
Bounded Model Checking of Hybrid Dynamical Systems

Nicolò Giorgetti, George J. Pappas and Alberto Bemporad

Abstract— Bounded model checking (BMC) has recently
emerged as a very powerful methodology for the verifica-
tion of purely discrete systems. Given a horizon of interest,
bounded model checking verifies whether all finite-horizon
trajectories satisfy a temporal logic formula by first translating
the problem to a large satisfiability SAT-problem and then
relying on extremely powerful state-of-the art SAT-solvers for
a counterexample or a certification of safety. In this paper
we consider the problem of bounded model checking for a
general class of discrete-time hybrid systems. Critical to our
approach is the abstraction of continuous trajectories under
discrete observations with a purely discrete system that captures
the same discrete sequences. Bounded model checking can
then be applied to the purely discrete, abstracted system.
The performance of our approach is illustrated by verifying
temporal properties of a hybrid model of an electronic height
controller.

I. INTRODUCTION

In the quest of efficient automatic techniques for veri-
fication of purely discrete systems bounded model check-
ing (BMC) has received great interest both from academia
and industry [1]. This interest is mainly motivated by its
efficiency to check safety temporal properties on a finite
horizon, which in several cases outperforms other existing
model checking techniques [1]. The efficiency of BMC relies
on the capability of unfolding the discrete dynamics into a
very big propositional formula and the use of very efficient
satisfiability (SAT) solvers [2] to verify temporal properties.

However, in many real applications dynamical systems
are hybrid in nature, exhibiting both continuous and discrete
dynamics. Hybrid systems provide a unified framework for
describing processes evolving according to continuous dy-
namics, discrete dynamics, and logic rules [3]. The interest
in hybrid systems is mainly motivated by the large variety
of practical situations, for instance real-time systems, where
physical processes interact with digital controllers.

In this paper we introduce BMC to hybrid systems. There
is limited but recent literature on this topic [4], [5]. In [4] and
[5] BMC has been used to check safety properties of linear
hybrid automata by using specialized SAT solvers which
exploit the structure of the linear hybrid automata. These
approaches are based on the particular structure of the hybrid
system, in particular on the continuous dynamics, and on

This work has been supported by the HYCON Network of Excellence,
contract number FP6-IST-511368, and NSF Information Technology Re-
search Grant 0121431.

N. Giorgetti and A. Bemporad are with the Dipartimento di Ingeg-
neria dell’Informazione, University of Siena, via Roma 56, Siena, Italy
{giorgetti, bemporad}@dii.unisi.it

G.J. Pappas is with the Dept. of Electrical and Systems Engi-
neering, University of Pennsylvania, Philadelphia, PA 19104, USA
pappasg@seas.upenn.edu

special BMC solvers for exploiting this structure. Following
a different route, in this paper we want to consider quite
general hybrid dynamics and exploit discrete abstractions to
get a simpler and purely discrete representation of the hybrid
system.

The goal of abstraction is to obtain a simpler description of
the dynamics which preserves the properties being analyzed
while hiding the details that are of no interest. Techniques for
abstracting some classes of hybrid systems are presented in
[6]. A technique to abstract continuous dynamics to discrete
systems has been proposed in [7].

Several modeling formalisms have been developed to de-
scribe hybrid systems [8], among them the class of discrete-
time hybrid automata (DHA) [8], a general modelling frame-
work directly derived from hybrid automata [9], where
discrete-time switched continuous dynamics are considered.
Examples of real-world applications that can be naturally
modeled within the DHA framework are reported in [8].

We propose an algorithm to derive a finite-time discrete
transition system from the DHA dynamics which simulates
the discrete behavior of the continuous dynamics. The com-
position of the discrete transition system with the discrete
dynamics represents a purely discrete representation of the
hybrid system and can be used by BMC for checking
temporal properties. The algorithm is based on a recursive
procedure which involves the alternation of a SAT solver and
of computational geometry techniques.

The paper is organized as follows. Section II gives a brief
presentation of BMC and properties expressible as linear
temporal logic (LTL). Section III introduces the description
of hybrid systems and motivates the reason of abstraction.
Section IV presents the abstraction procedure and Section
V shows on an industrial application the performance of
the algorithm to check some temporal properties. Section VI
summarizes the results presented in the paper and describes
ongoing research.

II. BOUNDED MODEL CHECKING

Given a discrete model of hardware or software systems,
and a desired specification expressed as a temporal logic
formula, model checking algorithms attempt to verify that the
system satisfies the formula, or provide a counterexample.
Very recently, bounded model checking (BMC) has emerged
as a novel technique to formally verify discrete systems [1].
Bounded model checking verifies that all trajectories of the
discrete system for some pre-specified horizon N do satisfy
the desired specification. The finite horizon assumption al-
lows one to unfold the dynamics of the transition system
to a large satisfiability (SAT) problem. Then very powerful

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

MoB01.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 672

satisfiability (SAT) solvers [10] are used to verify safety
properties for systems with very large state spaces.

We briefly review bounded model checking for discrete
systems. A discrete system can be described as a transition
system TD = (Q,Q0,Σ,→, O,M) which consists of

• a (possibly infinite) set Q of states,
• a (possibly infinite) set Q0 ⊆ Q of initial states,
• a finite set Σ = {σ1, . . . , σl} of labels (or events),
• a transition relation →⊆ Q × Σ × Q,
• a finite set O = {o1, o2, . . . , op} of observations,
• a map M : Q → 2O that associates at each state q ∈ Q

a set of observations M(q) ⊆ O.

We say that TD is finite when Q is finite, and infinite
otherwise. Let qt be the state of the transition system at time
t ∈ N. A trajectory q[t] is defined as the infinite sequence
qt

σt→ qt+1
σt+1

→ qt+2
σt+2

→ . . ., originating from qt ∈ Q.
A k-length trajectory q[t]k is defined as the finite sequence
qt

σt→ qt+1
σt+1

→ qt+2
σt+2

→ . . .
σt+k−1

→ qt+k originating at qt.
For transition systems TD, we are interested in verifying

properties that are expressible in linear temporal logic (LTL)
whose syntax and semantics are now defined.

LTL Syntax: The atomic propositions π of LTL are cap-
tured by the observation symbols of O of TD. Based on these
atomic symbols, the LTL formulas are defined according to
the following grammar:

φ ::= π | ¬φ | φ ∨ φ | © φ | φ Uφ

As usual, the Boolean constants � and ⊥ are defined as � =
π ∨ ¬π and ⊥ = ¬� respectively. Given negation (¬) and
disjunction (∨), we can define conjunction (∧), implication
(⇒), and equivalence (⇔). Furthermore, we can also derive
additional temporal operators such as eventuality ♦φ = �Uφ

and safety �φ = ¬♦¬φ.
LTL Semantics: LTL formulas are interpreted over all

trajectories of the transition system starting from initial states
q0 ∈ Q0. Given an LTL formula φ, and any trajectory q[t],
we say that q[t] |= φ denotes the satisfaction of the formula
φ over the trajectory q[t] starting at qt. The semantics of any
formula can be recursively defined as:

• q[t] |= π iff M(qt) = π

• q[t] |= ¬φ if q[t] �|= φ

• q[t] |= φ1 ∨ φ2 if q[t] |= φ1 or q[t] |= φ2

• q[t] |= ©φ if q[t + 1] |= φ

• q[t] |= φ1Uφ2 if there exists s ≥ t such that q[s] |= φ2

and for all s′ with t ≤ s′ < s we have q[s′] |= φ1

Therefore, the formula φ1Uφ2 intuitively expresses the
property that over the trajectory q[t] φ1 is true until φ2

becomes true. Formula ♦φ indicates that over the trajectory
the formula φ becomes eventually true, whereas �φ indicates
that φ is true over the trajectory q[t] for all time t′ ≥ t. The
transition system satisfies the property, that is TD |= φ, if
for all q0 ∈ Q0 we have that q[0] |= φ.

Given a finite transition system TD, and an LTL formula
φ, BMC checks whether φ is true in TD by looking for
a counterexample (i.e., a witness to the violation of φ) on
a k-length trajectory q[t]k. Given a finite transition system

TD, a finite horizon k, and an LTL specification formula
φ, for example φ = �ψ(q), where ψ is a boolean formula
on the states q, the dynamics of the system and the LTL
specification can be unfolded to the following propositional
formula,

[[TD, φ]]k = I(q0) ∧
k−1∧
i=0

R(qi, σi, qi+1) ∧
k∨

i=0

¬ψ(qi), (1)

where I(q0) is a propositional formula representing the
initial conditions, and R(qi, σi, qi+1) is a representation (in
propositional form) of the transition relation from qi to state
qi+1 under event σi. If [[TD, φ]]k is satisfiable, then the
propositional model provides a counterexample to the desired
specification (of horizon no larger than k). If [[TD, φ]]k is
unsatisfiable, then no counterexamples of length up to k are
possible. In general, nothing can be said about the existence
of counterexamples to TD |= φ with larger horizons. The
typical approach is to generate and solve [[TD, φ]]k for in-
creasing values of k, until either a counter-example is found,
a given time-out is reached, or a completeness threshold is
reached1.

The bounded model checking approach described above
relies heavily on the use of extremely powerful SAT
solvers (e.g., ZCHAFF [2]) for checking the satisfiability
of [[TD, φ]]k.

III. HYBRID DYNAMICAL SYSTEMS

The goal of this paper is to apply the framework and algo-
rithms of bounded model checking to the class of discrete-
time hybrid systems described in this section. A hybrid
dynamical system can be modeled as the interconnection
of logic dynamics with continuous dynamics, as shown in
Figure 1(a). Many representations have been introduced to
describe hybrid systems [8], [9]. In this paper we consider
discrete-time hybrid automata (DHA) [8], where the continu-
ous dynamics is represented by the switched affine dynamics
(SAS)

x(t + 1) = Aq(t)x(t) + Bq(t)u(t) + fq(t), (2)

where t ∈ Z
+ = {0, 1, . . .} is the time index, q(t) ∈

Q ⊆ {0, 1}nd is the state of the discrete dynamics, |Q|
the number of elements in Q, x(t) ∈ X ⊆ R

n is the
continuous state defined on a polytope X , u(t) ∈ U ⊆ R

m is
a continuous exogenous input defined on a polytope U , and
{Aq, Bq, fq}q∈Q is a set of matrices of suitable dimensions.

The continuous dynamics generates through a quantizer a
binary event signal e(t) ∈ E ⊆ {0, 1}ne . The quantizer is
described by the following thresholds conditions

ej(t) =

{
1 if Cjx(t) ≤ Dj

0 otherwise
, ∀j = 1, . . . , ne, (3)

where Cj is a row vector of suitable dimensions and Dj is
a scalar.

1A completeness threshold is a horizon k∗ such that if the system is
safe for horizon k∗ then it is safe for the infinite horizon. The search for
completeness thresholds for various LTL formulas is currently an active
research topic.

673

Discrete

Continuous

q(t) e(t)

SAS Quantizer
x

(a) Hybrid dynamical system

Discrete

Discrete

q(t) e(t)

TD

(b) Equivalent purely discrete
system

Fig. 1. Hybrid dynamical system and its discrete abstraction

The discrete dynamics is modeled as an automaton (or
finite state machine). The automaton evolves according to
the following logic state update function

q(t + 1) = fd(q(t), e(t)), (4)

where q ∈ Q ⊆ {0, 1}nd is the discrete state, e ∈ E ⊆
{0, 1}ne is the endogenous input coming from the quantizer
(3), and fd : Q×E → Q is a deterministic Boolean function.
In the sequel, with a slight abuse of notation, we will refer
to the codomain of Boolean functions both as {0, 1} and as
{⊥,�}. In the context of Boolean functions and formulas,
the equal sign (=) should be interpreted as an equivalence
condition (⇔).

Given the initial condition [x(0)′ q(0)′]′ ∈ X 0 × Q0 ⊆
X ×Q, and the input u(t) ∈ U , t ∈ Z

+, the state trajectory
x(t) of the system is recursively computed as follows:

1) Initialization: [x(0)′ q(0)′]′;
2) Recursion: Compute e(t) with (3), x(t + 1) with (2),

and q(t + 1) with (4).

In this paper we want to use available, off-the-shelf BMC
solvers, such as [11], to check temporal properties on general
hybrid systems, described as discrete-time hybrid automata.
The key idea is based on the observation that the discrete
dynamics and continuous dynamics communicate through
binary signals, as shown in Figure 1(a). Replacing the con-
tinuous dynamics with a finite horizon discrete abstraction
results in a purely discrete system on which BMC can be
applied, as shown in Figure 1(b). This has the twofold benefit
of i) exploiting the start-of-art techniques for bounded model
checking techniques built in a BMC solver and ii) extending
the use of BMC to generic hybrid systems.

IV. FINITE HORIZON DISCRETE ABSTRACTION

A. Simulation relations

Our goal in this section is to abstract the discrete-time
continuous dynamics with discrete outputs (as shown in
Figure 1(a)) with a purely discrete transition system (as
shown in Figure 1(b)) that simulates the continuous dynamics
for a pre-specified horizon N , so that we can apply BMC
on the purely discrete system.

Given a prespecified horizon N , we define the finite-
horizon transition system TC,N = (QC , Q0

C ,Σ,→C , O,MC)
of the continuous dynamics as composed of:

• a set QC = X × {0, . . . , N} of states,
• a set Q0

C = X 0 × {0} of initial states,
• a set Σ = Q of labels,
• transition relation →C⊆ QC × Σ × QC defined as

(x, k)
q
−→C (x′, k′) ⇔k < N, k′ = k + 1,

∃u ∈ U ,

x, x′ ∈ X

with

x′ = Aqx + Bqu + fq

• a set O = E of observations,
• a map MC : QC → O that associates to X ⊆ X at time

k the set of observations MC(X ×k) ⊆ O as described
by (3) for all x ∈ X .

Therefore the transition system captures the discrete-time
dynamics up to the horizon of interest. Given a set X ⊂ X
and q ∈ Q = Σ, we define the following operator:

Post(X, q) = {x′ ∈ X | x′ = Aqx + Bqu + fq,

x ∈ X,u ∈ U} (5)

Given a sequence q
T+1 = q0q1 . . . qT qT+1 we can naturally

define

Post(X,qT+1)

= Post(Post(X,qT), qT+1) (6)

We now define a transition system TD,N =
(QD, Q0

D,Σ,→D, O, MD) that simulates all transitions up
to the specified horizon N . Each state of TD,N represents a
possible sequence of Q that can be generated by (4), that is

QD = {qT | qT =q0q1 . . . qT , 0 ≤ T ≤ N,

q0q1 . . . qT generated by (4)} (7)

The initial condition is simply Q0
D = q0. We also have that

Σ = Q and O = E . The observation map MD is defined as

MD(qT) = MC(Post(X 0,qT)) (8)

It remains to define the transition relation which is naturally
defined as

q
k qj

−→D q
j ⇔0 ≤ k < N, j = k + 1,

q
k = q

j−1

674

The finite transition system TD,N defined above indeed
simulates all finite horizon transitions of TC,N but under
the assumption that the sequence of events that are input to
TD,N and TC,N are generated by (4).

Note that in the worst case, the abstracted transition system
may have up to |Q|N states. This is clearly needed if we
place no constraints on the possible sequences that are input
to TC,N . However, by requiring that sequences also satisfy
the automaton dynamics (4) we may get significant savings if
the system dynamics constrains the set of possible sequences.

B. Simulation Algorithm

Having established the formal relationship between the
two models, we now focus on an algorithm which given
TC,N computes TD,N . The simulation algorithm is based on
the idea that starting from an initial polytope X 0 ⊂ X we
compute at each instant time t ∈ Z

+ the (forward) reach set
Xqt , recursively defined as

Xq0 = X 0,

Xqt = Post(Xqt−1 , qt), (9)

where q
t−1 = q0q1 . . . qt−1, which represents the set of

states reachable in 1 step from the set Xqt−1 subject to the
input set U and a feasible discrete transition qt. At each set
Xqt is uniquely associated a discrete state defined through a
function label recursively defined as

label(Xq0) = [],

label(Post(Xqt−1 , qt)) = label(Xqt−1) · qt = q
t−1 · qt,

(10)

which represents the feasible sequence of dynamics q
t =

q0q1 . . . qt−1qt that generates Xqt from the initial set X0.
The set of halfspaces (3) partition X in p regions Pi ⊆ X

such that i) X = ∪p
i=1Pi, ii) Pi ∩ Pt = ∅ for all i �= t. The

i-th partition is defined as

Pi =

{
x ∈ X :

Cjx ≤ Dj j ∈ Ji

Chx > Dh h ∈ J̄i

}
, (11)

where Ji ⊆ {1, . . . , ne}, J̄i = {1, . . . , ne}\Ji. At each
partition Pi is associated an observation Ei, a binary vector
of length ne (i.e. the number of hyperplanes in (3)) obtained
by the inequalities in (11). The elements of Ei whose indices
are in Ji are set to 1 whereas the rest of elements is set to
0. We define

MC(Xqt) = {Ei | Xqt ∩ Pi �= ∅} (12)

as the set of observations feasible for the set Xqt . Therefore
at each discrete state label(Xqt) corresponds the set of
observations MD(label(Xqt)) = MC(Xqt).

The result of the exploration can be described as a
simulation tree where the nodes of the tree represent sets
from which a reach set evolution is computed, and an edge
connects two nodes if a transition exists between the two
corresponding sets. Each edge has associated a label which
represents the dynamics enabling the transition. The root

Algorithm 1 Simulation algorithm
1: Inputs:

• Finite horizon transition system TC,N ,
• Initial set X0,
• Horizon N .

2: Output: Discrete transition system TD,N .

3: QD := label(X 0); Q0

D := label(X 0);
4: OD := OC ;
5: ΣD := ΣC ;
6: SIMULATE(X 0,[],0); � Initial step

7: function SIMULATE(Xqt ,q,T)
8: if T == N then return ;
9: end if

10: MD := MD ∪ MD(label(Xqt)) = MC(Xqt);
11: for all q′ ∈ fd(q, MC(Xqt)) do
12: X

qt+1 := Post(Xqt , q′);
13: QD := QD ∪ label(X

qt+1);

14: →D:=→D ∪label(Xqt)
q′

−→D label(X
qt+1);

15: SIMULATE(X
qt+1 ,q′,T + 1);

16: end for
17: end function

node of the tree corresponds to the initial set X 0, from which
the reach set evolution is computed.

Algorithm 1 summarizes the simulation procedure. The
algorithm builds the simulation starting from Xqt , assuming
that Xqt has been generated through the dynamics q at time
T . The simulation begins at line 1.6 with X 0, T = 0 and
q = [] since it represents the root node.

Function SIMULATE is recursively called on all possible
dynamics (line 1.11) that can be activated by the discrete
dynamics (4) given a feasible observation MC(Xqt) and
assuming as current state the last dynamics q. Internally, line
1.11 solves the following satisfiability (SAT) problem:

Find q′

s.t. q′ = fd(q, e)
e ∈ MC(Xqt).

(13)

This problem represents the constraint which avoids the
enumeration of all |Q|N possible combinations. All possible
feasible sequences of length N are enumerated with a depth-
first strategy which is obtained by using recursion.

Proposition 1: Algorithm 1 generates in finite time a dis-
crete transition system TD,N which simulates the continuous
finite horizon transition system TC,N .

Remark 1: Let us assume we have a discrete transition
system TD,N generated by Algorithm 1 for a certain horizon
N . If we want to compute a discrete transition system TD,N ′

from the same initial set for a longer horizon N ′ > N we
do not need to recompute the simulation tree from scratch.
In fact, it is sufficient to start Algorithm 1 from the leaves
of the simulation tree TD,N and compute the simulation on
the horizon N ′ − N .

Remark 2: The simulation tree represents an over-
approximation of the discrete behavior of the continuous
dynamics. In fact, the paths on the simulation tree from the

675

root node to the leaf nodes determine a superset of feasible
sequences {q0, . . . , qN}.

V. ELECTRONIC HEIGHT CONTROLLER

In this section we consider the Electronic Height Con-
troller (EHC) examined in [12]. In this section we want to
verify that EHC satisfies certain safety properties by using
BMC.

A. Description of the System

The aim of the EHC is to increase the driving comfort by
adjusting the chassis level. This is achieved by a pneumatic
suspension at each of the four wheels. The chassis level
can be increased by pumping air into the suspension of the
wheels and decreased by blowing air off. To simplify the
discussion we consider a restricted model including only
one wheel [12]. The suspension system is commanded by a
three states logic controller described in [12]. The controller
switches the compressor on when the level of the chassis is
below a certain outer tolerance OTl, off when it reaches again
an inner tolerance ITl, while it opens the escape valve when
the level is above OTh, and closes it again when the level
decreases below ITh. Because of high frequency disturbances
due to irregularities of the road, the controller switches based
on a filtered version f(t) = 1

1+as
h(t) of the measured level

h of the chassis. The filter is reset to f = 0 each time
f returns within the range [ITl,ITh]. The compressor can
lift the chassis at a rate cp(t) ∈ [cpmin, cpmax], and the
escape valve can lower it at a rate ev(t) ∈ [evmin, evmax].
All parameter values are reported in [12].

B. DHA and Finite Discrete Abstraction

The continuous dynamics of the filter and of the car,
sampled by exact discretization (by introducing a zero-order
hold), are

f(t + 1) = e−aTsf(t) + (1 − e−aTs)h(t), (14a)

h(t + 1) = h(t) + Ts(d(t) + c(t)), (14b)

where Ts is the sampling time, d(t) is an unknown but
bounded noise which ranges within [dmin, dmax], and

c(t) =

⎧⎨
⎩

0 in “no Action”
cp(t) in “Compresson ON”
ev(t) in “Escape Valve OPEN”

, (15)

that is the continuous input is selected by the state of the
logic controller. The transitions of the automaton are defined
as the following set of thresholds

[e1 = 1] ⇔ [f ≤ ITh], [e2 = 1] ⇔ [f ≤ ITl], (16a)

[e3 = 1] ⇔ [f ≥ OTh], [e4 = 1] ⇔ [f ≥ OTl], (16b)

which partition the continuous state space in 5 regions.
The three states of the automaton are represented by a

two-dimensional logic state

q(t) = [q1(t) q2(t)]
′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
0

0

]
“No Action”[

0

1

]
“Compressor ON”[

1

0

]
“Valve OPEN”

,

(17)

and logic dynamics can be written as

q1(t + 1) = (¬q1(t) ∧ e3(t)) ∨ (q1(t) ∧ ¬e1(t)) (18a)

q2(t + 1) = (q2(t) ∧ e2(t)) ∨ (¬q1(t) ∧ ¬e4(t)) (18b)

When the logic controller switches to the “No Action”
state the filter is reset to f = 0.

The EHC system can be conveniently described as a
DHA system. Dynamics (14) with input (15) represent the
SAS dynamics (2). At each instant time the continuous
input is selected through the discrete state q(t). Thresholds
(16) represent the quantizer (3) and discrete dynamics (18)
represent the automaton (4).

In order to verify safety properties on the EHC system
we compute the abstraction of the dynamics (14), (15) and
quantizer (16). An example for N = 7, starting from the
initial set X 0 = {(f, h)| f = 0, h ∈ [IT l, ITh]}, is shown
in Figure 2. The shape of each state represents the number
of outputs feasible for that state. Each transition is labeled
with the dynamics which activates the transition.

C. Numerical Results

Algorithm 1 has been implemented in Matlab and uses the
Multiparametric toolbox [13] for polytope manipulation and
the zCHAFF solver [2] for the satisfiability test. As BMC
solver we used the nuSMV solver [11].

For the initial set X 0 = {(f, h)| f = 0, h ∈ [IT l, ITh]}
we have computed the abstraction for different horizons, as
reported in Table I. We can see that longer the horizon, longer
the time to compute the abstraction. The exponential growth
of time spent for computing the abstraction depends both
on the continuous and the discrete dynamics of the system.
The continuous dynamics influences the number of feasible
observation e for each state whereas the discrete dynamics
constraints the possible feasible values of q.

We can use the abstraction in conjunction with the discrete
controller in order to verify some safety properties. One
question is to verify that the escape valve is never open the
instant after the compressor is on. This question can be posed
as the following LTL formula:

�(“Compressor ON” ⇒ ©“Escape valve OPEN”). (19)

Bounded model checking proves in 0.41 s that the abstraction
for N = 18 and the discrete controller cannot reach this
condition.

The abstraction for N = 18 can be used to check more
complex questions, as “If the system is in the “Escape Valve
OPEN” state can we observe “No Action” within 8 s (8
steps)?”. To answer to this question we first introduce the
notion of n-next operator

©nφ = ©(©(. . . (©︸ ︷︷ ︸
n

φ) . . .), (20)

where φ is a temporal formula, and says that any trajectory
q[t] |= ©nφ if q[t + n] |= φ. The natural language question

676

TABLE I

ABSTRACTION FOR DIFFERENT HORIZONS

N Time (s) States
5 0.41 7
6 1.16 11
7 1.67 19
8 3.14 30
9 4.64 51

10 6.75 88
11 10.39 153
12 18.01 268
13 31.57 477
14 57.15 875
15 108.82 1667
16 215.41 3289
17 443.42 6775
18 970.04 14282

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n
1

n
2

{1}

n
3

{1}

n
4

{1}

n
5

{1}

n
6

{1}

n
7

{1}

n
8

{1}

n
9

{2}
n

10

{3}
n

11

{3}

n
12

{1}

n
13

{3}

n
14

{3}

n
15

{1}

n
16

{1}

n
17

{3}

n
18

{1}

n
19

{3}

Horizon: 7 States #: 19

Fig. 2. Abstraction for N = 7 (No. of outputs: circle=1, diamond=3,
triangle (down)=4, Hexagram > 4; Labels: 1 “No Action”, 2 “Compressor
ON”, 3 “Escape Valve OPEN”).

can be translated into the following temporal property:

�

(
“Escape Valve OPEN” ⇒

8∨
n=1

©n“No Action”

)
.

(21)
Bounded model checking proves that in 0.63 s starting from
the initial condition X 0 there is the following sequence of
dynamics which violates the property:

q
14 = 1 → 1 → 1 → 1 → 3 → 3

→ 3 → 3 → 3 → 3

→ 3 → 3 → 3 → 1,

where 1 corresponds to “No Action” and 3 to “Escape Valve
OPEN”.

Because the abstraction represents a superset of all possi-
ble discrete trajectories generated by the continuous dynam-
ics the feasibility of the counterexample obtained by BMC
has to be checked [14]. Feasibility can be simply tested
via linear programming over the sets of linear equalities
and inequalities obtained by unfolding the dynamics (2),
(3), (4) on the sequence generated by BMC and translating
logic formulas and if-then-else rules in linear inequalities as
described in [3].

All computations have been done on an Intel Centrino 1.2
GHz with 640 Mb of RAM.

VI. CONCLUSIONS

Bounded model checking has been extended to discrete-
time hybrid automata, a general class of hybrid systems. By
means of an abstraction procedure the continuous dynamics
is replaced by a finite-time discrete transition system which
simulates the discrete behavior of the continous dynamics.
Bounded model checking can be used for verifying safety
properties on the purely discrete system, obtained by the
composition of the discrete part of the hybrid system with the
abstraction. The abstraction procedure and bounded model
checking have been applied to an industrial case study.

Ongoing research is devoted to define abstraction proce-
dures which bisimulate the continuous dynamics in order to
use temporal properties for control of hybrid systems and
use the current abstraction procedure in a model predictive
verification setting where the horizon is moving in time.

ACKNOWLEDGMENTS

The authors would like to thank Fabio Torrisi for the
fruitful discussions.

REFERENCES

[1] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded
model checking. Advances in Computers, 58, 2003.

[2] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaf:
Engineering an efficient SAT solver. In 39th Design Automation
Conference, Las Vegas, 2001.

[3] A. Bemporad and M. Morari. Control of systems integrating logic,
dynamics, and constraints. Automatica, 35(3):407–427, 1999.

[4] M. Fränzle and C. Herde. Efficient proof engines for bounded model
checking of hybrid systems. FMICS’04, 2004.

[5] G. Audermard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying
industrial hybrid systems with MathSAT. In Proc. of the 2nd Intern.
Workshop on Bounded Model Checking, 2004.

[6] R. Alur, T.A. Henzinger, and G. Lafferriere G.J. Pappas. Discrete
abstractions of hybrid systems. Proc. of the IEEE, 88(7), July 2000.

[7] D. Förstner, M. Jung, and J. Lunze. A discrete-event model of
asynchronous quantised systems. Automatica, 38:1277–1286, 2002.

[8] F.D. Torrisi and A. Bemporad. HYSDEL - a tool for generating
computational hybrid models. IEEE Trans. Contr. Systems Technology,
12(2):235–249, March 2004.

[9] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.H. Ho. Hybrid
automata: an algorithmic approach to the specification and verification
of hybrid systems. In R.L. Grossman, A. Nerode, A.P. Ravn, and
H. Rischel, editors, Hybrid Systems, volume 736 of Lecture Notes in
Computer Science, pages 209–229. Springer-Verlag, 1993.

[10] J. Gu, P.W. Purdom, J. Franco, and B. Wah. Algorithms for the
satisfiability (SAT) problem: A survey. In DIMACS Series on Discrete
Mathematics and Theoretical Computer Science, number 35, pages
19–151. American Mathematical Society, 1997.

[11] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: An opensource
tool for symbolic model checking. In International Conference on
Computer-Aided Verification, Copenhagen, Denmark, July 2002.

[12] A. Bemporad and M. Morari. Verification of hybrid systems via math-
ematical programming. In F.W. Vaandrager and J.H. van Schuppen,
editors, Hybrid Systems: Computation and Control, volume 1569 of
Lecture Notes in Computer Science, pages 31–45. Springer-Verlag,
1999.

[13] M. Kvasnica, P. Grieder, M. Baotić, and M. Morari. Multi Parametric
Toolbox (MPT). In R. Alur and G. J. Pappas, editors, Hybrid Systems:
Computation and Control, volume 2993 of Lecture Notes in Computer
Science, pages 448–462, Philadelphia, Pennsylvania, USA, March
2004. Springer Verlag.

[14] F.D. Torrisi and A. Bemporad. Discrete-Time Hybrid Modeling and
Verification. In IEEE Conference on Decision and Control, Orlando,
FL, December 2001.

677

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

