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Stochastic H,/H.. Control with (x,u,v)-dependent Noise

Weihai Zhangl’z, Huanshui Zhangl, and Bor-Sen Chen?

Abstract— In this paper, finite and infinite horizon stochastic
H,/H.. control problems with all state, control input and exter-
nal disturbance-dependent noise are studied. It is shown that the
existence condition of finite horizon stochastic H,/H.. control
is equivalent to the solvability of four coupled matrix-valued
differential equations, and that of infinite horizon stochastic
H,/H.. control is equivalent to the solvability of four coupled
matrix-valued algebraic equations.

I. INTRODUCTION

Stochastic H., theory that the system state governed by
Ito’s differential equation has become an attractive area since
the the systematic work [3], the reader can refer to [2], [3],
[9]-[12] and the references therein for the recent development
of this subject. In [2], necessary and sufficient conditions
for finite and infinite horizon stochastic H,/H. with only
state-dependent noise were respectively presented in terms of
a pair of coupled generalized differential Riccati equations
(GDRESs) and coupled generalized algebraic Riccati equa-
tions (GARE). It is well-known that most natural phenomena
are expressed by stochastic Ito system with not only state but
also control and external disturbance-dependent noise, see [3]
and [10], so how to extend the results of [2] to more general
models becomes without doubt a significant work. Now our
goal in this paper is to extend the result of [2] to the system
with all state, control and external disturbance or (x,u,v)-
dependent noise, which is very valuable in practice. Some
previous results, such as those of [2] and [4] are as corollaries
of our main theorems. We’ll show that for our general
systems, the existence of finite horizon H,/H.. control is
equivalent to the solvability of four coupled matrix-valued
differential equations, while the existence of infinite horizon
stochastic H,/H. control is equivalent to the solvability of
four coupled matrix-valued algebraic equations. It should
be first emphasized that, to address the infinite horizon
stochastic H, /H.. control, we introduce a new concept called
“exact detectability”, which is an extension of complete
detectability of deterministic systems. Moreover, by means
of exact detectability, we generalize an important property of
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Lyapunov equation to generalized Lyapunov-type equation
(GLE), which has a direct application in Subsection III.B.
Second, although we present necessary and sufficient con-
ditions for both finite and infinite horizon H,/H.. control
problems, how to solve these four cross-coupled matrix-
valued differential and algebraic equations still remains a
challenging and valuable mathematical problem, which merit
further study.

The outline of this paper is as follows. In Section II, finite
horizon stochastic H,/H.. control is discussed. In Subsection
IIILA, exact detectability is first introduced and for which
a stochastic Popov-Belevith-Hautus (PBH) criterion is pre-
sented. Moreover, based on exact detectability, an important
property of GLE is presented. Subsection IIL.B treats with
the infinite horizon stochastic H, /H.. control and generalizes
the results of [8]. Section IV ends this paper with some
comments.

For convenience, we adopt the following traditional nota-
tions in this paper.

A’ ( Ker(A)): the represents transpose (Kernel space) of a
matrix A;

A>0(A>0): A is a positive semidefinite (positive defi-
nite) matrix;

I: identity matrix;

2(0,7], D 2( 4, !): space of nonanticipative
stochastic processes x(f) € with respect to an in-
creasing o-algebra >0 satisfying E f] [x(t)]>dr < oo
(E [§ |x(t) [ dt < o).

Finally, we make an assumption throughout this paper that
all systems treated with are real-valued.

II. FINITE HORIZON H,/H.. CONTROL

Consider the following linear stochastic Ito system (the
time variable ¢ is suppressed)

dx = (Agpx+ Bou+ Byv)dt + (A1x+ Cou+ Cyv) dw

zz[goﬂ,x(m:xoe n M

where x(1),z(¢),u(t) and v(t) are respectively the system
state, controlled output, control input and external distur-
bance, all coefficient matrices are assumed to be matrix-
valued continuous functions of the time variable ¢. In par-
ticular, we assume D’'(r)D(t) = I for simplicity. Without
loss of generality, we may take w(f) to be one-dimensional
standard Wiener process, defined on the filtered probability
space (Q, , , ). To introduce the definition of the finite
horizon stochastic H,/H.. control, we first define a system
with a finite gain.
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For the linear time-varying stochastic perturbed system

{ dx = (Ax+ Bv)dt + (Cx+ Dv)dw, )

z=Mx

let x(¢,v,x0) denotes the solution of (2) starting from initial
state xo at time 0. We define the perturbed operator as

(FARRAS 2([0,T], ™) — Mx(t,v,0),T >0
with the norm of o 7} as
- llzllj0.7)
I [0,7] I = sup
ve 2(07), mwzoxe=o IVI0.7]
1/2

= sup
ve 2(07), m)wA0x0=0 {E [T vivdr}'?

Definition 2.1. System (2) is said to be a finite gain
system, if || o 7)[| <y forall T >0 with a prescribed y > 0.

In analogy with Definition 5 of [2], based on Definition
2.1, finite horizon mixed H,/Ha control can be expressed as
follows:

Definition 2.2 For a given disturbance attenuation y > 0,
T > 0, the so-called finite horizon mixed H,/H.. control
is to find a state feedback control uj(r,x) = Ky(t)x(t) €

2([0,T], ™), such that

i) The closed-loop system

dx = [(Ag+ B2Kp)x + Byv]dt + [(A1 + CK> )x

+Cyv]dw
=] S ] qo)=xpe
T | DKx |V 0
is a finite gain system, or equivalently, || [IéZT] || <y, where

[ng] is the perturbed operator of (3).

i) When the worst case disturbance vi(z,x) = K; (t)x(¢) €
2([0,T], ™), if existing, is implemented in (1), u}(¢,x)
also minimizes the output energy

T
i) =Wl n = [ s

If the above (uj,v}) exist, then we say that (u},v}) solve
the finite horizon mixed H,/H.. control of (1). As said in
[2], if we define

T
I (u,v) = E/ (Pv'v—7Z7)dt,
Jo

then finite horizon H,/H.. control is equivalent to looking
for the following Nash equilibrium point:

i (wp,vp) < I (p,v), I3 (ug,vi) < I3 (u,vp).

Our main result of this paper is the following theorem.

Theorem 2.1 For given disturbance attenuation y > 0,
finite horizon mixed H,/H.. control has a pair of solutions
(uf,vy) with

wr (t,x) = Ko (£)x(t), vy (1, %) = K (1)x(1)

if and only if (iff) the following four coupled matrix-valued
equations admit solution (Py, Py;K;,K;) with P <0 and P, >
0.

P+ Q — (P131~+A/1€1C1)~(721+C~‘1P16:1)71
(BllPl +C1P1A1) +A/1P1A1 + PAy +A6P1 =0,
Y I+CP,C; > 0,Vt € [0,T],P((T) =0

Ki = —(PI+CiPC) (B +CPAy) 3)

Py +CyCo — (PBy + A PCo) (1 + )P Co) ™!
(B/ZPZ + CéPzAl) —I—A/leAl + PAg —I—A/OPZ =0,
I+C§P2C2 >0,V €[0,T],P(T)=0

K> = —(I+CPCy) " | (ByP + ChPoAY ) 4)
where
Ao =Ao+BaKy, Al = A+ oKy, 0 = —(CyCo + K3K>)
Ao =Ao+BiKi,A; = A +CiK;.

To prove Theorem 2.1, the following lemma is necessary,
which indicates the relation between the ;-gain and the
corresponding GDRE.

Lemma 2.1 9. For (2) and any given y > 0, there exists
a solution P(¢) <0 on [0,7] to the following GDRE

P+PA+A'P— (PB+C'PD)(y’I+D'PD)™!
(B'P+D'PC)+C'PC—MM =0,
Y214+ D'PD > 0.Vt € [0,T],P(T) =0
iff (2) is a finite gain system or || (o7l < ¥.
Proof of Theorem 2.1. Sufficiency. Substituting u = u} =
K> (t)x(¢) into (2), it follows

dx = (Agx +Bv)dt + (Ajx +Cv)dw

_| Cox _ n
= |: DK>x :| ,X(O) =X0 € .

(&)

Considering equation (3), using Lemma 2.1 for (5) immedi-
ately yields || [ng]H < 7. vl =K (t)x(¢) is the worst case
disturbance can be seen from

gy = E /0 vy e
= E /T[yzv/v — Zz+d(xX'Pix)] 4+ xPixo
JO -
- x’0P1x0+E/O v =v7 Ity py
> JT (V) = xhPio ©
where

2
v =2, = (v =) (PL+CLPLCL) (v = v5).
Now, substituting v§ into (1), it gives

dx = (Apx+ Bou)dt + (A1x+ Cou)dw
| Gox

Z_{Du ],x(O)—xoe ",

(N

With the constraint of (7), minimizing JZT (u,v%) is a standard
stochastic linear quadratic optimization problem. Applying
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a standard completion of square technique together with
considering (4), we have
T

min E | Z'zdt = x{P(0)xo

ue L Jo
with the corresponding optimal control u} = K, (¢)x(t) given
in (4). The sufficiency is proved.

Necessity. If (u7,v;) solves the finite horizon stochastic

H,/H.. control with

wr (,x) = Ko (£)x(t), vy (1,%) = K (£)x(1)

where Kj, and K, is to be determined, then substituting
ujy(t,x) = Ko (t)x(t) into (1) results in (5). By Definition 2.2
I [ng]H < 7, Again, Lemma 2.1 concludes that (3) admits
a solution Py <0 with v = K;(¢)x(t), where K is defined
by (3). Likewise, if we implement v} in (1), it deduces (7).
While GDRE (4) always exists a solution P, > 0 for fixed
K, see [1]. As discussion in the sufficiency part, in this case,
uy = Ky (t)x(t) with K, defined by (4).

Theorem 2.1 may concludes many special results. For
example, if we take C; = 0,C; = 0, then Theorem 5 of
[2] is derived; If we take C; = 0, then the finite horizon
stochastic H,/H.. control with state and control-dependent
noise is available, which is viewed as an open problem in
R IfweletA; =C,=C1=0,x9€ ", ie., (1) comes down
to a deterministic system, then the related consequences of
[4] are followed. We leave the other special discussions to
the reader.

III. INFINITE HORIZON H,/H.. CONTROL

A. Preliminaries

From now on, we assume all coefficient matrices are real-
valued constant, i.e., the system is stochastic linear time-
invariant (SLTT). To discuss the infinite horizon stochastic
H,/H.. control, we need to introduce some definitions.

Definition 3.1 (7). Consider the following unforced
stochastic system with measurement equation

{ dx =Axdt +Cxdw,x(0) =xp € ",
y = QOx.

We call x(0) € " an unobservable state, if for any 7 > 0,
the corresponding output response always equals zero, i.e.,
y(t)=0,a.5.t€[0,T],¥T >0. (8) or [A,C|Q] is called exactly
observable, if there is no unobservable state except zero
initial state.

Remark 3.1. If we let

PO = [Q/aA/Q/vC/Q/aA/C/Q/vc/A/Q/a

(A/)ZQla (C/)ZQla o ']/7
then all the unobservable states consist of a subspace, called
an unobservable subspace. We denote it by o, and o=
Ker(Py), see [7]. Obviously, [A,C|Q] is exactly observable, iff
0=1{6}.From (=Ker(R),itis easy to show that (Q,A)
is completely observable implies that [A,C|Q] is exactly
observable, but the inverse is not true.

It should be pointed out that there doesn’t have any
implication between exact observability and stochastic de-
tectability (see Definition 3 of [2]) of [A,C|Q], see the
following examples.

Example 3.1. Taking

A:[(l) _01}, 0=[0 1], cz[_ll 8}

one can easily see that [A,C|Q] is exactly observable us-
ing Theorem 4 of [8]. But [A,C|Q] is not stochastically
detectable, because (A’,Q',C’,0) is not stabilizable. To see
this fact, we quote Theorem 1 of [6], which says that
(A", Q',C’,0) is stabilizable iff the following GARE

PA'+ AP+ CPC' —PQ'QP + .2 =0 ®)

admits a positive definite solution P > 0, but for our given
data, the solutions of GARE (8) is

P1=[_01 8]§07 PZZ[_Ol _02]<o.

Example 3.2. Taking Q =0, A =C = —I,4», we can also
see that [A,C|Q] is stochastically detectable, but it is not
exactly observable.

Below, we introduce a slightly more weak concept than
exact observability called “exact detectability” as follows.

Definition 3.2. (8) or [A,C|Q] is said to be exactly
detectable, if y(t) = Ox(t) =0 a.s., 1 € [0,T], YT >0, implies
lim, ... E|x(¢)|* =0.

Proposition 3.1. If [A,C|Q] is exactly detectable, Py >0
solves GLE

PA+A'P+C'PC=-0'Q 9

then the unobservable subspace ( of [A,C|Q] satisfies (=
Ker(Py).

Proof. With the constraint (8), applying Ito’s formula, it
follows for any T > 0,

T T
0 < E/ y’ydt:E/ X' Q' Oxdt
Jo Jo

T
= E/ X' Q' Qxdt + xyPoxo
0
T
+E/ d (X' Pyx) — EX'(T)Pox(T)
Jo

T
= E/.ﬂ%A+N%+Cﬂﬂ+Q@ym
0

+x{Poxo — EX'(T)Pox(T)
= xyPoxo — EX'(T)Pyx(T) (10)
Obviously, for any xo € Ker(B), (10) yields y(t) =0,a,s.Vt €
[0,T], i, xo € o, ie., xo0 € o. Conversely, Vxo € o, it
follows limy_.e EX'(T)Pyx(T) = 0 from exact detectability.
Therefore, 0 < x,Poxo =E [ y'ydt =0, and xo € Ker(F). In
conclusion, ¢ = Ker(R).
Similar to the proof of Theorem 4 in [8], we have the
following stochastic PBH criterion.
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Theorem 3.1 (Stochastic PBH Criterion). [A,C|Q] is
exactly detectable iff there does not exist nonzero Z €
such that

AZ+ZA +CZC' =AZ, QZ=0, ReA>0.  (11)

Proof. Using the PBH Criterion on complete detectability
of deterministic systems, which says that (A,C) is completely
detectable iff there does not exist nonzero { € " such that

AL =2L,CE=0,Red >0

then this theorem can be showed identically as the proof of
Theorem 4 in [8].

Remark 3.2. By comparing Corollary 3.1 with Theorem
3.1, it can be seen that stochastic detectability implies exact
detectability, but the converse is not true.

As known in stability theory, if (A,Q'/?) is detectable,
P >0 solves PA+A'P = —Q with Q > 0, then A is stable.
Below we extend this consequence to GLE

PA+A'P+CPC=-0, 0>0 (12)

by means of exact detectability.

Theorem 3.2. If [A,C|Q)] is exactly detectable, P >0 is a
solution to (12), then (A,C) is stable.

Proof. If P is strictly positive definite, then [A,C|Q] is
exactly observable by Proposition 3.1, while the stability
of (A,C) is followed from Theorem 6 of [8] immediately.
Otherwise, Ker(P) is not empty, and for any & # 0 € Ker(P),
it is easy to test that & € Ker(Q), i.e., Ker(P) C Ker(Q).
Moreover, Ker(P) is an invariant subspace with respect to
both A and C. Suppose S is an orthogonal matrix such that

S/PS:[g SZ}, det(Py) #0

then
e | O 0 o | A1 A
SQS—|:O Q2:|,SAS—|:O A2:|’
1~a_ | C1 Ci2
SCS—|:O Cz]'

Pre- and post-multiplying S’ and S on both sides of (12), it
follows that

S'PS-S'AS+S'A'S-S'PS
+8'C'S-S'PS-S'CS = —S'0S.
which is equivalent to

PAy+ASP+ CoPCr = —Qn, 02 >0

In addition, applying Ito’s formula to N = [ i ] =8x=

Up)
[ S Siz

!
x, it gives
$a1 Szz] g

dni = (A +Apn)di+ (Cim + Cianz) dw
dny = Ay dt +Canadw

Obviously, y = Ox =0,a.s. iff 012 =0,a.s, and for which
a sufficient condition is 1, = 0. Hence, by the definition of

exact detectability, we have that (A1,C;) or equivalently, the
following system

dm =Amdt+Cindw

is stable in mean square sense. Below, we further show
that (A,C,) is stable. Applying Ito’s formula to n)Py1;,
it follows for any fixed 7 > 0

T
0<£ [ miw)0ma(nds
= m(0)Pan2(0) — Ens(T)Pana(T)
As discussed in the proof of Theorem 6 [8], if we

let V(n2(t)) = Eny(t)02na(t), tn = nT,n = 1,2,---, then
limy_.. V(x(2)) exists. Moreover,

13)

E [ n0)02m(0)de = 5 (0)HO)2(0)

where H(-) > 0 is the unique solution to the following
differential Riccati equation [1]

H(t) = H(OA + A H(t) + CUH()C1 + 0, H(T) =0

We assert H(0) > 0. Otherwise, there exists 2(0) #0€ "2,
such that H(0)n2(0) = 0, which deduces

T
E/O N5(1) Qa2 (t)dt =0 = Qama(t) =0 a.s. t €10,T]

The above implies that y(r) = 0Sn(t) = S [ 8 Q02 ] n) =
0 ast € [0,T], which vyields lim_.Elx(t)]> =
limy o ENS(T)Pon2(T) = 0 because of exact detectability
of [S'AS,S'CS|QS] = [ST'AS,S7!CS|QS]. Therefore, (13)
concludes 15 (0)P,12(0) = 0, which contradicts P, > 0, and
H(0) > 0 is proved. The rest treatment for showing the
stability of (A,C;) is similar to that of Theorem 6 in [8]
and is omitted. Now, from the stability of (A;,C;) and
(A3,C,), we have lim, .. E|n(t)]> = 0 (see [3]) , which is
equivalent to lim, ... E|x(¢)|> = 0, the proof of this theorem
is completed.

Theorem 3.2 improves Lemma 2 of [2] with exact de-
tectability replacing stochastic detectability.

B. Main Results

Based on the above theories, especially the theory of exact
detectability developed in Subsection III.A, we are able to
extend the results of [2] on infinite horizon stochastic H, /He
control to the more general models with state-and control-
dependent noise, which is taken as an open problem in [2].
In this subsection, we don’t intend to treat with (x,u,v) but
only (x,u)-dependent noise for the sake of simplicity.

Consider the following SLTT system

dx = (Apx+ Bou+ Bv)dt + (A1x + Cou) dw,

x(0) = x (14)
_ | Cox DD=1
=\ pu |’ o

The following definition on stochastic H,/H. control is
adapted from Definition 4 of [2].
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Definition 3.3. Given a disturbance attenuation y > 0, the
infinite horizon mixed stochastic H,/H.. control for system

(14) is to find a constant feedback u* = Kox € 2 (4, ™)
such that
)
I M= sup
ve 2( 4, ™)y#£0,x=0
{E J5"(x'CyCox + u*'u*)di }/ <y (15)

{E [TV'vdt}1/?

where
Cox
lve 2( + n")'—>Z:|:DM*:|7x0:0

associated with (14) is called the perturbation operator of
(14).
2) u* stabilizes system (14) internally. That is

dx = (Ao + B2K;)xdt + (A + CKp ) xdw

is asymptotically mean square stable, which is also called
(Ag+ B2K>,A1 + C2K>) stable for short.
3) When the worst case disturbance v* = Kjx €
2( 4+, ™) with K; a constant matrix, if existing, is
applied to system (14), u* minimizes the output energy

B =E [ (/Cicor—+ulua.
JO

We say that the infinite horizon stochastic H/He control
admits a pair of solutions if the above (u*,v*) exists.

Our destination is to extend Theorems 1-4 of [2] to system
(14). To this end, we must generalize Lemmas 3-5 of [2] as
follows.

Lemma 3.1. Assume y # 0, K = (I1+C,P.Cy) ' (ByP, +

CéPzAl),
- [c
, A= [ Z ]

(i) If [Ao,A1|Co] is exactly observable, then so is [Ag —
ByK,A| — CK|G).

(ii) If [Ag — y’zBlB’lPl,A1|Co] is exactly observable, then
SO is [AO — ’yﬁzBlBllpl — sz,Al — C2k|A~3]

Proof. This lemma can be proved by Theorem 4.2 of [7]
(see Appendix B of [2]) or by applying Theorem 4 of [8],
the detailed proof is omitted.

Lemma 3.2. Under the conditions of Lemma 5.1, we have

(1) If [Ag,A |Cp] is exactly detectable, then so is [Ag —
sz,Al — C2k|éz]

(2) If [Ag— y’zBlB’lPl,A1|Co] is exactly detectable, then
SO is [AO — ’yﬁzBlBllpl — sz,Al — C2k|A~3]

Proof. If [Ag— BoK,A; — C>K|C,] is not exactly detectable,
then Theorem 3.1 tells us that there exist nonzero X €
such that

Co
Y 'BiPi
K

G =

X(Ag— B2K) + (Ag — BoK)X
+(A; —GK)X(A; —GK) = AX,

GX =0, Re(A)>0 (16)

However, (,X =0 implies KX = 0. Therefore, (16) con-
cludes

XA)+AoX +A1XAT =X, CoX=0

which contradicts the exact detectability of [Ag,A;|Cp], thus
the proof of (1) is completed. By the same discussion, (2)
can also be shown.

Remark 3.3. Note that in order to extend Lemma 4 of
[2] to Lemma 3.2, we have replaced stochastic detectability
used in [2] with a weaker condition-“exact detectability”.
Obviously, under the assumption of stochastic detectability,
we don’t know whether Lemma 3.2 holds, which prevents
us from generalizing Theorems 3 and 4 to the system (14).

Below we further generalize Lemma 5 of [2] which
is called “stochastic bounded real lemma” (SBRL) to the
system (2) with constant coefficients. As in [2], we define
the perturbed operation ~ of 2) as

Tive (4, ™) z=Mxx=0

) [1z]l2
” ||o<> = sup Rindie]
ve 2( 4, ™)y£0x0=0 HV”Z

{E [ X' M'Mxdr}'/?
{E [y V/vdt}l/2

= sup
ve Z( 4, ™)#£0,x=0

Lemma 3.3 (linear SBRL). Assume system (2) is
internally stable, then | || < ¥ for some y > 0 iff GARE

PA+A'P+C'PC— (PB+C'PD)
x (Y’ +D'PD)"'(B'P+D'PC)—M'M =0
y’I+D'PD > 0.

has a solution P <0, and (A + BK,C + DK) is stable, where
K= —(y¥I+D'PD)"'(B'P+D'PC).

As soon as Lemmas 3.1-3.3 as well as Theorem 3.2 are
obtained, it is an easy thing to generalize Theorems 1-4 of
[2] to the more general system (14). However, since the
procedures are analogous to those employed in [2], to avoid
some unnecessary repeat, the detailed proofs of the following
theorems are omitted.

Theorem 3.3. For system (14), suppose the coupled
GAREs

PlAg+ AP +A\PA +Q0—y PPBiBIP =0  (17)
PzA_() +A6P2 —I—A/leAl + C6C()
—(PyBy + A PGy (I+ChPCy) 7!
X (B/ZPZ + C/2P2A1) =0
[+C5P,Cr >0

have a pair of solutions (P;,P,) with P < 0, >0
(P < 0,P, >0) with K} = —y 2B\, K, =—-(I+
CyP,Cy) " (ByP, + C5PA;).In addition, assume [Ag,A;|Co]
and [Ag — y’zBlB’lPl,A1|Co] are exactly detectable (exactly
observable), then the stochastic H,/H. control admits a
pair of solutions u* = —(I+C5P,Ca) " (B4Py +CyPyA ), v =
—Y 2B\P.
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Theorem 3.4. If the infinite horizon stochastic Hy/He.
control exists a pair of solutions (u*,v*) as

uw'=Kx, v'=Kx

with K> and K constant matrices of appropriate dimensions.
If [Ap+ B1K1,A1|Cy] is exactly detectable (exactly observ-
able), then the coupled GAREs (17) and (18) admit solutions
Py <0and P, >0 (P, > 0), respectively.

Remark 3.4. If we take C; =0 in (14), then the coupled
GAREs (17) and (18) deduce to (14) and (15) of [2],
respectively.

Remark 3.5. A discrete-time stochastic H,/H. control
problem was recently discussed in [5] based on the Nash
game theory, which can be viewed as the continuous version
of [8].

IV. CONCLUSIONS

This note have presented a necessary and sufficient condi-
tion for finite/infinite horizon stochastic H, /H. control with
(x,u,v)-dependent noise, which generalizes the correspond-
ing consequence of [2]. More important, we believe that
Theorem 3.2 will have many applications in the study of
stochastic control theory such as stochastic linear quadratic
optimization and the related GARE.
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