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Robust stabilisation of nonlinear systems using output measurements
via finite data-rate communication channels

Teddy M. Cheng

Abstract— This paper addresses a robust stabilisation prob-
lem of nonlinear systems with decaying external disturbances
using output measurements via finite data-rate communication
channels. We assume that there exist an observer and a
control law for the systems in the absence of any finite data-
rate communication channel. Based on the observer and the
control law, we construct an encoder/decoder pair and provide
conditions that will guarantee the stability of the closed-loop
systems when finite data-rate communication channels are
introduced.

I. INTRODUCTION

It is typical that in a large-scale control system, its
sensors and actuators are physically far apart. Under this
circumstance, the most convenient or economical way to
transmit the feedback signals is through a finite data-rate
communication channel. In order to meet the finite data-rate
constraint in the channel, the signals need to be sampled
and quantised, and converted into packets which have finite
number of bits. Both the sampling and quantisation processes
reduce the quality and the precision of the feedback signals.
As a result, using feedback signals transmitted through a
finite data-rate communication channel can have an adverse
effect on the performance of the closed-loop system.

In terms of stability performance, a number of control
schemes and algorithms have been developed, especially for
linear systems, to recover the stability performance with
feedback signals transmitted via finite data-rate communica-
tion channels (see, e.g., [1] and references therein). Recently,
there is a growing attention on stabilising nonlinear systems
with feedbacks via finite data-rate communication channels.

For discrete-time nonlinear systems, the concept of feed-
back topological entropy was introduced and a necessary and
sufficient data rate for the local stabilisation was given in [2].
In [3], the concept of topological entropy was extended to
uncertain dynamical systems and adopted to study the robust
observability of uncertain nonlinear systems and solvability
of the optimal control problem via limited capacity com-
munication channels. The paper [4] studied a stabilisation
problem under the stabilizability assumption.

As for continuous-time nonlinear systems, a nonlinear
stabilisation problem was studied in [5] with the assumption
that there exists a feedback law renders the closed-loop sys-
tems input-to-state stable (ISS) with respect to the estimation
errors. The work [6] replaced the ISS condition with the
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weaker integral input-to-state stable (iISS) condition. The
ISS and iISS assumptions are restrictive. In response to
this, a nonlinear stabilisation problem was studied under the
stabilizability assumption in [7], similar to [4].

To solve the above-mentioned problems, the full states of
the systems are required to be measurable. One the other
hand, nonlinear stabilisation using output measurements has
drawn a much less attention. Recently, the works [6], [8]
solved a semi-global output feedback stabilisation problem
for a class of nonlinear systems by the using the observer de-
sign introduced by [9]. In order to apply such an observer, the
systems were assumed to be transformable into a particular
form. For a special class of nonlinear systems, the paper [10]
solved an output feedback stabilisation problem and provided
algorithms to explicitly design the observer and the control
law, and hence a priori assumptions on the existence of an
observer and a control law are not required.

In terms of the robust stabilisation of nonlinear systems
with disturbances using output measurements via finite data-
rate communication channels, it is a new area. Therefore, the
objective of this paper is to explore this area and propose an
algorithm to solve such a stabilisation problem. We assume
that there already exist a nonlinear observer and a control
law for the systems, and also impose some conditions on the
nonlinear observer. To solve the problem, we introduce an
encoder/decoder pair for transmitting the observer estimate
through the communication channels. We also determine the
sampling period and the number of bits required to encode
the observer estimate. The approach we take is based on
the works of [7], [8]. In [7], they considered state feedback
problem, whereas in [8], the output feedback problem for
a special class of systems without any disturbances was
studied. In this paper, we considered an output feedback
problem of a general class of nonlinear systems with an
external disturbance input.

The rest of the paper is organised as follows. In section II,
we present the problem in this paper, including the class of
nonlinear systems we considered and the standing assump-
tions. After stating the problem, in Section III, we introduce
an encoder/decoder pair. In Section IV, the main result is
stated. Finally, Section V gives the conclusion and some
future directions.

II. PROBLEM STATEMENT

Consider the following nonlinear uncertain systems:

= f(z,w,u), y = h(x) (D
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where © € R"™ is the state, u € R™ is the control input,
w € RP is the external disturbance input, and y € R™ is
the measured output. We assume that the maps f : R™ x
RP x R™ — R"™ and h : R™ — R? are smooth, and satisfy
£(0,0,0) = 0 and h(0) = 0, respectively.

w(t)
v

»{ plant
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Fig. 1. Control system with a communication channel.

We consider a stabilisation problem of the nonlinear sys-
tem (1) using output measurements y via a communication
channel. The communication channel is assumed to have a
finite data-rate constraint, but is free from noise and time
delay. We assume that there exist an observer & = 9(Z,y,u)
and a control law u = k(&) for system (1).

In order to solve the problem, we need to introduce an
encoder/decoder pair, as shown in Figure 1. The encoder
takes the observer estimate #(-) and convert it to the finite-
length codeword s(kT'), selected from a coding alphabet of
size [, at time kT, k = 0,1,2,--- and T is the sampling
period. The codeword s(kT) is then transmitted through the
communication channel. At the other end of the channel,
a decoder decodes the codeword s(kT') and generates the
signal Z(t) t € [kT, (k+1)T) which is then used to produce
the control input w(t) for system (1) at the actuator. The
encoder and the decoder are in the following form:

Encoder:

s(kT) = F(@()le"); 2)
Decoder:
u(t) 7 = G(s(0), s(T), 5(2T), -+, s(kT)), (3)

where £ =0,1,2,---.

Definition 2.1: System (1) is said to be robustly stabilis-
able via a finite data-rate communication channel if for a
given X > 0, there exist a constant W/ > 0, a sampling
period T' > 0, and an encoder/decoder pair with a coding
alphabet of size [ such that from any initial condition'
[|2(0)]|co < X, the solutions of the closed-loop system (1)
with the control (3) satisfy:

lz(®)|loc < W, Vt >0, and tlim @)l =0. (4

Our aim is to design such an encoder/decoder pair with a
coding alphabet of size [ and to determine a sampling period
T which robustly stabilise system (1) via a finite data-rate
communication channel with data rate= [log, [|/T bits per

unit time ([-] := ceil()).

"Let # = [z1---2,)7 be a vector from R™. Then |0
max;—1,... n |T;|.

A. Assumptions

In order to solve the stabilisation problem, the following
assumptions are imposed.

Assumption 2.1: For some known constant X > 0, the
initial state 2:(0) of system (1) satisfies ||2(0)]|cc < X.

For the external disturbance input w, we assume that:

Assumption 2.2: The external disturbance w(t) decays
exponentially, namely there exist known strictly positive
constants Ay and A\, such that for all ¢ > 0,

[w(t)loo < A1 exp(—Aat). )

Since the state x in system (1) cannot be measured, we

assume that there exists a nonlinear observer to construct the
observer state estimate .

Assumption 2.3: System (1) admits a nonlinear observer

and there exists a positive definite function V, such that
with the observer estimation error e := x — % the following
inequalities hold:

ae(llefloo) < Vele) < @c(fle]loo)

. (7
Ve < —c.Ve + ’Ve(”wHOO)

where scalar ¢, > 0, a,(-), @.(-) and 7.(-) are some class
K. functions?.
We also impose some properties on the observer.
Assumption 2.4: For all &1, & in R™ and w in R™, there
exist scalars Ly, Ly > 0 such that the functions h(-) of the
system (1) and g(-) of the observer (6) satisfy

19(&1, h(€1), w) = 9(&2, h(&2), w) oo < Lall€r — &2flco)

19(&1, R(&1 + &2),u) — g(€1, h(€1), w)[loo < Lall§2]|co-
8
Using the observer state estimate &, we consider the
following stabilisability property for the system (1).
Assumption 2.5: There exists a smooth control law

u=k(z), k0)=0, 9)

such that the system & = f(z,w, k(£)) = f(z,w,k(z —€))
is input-to-state stable with respect to the observer error e
and the external disturbance w.

Essentially, there are two kinds of disturbances in the
system & = f(z,w, k(z — €)), namely the estimation error e
and the external disturbances w, indicating that the sampling
period T' cannot be too large. Initially, we assume 7' is less
than unity, but the exact value of the sampling period will
be determined later.

Assumption 2.6: The sampling period 7' lies in the inter-
val (0, 1].

Instead of using &, the final control law uses the state
which is generated from the system z = g(Z, h(Z), u) in the
decoder. We need to guarantee the existence of solution Z(-)

2A continuous function « : [0,00) — [0, 00) is said to belong to class
K if it is strictly increasing, «(0) = 0, and a(r) — oo as r — oo. It is
worth mentioning that for any class K function v and any a, b > 0, the
inequality v(a + b) < v(2a) + ~(2b) holds.
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with the feedback control law u = k(Z) between sampling
times. Hence, we impose the following assumption:

Assumption 2.7: For every initial state Z(to) € R™, the
solution of the system

is defined for all ¢ € [to,to + T).

We introduce the following property for a special class of
class K, functions which will be useful in determining the
decay rate of e.

Definition 2.2 (Exponentially invariant): A class K
function o is said to be exponentially invariant® if for any
positive constants a and b, there exist positive constants ag
and by such that o(aexp(—bt)) < agexp(—bpt) holds for
allt > 0.

Assumption 2.8: The class K, functions ~,. and ggl, ie.,
the inverse of «, in (7)*, are exponentially invariant.

Assumption 2.5 guarantees the existence of an ISS Lya-
punov functions V, for the system & = f(z,w,k(Z)) =
f(z,w, k(x — e)). Then, Assumptions 2.3 and 2.5 together
imply that the augmented system . := [¢ #]7 is ISS with
respect to the external disturbance w. Therefore, there exists
an ISS Lyapunov function V for the augmented system .
and have the following properties:

a([lzelloe) < V(ze) < a(l|zelloo)

AV, X
V=Vet 5o fla,w k(@) < —al[lzello) +vu(llwle),
Y

where a, &, a, 7, are some class K, functions (see [11]). In
other words, the feedback law v = k(Z) in Assumption 2.5
renders the origin (z,e) = 0 of the augmented system semi-
globally asymptotically stable, since the external disturbance
w decays exponentially.

(10)

III. ENCODING THE OBSERVER ESTIMATE

In this section, we propose an encoder/decoder pair and
show that the difference between the observer estimate £ and
the state Z generated by the encoder/decoder pair satisfies
certain conditions which will be useful at the later stage.

First of all, we present some preliminary results which are
useful in constructing the encoder/decoder pair.

Lemma 3.1: Let Assumptions 2.3, 2.2 and 2.8 hold. Then,
there exist strictly positive constants c1, co, 171 and 1o such
that the observer estimation error e(t) satisfies

le®)llo < c1exp(—mt) + caexp(—mn2t),  (12)

for all ¢ > 0 that the solution () is defined.
Proof: See Appendix VII-A. |
Lemma 3.2: Let Assumption 2.4 hold. Let 7 = [to, t1] be
the interval of time that the solutions of systems

z=g(& h(&+e)u), z=g(Z h(T),u) (13)
3For example: r(s) = s™, n > 0, is exponentially invariant.
4The inverse of a class Koo function is also of class Koo.

and z(-) are defined. Then, the inequality
12(t) = 2()loo < [12(t0) — Z(to)[loo exp (L1 (t — t0))
¢ c
+ Lz(n% exp(—nto) + 7772 exp(—z2to)) exp(Li (t — to))
(14

holds for all ¢t € Z.
Proof: By Assumption 2.4, we have

& — oo < lg(&, h(&),u) — g(Z, h(Z),u)]|s0
+g9(&, (& + €),u) — (2, h(2), u) [l (15)
< L1l — 2]l oe + Lolle]

Therefore, by Lemma 3.1 and using Gronwall-Bellman in-
equality, we have the inequality (14). |

Before moving on, we define the following strictly positive
scalars which will be frequently used:

C:=ao2a ' o2vy,(\), A:=exp(LiT)
c:

=a3X), W=ac+C¢+1), Wi=ci+c+W
(16)

where the constants: X is from Assumption 2.1; A; is
from (2.2); ¢1 , co are from (12); and the class K, functions
are from the conditions of the ISS Lyapunov function (11)
of the augmented system 7z, = [¢ ]7.

Encoder: The observer estimate &(-) is sampled at
t = kT, k = 0, 1, 2,---. For each k > 0, we
define a hypercube Q(kT) C R™ which has the centroid
limesg e Z(KT — €) =: Z(kT ) and has length L(kT') at
each side of its edge. We call Q(kT) as the quantisation
region and L(kT) as the range of Q(kT') at time k7. The
quantisation region {2(kT") is then uniformly partitioned into
N™ smaller hypercubes, where N > 1 is a design parameter.
We call N as the number of quantisation levels. If &(kT)
falls into one of these smaller hypercubes, the difference
between Z(kT') and the centroid of the smaller hypercube,
z(kT), satisfies ||Z(kT) — z(kT)||lco < L(KT)/2N. The
location of z(kT') for this particular smaller hypercube can
be determined by

2(kT) = Z(KT~) + b(kT)L(KT)/2N (17)

where b(kT) := [by(kT),--- b, (kT)]" and b;(kT), i =
1,---,n, is a suitable integer taking values in the set

{7(N7 1)7 7753 7377131a3757"’ 7(N7 1)} (18)
if N is even, or in the set
{-(N-1),---,-6,-4,-2,0,2,4,6,--- , (N —1)} (19)

if N is odd. We therefore define a suitable map ®(-, -, -) such
that

b(kT) = ®(2(kT), z(kT "), L(kT)). (20)

The codeword s(kT"), which will be transmitted, is chosen
from a coding alphabet of size [ = N corresponding to the
binary representation of the integer vector b(kT"). Again, we
define a suitable map ¢(-) to represent such an operation as
follows:

s(KT) = $(b(kT)). 1)
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The time evolution of the centroid Z(-) is governed by the
centroid update law represented by the differential equation

te kT, (k+1)T), k>0,

z

Z(kT) = z(kT)

with initial condition Z(0~) = 0, z(kT) is the centroid of the
smaller hypercube in the quantisation region 2(k7T) where
Z(kT) lies.

The range update law is defined by the difference equation

L(0) =2X 23)
L((k+1)T) = RL(kT) + 2c3 exp(—ns(kT)),
for all k£ > 0, where R := A/N >0,
c c .
c3 = LQ(—1 + —2) exp(L1), mn3:=min{n;,n2}. (24)
T T2
For any k£ > 1, equation (23) can also be written as
k-1 '
L(KT) = RFL(0) + 2c5 » _ R¥™'7 exp(—nsjT).  (25)
§=0

Decoder: Once the symbol s(kT") arrives at the decoder
at time kT, it will be converted into the corresponding integer
vector b(kT) = ¢ 1(s(kT)). In the decoder, it consists
of both the centroid update law (22) and the range update
law (23) with the same initial values as in the encoder. In
other words, Z(-) generated by the encoder will be identical
to that of the decoder, similar argument is applied for L(-).
Therefore, Z(kT~) and L(kT) are also available to the
decoder, and z(kT) can then be determined from (17). With
this value of z(kT), the state Z(¢) can be calculated for all
t € [kT,(k+ 1)T), and hence Z((k + 1)T~) is available to
the decoder when it receives s((k + 1)T) at time (k + 1)7.

The construction of our encoder/decoder pair is based on
the works [7], [8] with modifications in the centroid update
and range update laws to suit our purpose. When choosing
the range update law (23), we have considered that the
sampling time 7" belongs to the interval (0, 1].

Next, for convenience, we define the following strictly
positive constants:

W:=Y+W.

Y (= X + 2¢;3, (26)

The following lemmas show some properties of the range
update law (23).

Lemma 3.3: Consider the difference equation (23) and the
definition of Y (26). For any T € (0, 1], any R < 1/2, any
cs and 3 > 0, then L(kT') < 2Y for all k£ > 0. Furthermore,
L(kT) — 0 as k — oc.

Proof: See Appendix VII-B. |

Lemma 3.4: Consider the difference equation (23). For
any X > 0, any € > 0, any § € (0,1/2) and any integer
s satisfying

=2 when €/4c3 > 1,
S [In(e/4c3)]

> 27)
~ [In(0.5 + 9)|

+ 1 otherwise,

if T € (0, 1],
|1I15| —1/s
N3 > o N > maxq 2A, A(e/2X) ),  (28)
then L(kT) < ¢, for all k > s.
Proof: See Appendix VII-C. |

Proposition 3.1: Let Assumptions 2.1-2.8 hold. Let t* €
(0, 00) be the time for the solution z(t) of system (1) exists
and satisfies

[z(t)lloo < W, Vte[0,t7]. (29)
If R <1/2, then
|2(t) = Z(t)]|oo < L((k+1)T)/2 (30)

holds for all ¢ € [T, (k + 1)T'), for each k > 0, such that
t <t*.
Proof: See the proof of [8, Lemma 2]. u

The following corollary follows immediately from Propo-
sition 3.1 and Lemma 3.3.

Corollary 3.1: Let Assumptions 2.1-2.8 hold. Suppose
that the solution z(t) of system (1) exists and satisfies
lz(t)]lo < W forall t > 0.If R < 1/2, then inequality (30)
holds for all ¢t € [kT,(k + 1)T), for all k& > 0, and
limy o0 ||£(t) - j(t)Hoc =0.

IV. STABILISATION BY ENCODED OBSERVER ESTIMATE

In Assumption 2.5, the control law u = k(&) renders the
system & = f(z,w,u) (1) ISS with respect to the observer
estimation error e and the external disturbance w. However,
the observer estimate & is not available for the actuator which
locates at the other end of the communication channel. On
the other hand, the signal Z(-) is generated by the centroid
and the range update laws (22)—(23) through the use of
encoded #(kT') at each sampling time k7, k > 0. It is then
natural to choose u = k(Z) as the candidate control law to
solve our stabilisation problem.

By replacing u = k(&) with u = k(Z), the V inequality
in (11) becomes

V < —a(llzelloo) + vu(wlloo)
oVy

+ (@) (f @y w, k(2)) — f (o, w, k(2)))
< ~afllzelle) + v (ull) + D2 @)g(a, 3,7, w) (3~ 7)

3L

where ¢ is smooth and can be determined by following [7,
Appendix]. Later, by using the Lyapunov argument, we will
determine a suitable sampling period 7' and number of
quantisation levels N that solve our stabilisation problem.

Using (31), we first define a time 6 such that, for all ¢t €
[0,0], x.(t) = [e(t) z(t)]T belongs to the level set

Ceveyr i={w. €R*™: V(z.) < c+ ¢+ 1} (32)

Later on, we will choose T" and N to render the level
set I'cy¢cq1 invariant, and hence the solution z.(t) =
[e(t) z(t)]T does not leave this set for all time ¢ > 0.
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For the sake of convenience, we define a region A and a
constant M as follows:

A= {(z,,8,0) : ||2]o < W [|E]loo < W,
[Zlloe < W, w]loo < Ar},

oV, .
<z,£f’3§@” o (2)g(x, Z,Z,w)]|0o-

Lemma 4.1: Let R < 1/2. There exists a finite time
0:=1/2(v.(M1) + MY +1)
such that, for all ¢t € [0,0], z.(t) € int(T'c4¢41) and

V(t) < —a(||ze(t)lloo) + 7w (M) +MI|2(8) = 2(t) | oo (35)

Proof: See Appendix VII-D. |

Before stating the main result, we introduce our proposed
encoder/decoder pair: for each k£ > 0,

(33)

M =

(34)

Encoder:
Z(07) =0, L(0)=2X
L(ET) = AL((k — 1)T) /N + 2¢ge~ (=0T k£
b(kT) = ®(&(kT), 2(kT ™), L(KT))
z(kT) = z(kT™) + b(kT)L(KT)/2N

z(t) = g(2(t), M(@(1)), k(2(1))), Vt € [KT, (k + 1)T)
s(kT') = ¢(b(kT))

(36)

V/N + 2cze” ms((k=1)T) "} £
Z( +b(kT)L(KT)/2N
z(t) = g(z(t), h(Z(t)), k(Z(t))), Vt € [KT, (k + 1)T()3.7)

Theorem 4.1 (Main result): Consider system (1) and let
Assumptions 2.1-2.8 hold. For any X > 0, any p € (0, c+1),
any § € (0,1/2) and any integer s satisfying

aotal(p)
In{ —F"———
4M03

[ In(0.5 + 0)]

(
(KT)
L(KT) = AL{(k = 1T
(KT)
)

aogza~'(p)

=2 >1
4M63 -7

when

+ 1 otherwise,

(38)
if there exists a sampling period T satisfying both T' €
(0,0/s] and
|1n (5|

13
and the number of bits B = [log, N™] for encoding is
Qo —-ox

chosen to satisfy
1 —1/s
-1 40
e300 0) | @

then system (1) is robustly stabilisable via a finite data-rate
communication channel by the encoder/decoder pair (36)—
(37) with coding alphabet of size [ = N", the observer (6)
and the control u = k(Z).

(39)

N > max{QA,A (

Proof: Given X > 0, p € (0,c+1), 6 € (0,1/2),
an integer s satisfies (38). Define € := avo $a~'(p)/M. We
pick a sampling period T € (0,6/s]. Since § < 1 (34) and
s> 1, we have T' € (0, 1). Therefore, if (39) and (40) hold,
then L(sT) < e by applying Lemma 3.4.

Since # > T's, there exists s’ > s such that § € [(s' —
1)T, s'T). Using Lemma 3.4, we have

. _ L(s'T) L(sT)

It is also true for any time 6 > 0 if z(t) € int(Tcy¢41) for
all ¢t € [0, 0] (See [7, Corollary 1]).
Next, by using (16), (35) and (41), we obtain at ¢t = 0,
1

V(2(6)) < ~a(ze(6)]) + garo ga (k)

1 1
+ Ja° id_l(p).

<e€/2. (4D

(42)

By Lemma 4.1, z.(0) € int(I'c1¢+1). Therefore, if x.(6)
is in the set {p+¢ < V(z.) < c+(+1}, it is straightforward
to show that V,(z.(#)) < 0. As a result, the solution z(t)
will enter the set {p + ¢ < V(x.)} in some finite time ¢; >
0, and cannot leave this set since V < 0 on the boundary
V(ze) = p+ (. Similarly, if z.(6) is already in the set
{p+ ¢ < V(z.)}, it will not leave this set. In other words,
the solution x.(t) stays in the set I'c¢4q for all ¢ > 0. It
then implies that ||z.(t)|lcc < W and hence, [|z(t)]cc < W
for all ¢ > 0.

Using Lemma 3.1 and (16), we have [|&(t)||oc < W for
all £ > 0. In addition, by Lemma 3.3 and Corollary 3.1,
1Z(t)]|oo < W for all ¢ > 0. Therefore, z(t), #(t) and Z(t)
are uniformly bounded for all ¢t > 0.

Furthermore, by Corollary 3.1, since ||z(t)]|ooc < W for
all t > 0 and R < 1/2, we have lim;_, || () — Z(¢)|| = 0.
Also, by Assumption 2.2, lim;_, o ||w(t)|lec = 0. Therefore,
by using (35) and (31), V satisfies

V < —all|zelloo) + Yo (lwlloe) + ME — Zlloc.  (43)

By observing (43), we conclude that lim;_, o || Ze(t)]|co = 0.
This implies that both || (t)||cc, [l€(t)]lcc converge to zero
as t — oo. In addition, it is clear that lim;_ . [|Z(t)] =
0 and lim; . ||Z(¢)|| = 0. This completes the proof of
Theorem 4.1. |

Remark 4.1: Condition (39) indicates that the decay rates
of the observer estimation error and the external disturbances
are required to be sufficiently fast.

V. CONCLUSION

This paper studied a robust stabilisation problem of nonlin-
ear systems with decaying external disturbances using output
measurements via finite data-rate communication channels.
Given an observer and a control law for the systems in the
absence of any finite data-rate communication channel, we
constructed an encoder/decoder pair and provided conditions
that the stability of the closed-loop systems was guaranteed
when introducing finite data-rate communication channels in
the feedback loop. In the future research, we will follow [10]
and remove some of the assumptions by restricting the class
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of nonlinear systems, and provide algorithms to explicitly
design the observer, control law and encoder/decoder pair.
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VII. APPENDIX
A. Proof of Lemma 3.1

First, we pick any ¢ € (0,c.) and any r° € (0,2X).
Using the fact that v, is class K., Assumptions 2.2
and 2.8 imply that there exist strictly positive constants
A1 and Ay such that, for all t > 0, ve(||w(t)|e) <
Ye(Arexp(—=Aat)) < Ajpexp(—Aqt). Therefore, we have
V(e(t)) < r(t)+exp(—ct)(e(0)—r) where 7(t) is described
by 7 = —ér+Ay exp(—Aat), 7(0) = r° > 0 (see [12, Lemma
3.1]) . Hence, by using Assumption 2.8 and (7), there exist
constants ¢y, ca, 11, 72 > 0 such that inequality (12) holds.

B. Proof of Lemma 3.3

By the definition of Y (26), it is obvious that L(0) =
92X < 2Y. If R < 1/2, equation (23) gives L(T) = R2X +
2cz exp(—n3T) < 2Y. By induction, we have L(kT) < 2Y
for all k > 0. Observing (25), if R < 1/2, n3 > 0 and
T >0, limg_ L(kKT) = 0.

C. Proof of Lemma 3.4

Given X > 0 and § € (0,1/2). Let T € (0,1]. By
considering (23) and (25) and using the fact that (a +b)"™ >
a™+b", foralln > 1 and a,b > 0, we have

L(kT) < R*X +2c3(R+e ™11 VE> 1. (44)
Therefore, if s > 1, then
L(sT) < R*X + 2c3(R + e 1T)s 1, (45)

Note that (1/2 + ¢) < 1. If ¢/4cs < 1, by using the
conditions that R < 1/2, n3 > |Ind|/T and s > 1+
|In(e/4cs)|/|In(0.5 4 0)|, the second term in (45) satisfies

2c3((R+ e Ty~ 1 < 2@,(% +0) 1 < < (46)

2
since s > 2. On the other hand, if €¢/4c3 > 1, we have s = 2
and (46) also holds. Also, if R < (¢/2X)/*, the first term
of (45) satisfies R°X < §. Therefore, L(sT) < e. Since
R < 1and (R+e ™T) <1, it is obvious that L(kT) < e,
for all £ > s.

D. Proof of Lemma 4.1

We follow the procedure in the proof of [7, Lemma 2].
First, we define time ¢ be the largest time which z(-) exists
and satisfies ||2(f)||cc < W, |2(t)|lcc < W, |Z2(t)||cc < W

for all ¢ € [0,#]. Such a time # exists, since ||(0)]l < W,
12(0)]|oc < c14co+W =W and ||Z(0)[|oc < Y+W = W.

Suppose ¢ < 6. Then, by using (31), (33), Lemma 3.3 and
Proposition 3.1, we have, for all ¢ € [0, ],

V(1) < —alllze(®)oc) + 70 (M) + MY (47)

Next, by using ¢ < 6, we have

V(ze(t)) < V(ze(0)) + % < a(3X) + % <et+(+1
(43)

for all ¢ < ¢, and hence z.(t) € int(Teyeyq) for all ¢ €
[0, 7). In particular at £, |2(8)]ee < W, [|#()||cc < W and
|Z(£)||ooc < W, which then contradicts the definition of £.
It yields ¢ > 6. Therefore, by using (47) and (48) with ¢ €
[0,0], we have z.(t) € int(I'cy¢41) for all ¢t € [0, 6)].
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