜ = min(ˆ)
clearly outperform those using the original window boundary
, () We observe that the performance of our RH con-
trollers rapidly approaches the optimal one when using ˜
and increasing , () We verify Theorem 4.4, i.e., when
using window boundary ˜, once an optimal departure point
is identified in the current planning horizon, skipping all
decision points from the current one to that optimal departure
point does not downgrade performance, while accelerating
RH control.

REFERENCES
[1] L. Miao and C. G. Cassandras, “Optimality of static control policies in

some discrete event systems,” to appear in IEEE Trans. on Automatic
Control.

[2] C. G. Cassandras and R. Mookherjee, “Receding horizon control for
a class of hybrid systems with event uncertainties,” in Proc. of 2003
American Control Conf., pp. 413–418, June 2003.

[3] L. Miao and C. G. Cassandras, “Receding horizon control for a class
of discrete event systems with real-time constraints,” Technical Report,
http://vita.bu.edu/cgc/TechReport/RHHard04/MiaoCasRHTech.pdf.

[4] E. Uysal-Biyikoglu, B. Prabhakar, and A. E. Gamal, “Energy-efficient
packet transmission over a wireless link,” IEEE/ACM Trans. on Net-
working, vol. 10, pp. 487–499, Aug. 2002.

[5] J. Mao, Q. Zhao, and C. G. Cassandras, “Optimal dynamic voltage scal-
ing in power-limited systems with real-time constraints,” in Proceedings
of the 43rd IEEE Conference on Decision and Control, pp. 1472–1477,
Dec. 2004.

[6] Y. C. Cho, C. G. Cassandras, and D. L. Pepyne, “Forward decomposi-
tion algorithms for optimal control of a class of hybrid systems,” Intl.J.
of Robust and Nonlinear Control, vol. 11(5), pp. 497–513, 2001.

7719

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

