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Abstract— We consider the problem of non-cooperative rout-
ing in a congested network with atomic users, where each user
wishes to minimize the cost of its own flow. Cost functions
may differ among users, and are required to satisfy standard
convexity and monotonicity conditions. A characterization is
given of the class of two-terminal network topologies for which
the Nash equilibrium is always unique. We further address
the uniqueness issue for the mixed Nash-Wardrop equilibrium
problem.

I. INTRODUCTION

Congested networks have been an object of interest in
engineering and operations research for over five decades,
motivated by major applications to traffic engineering and
communication networks. In these and other application do-
mains, the network is often not centrally controlled but rather
shared by a number of users who pursue their own objectives.
This has led to extensive work on the analysis of multi-user
networks within the framework of game theory, and to the
investigation of equilibrium concepts for these models. For
a recent survey on these issues from the telecommunications
perspective see [2].

We consider here the problem of competitive routing,
where each user needs to deliver a given amount of flow
over the network from its designated origin node to its
destination. A user can choose how to divide its flow between
the available routes. On each link the user incurs a certain
cost per unit flow, which in general will depend on the
link congestion, namely the total flow over that link. In
the context of computer networks the per-unit cost is often
synonymous to the link latency, a terminology that we adopt
here for simplicity. The latency of a path is simply the sum
of the latencies along its links.

The fundamental notion of equilibrium in transportation
networks has been proposed by Wardrop in [27]. Essentially,
it requires all traffic to occupy paths with minimal latency.
While this solution concept has been addressed by differ-
ent names, including the Nash equilibrium for infinitesimal
users, user equilibrium, or traffic equilibrium, we shall use
the term Wardrop equilibrium to distinguish it from the finite-
user Nash equilibrium that is the main topic of this paper.
The Wardrop equilibrium arises naturally when the flow is
considered to be composed of infinitesimal users, so that
the effect of each user on link congestion is negligible.
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This equilibrium concept is also relevant in the context of
computer networks, as many of the current dynamic routing
protocols focus on shortest path routing. For recent overviews
of the extensive literature that has been devoted to the
Wardrop equilibrium and its variants see, for example, [23],
[21], [2].

When cost-optimizing users control non-negligible amount
of flow, we are led to consider the standard Nash equilibrium
for finitely-many users. A flow pattern is considered to be
a Nash equilibrium point (NEP) if no user can reduce the
total cost incurred by its traffic by a unilateral change of its
own flow pattern. While this problem has more recent roots
than the Wardrop equilibrium, it has attracted considerable
attention in recent literature. Existence, uniqueness and some
basic properties of the Nash equilibrium are studied in [22],
[1], [3]. The notion of a mixed Nash-Wardrop equilibrium,
which combines infinitesimal users with finitely-sized ones,
is considered in [12], [6]. Efficient network design and man-
agement are considered in [15], [16], [18], [17], [11], while
[26] bounds the performance degradation relative to cen-
tralized routing (along with similar results for the Wardrop
equilibrium). The convergence of some dynamic schemes
to the Nash equilibrium is considered in [14], while [19]
considers a repeated game version of the routing problem,
and [4] considers the effect of adding side-constraints on the
flows.

We focus here on the issue of uniqueness of the Nash equi-
librium in noncooperative routing with finitely-manu users.
For a two-node network with parallel links, uniqueness of the
Nash equilibrium has been established under mild convexity
assumptions on the link costs [22]. This result does not
hold for networks of general topology, as demonstrated there
by a counter-example. However, the question of whether
there exist other network topologies for which uniqueness of
the Nash equilibrium is guaranteed (under similar convexity
assumptions) remained open until now.

For networks of general topology, the uniqueness of the
Nash equilibrium has been established under various ad-
ditional conditions on the cost functions. A general set of
conditions is implied by the requirement of diagonal strict
convexity, which is a well known sufficient condition for
uniqueness of the Nash equilibrium in convex (or concave)
games [24]. These conditions have been applied to the Nash
routing problem in [13], [22]. Unfortunately, those conditions
do not hold in many cases of interest – for example, they are
violated by popular M/M/1 latency function under significant
congestion. Other special cases are presented in [1] and [3]:
the first considers link latencies that are polynomial with
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a low enough order, while the latter establishes uniqueness
under some specific symmetry conditions.

For the Wardrop equilibrium, a corresponding line of
uniqueness results exists, with the requirement of link cost
convexity replaced by monotonicity of the link latency.
This is sufficient to guarantee uniqueness in the single-
class case, but not for the multi-class problem [9], [8].
Additional conditions on the costs that ensure uniqueness
are considered in [7], [8], [3]. In a recent paper, Milchtaich
[20] provides a complete characterization of all two-terminal
network topologies (called nearly parallel networks) for
which uniqueness is guaranteed under the basic monotonicity
requirement. We shall further elaborate on these notions
below.

Our goal here is to characterize those network topologies
for which the Nash equilibrium is unique, for any number
and size of users, as long as their link cost functions satisfy
some mild convexity conditions. Our main results establish
that the class of networks that satisfy this property coincides
with the set of nearly-parallel networks.

II. MODEL AND PRELIMINARIES

A. The Network Model

Let the network topology be specified by an undirected
graph G = G(V, E), where V is a finite set of vertices (or
nodes) and E is a finite set of edges. Each edge joins two
distinct vertices. Thus, single-edge loops are not allowed, but
more than one edge can join two vertices. Two of the vertices
in this graph will be designated as the terminal vertices, O
(for origin) and D (for destination). We refer to such a graph
as a two-terminal network.

The actual network we consider is directional, and is
obtained from the undirected graph by replacing each edge
with two directional links. Thus, an edge e between vertices
u and v is split into two directional links, one from u to v
and the other from v to u. (We shall comment about that
particular way of defining the directional network at the end
of section 3. For now, note that by imposing large enough
costs on some of the links we may be effectively obtain any
subnetwork thereof.) The set of links that connect u to v is
denoted by L(u, v) and the set of all links in the directional
network by L.

We are given a set I = {1, 2, . . . , I} of users, which share
the network. Each user i needs to deliver a positive amount
di of flow from node O to node D, and should decide how
to divide its flow between the different routes that connect
these two nodes. Denote by f i

l the flow of user i through link
l, and let fl =

∑
i∈I f i

l denote the total flow on link l. User
i’s flow pattern is the vector f i = (f i

l , l ∈ L). Finally, the
system flow pattern f is the vector of all user flow patterns.

A feasible flow pattern must obey the following flow
conservation and positivity constraints for each user:∑

l∈Out(v)

f i
l =

∑
l∈In(v)

f i
l + di

v, v ∈ V ; f i
l ≥ 0 . (1)

Here In(v) and Out(v) are the set of input and output links
for node v, and di

v is the external flow: di
v = di for v = O,

di
v = −di for v = D, and di

v = 0 otherwise. We denote
the set of feasible flow patterns f i for user i by F i. This
is clearly a convex polyhedron. A system flow pattern f is
feasible if f i ∈ F i for all i ∈ I.

B. Convex Network Games

The performance measure to be minimized by user i ∈ I is
specified by a cost function J i(f). We shall consider additive
cost functions of the form

J i(f) =
∑
l∈L

J i
l (f

i
l , fl) . (2)

Thus, the cost incurred by a user on a link l depends only
on its own flow f i

l , as well as on the total link flow fl which
measures the link congestion. Link costs are often taken to be
in the form J i

l (f
i
l , fl) = f i

l T i
l (fl), where T i

l (fl) represents
the cost per unit flow (or latency). Note that the link cost
functions J i

l may depend on the user i, and similarly for the
latency T i

l .
Definition 1: A flow vector f∗ is a Nash equilibrium point

(NEP) if, for each i ∈ I,

J i(f∗) = min
fi∈F i

J i(f1
∗ , . . . , f i−1

∗ , f i, f i+1
∗ , . . . , fI

∗ ). (3)

Denote by J the vector of link costs functions (J i
l , l ∈

L, i ∈ I). Also denote by d the vector (d1, . . . , dI) which
specifies the demand of all users. Let

Ki
l (f

i
l , fl)

�
=

∂J i
l (f

i
l , fl)

∂f i
l

+
∂J i

l (f
i
l , fl)

∂fl
(4)

denote the marginal costs of user i on link l with respect to
its flow f i

l (where the second term is required since fl =∑
i f i

l ). We shall assume that the link cost functions satisfy
the following properties.
Assumption A1: J i

l is a continuous, non-negative function
on its domain {(x, y) ∈ �2

+ : x ≤ y}.
Assumption A2: J i

l is strictly increasing in each of its
arguments (except possibly when f i

l = 0).
Assumption A3: J i

l is continuously differentiable, and the
marginal cost Ki

l (f
i
l , fl) is strictly increasing in each of its

arguments.
Functions that satisfy these assumptions were termed type-

A cost functions in [22]. We note that in this reference
the costs were allowed to take infinite values, in order to
accommodate popular cost functions such as the M/M/1
latency function: J i

l (f
i
l , fl) = fi

l

cl−fl
, with J i

l = ∞ for
fl ≥ cl. This extension is easily accommodated in the present
paper, with all uniqueness results directly applicable to finite
NEPs (namely, NEPs where all users incur finite costs). For
details see [25].

Definition 2: A convex network game over a two-terminal
network G is a triple (I, d,J ) over G, with cost functions
that satisfy Assumptions A1-A3 for each link l and user i.

For a convex network game, the minimization problem
faced by each user (with the flow pattern of the others held
fixed) is a convex optimization problem, as convexity of the
link costs in each user’s flow is implied by our Assumption
A3. Necessary and sufficient conditions for a flow pattern to
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be a Nash equilibrium are therefore provided by the Karush-
Kuhn-Tucker conditions, applied to each user in turn [22]:
A flow pattern f is a Nash equilibrium if there exists a set
of constants {λi

u : i ∈ I, u ∈ V} (the marginal cost
parameters) so that for every link l ∈ L(u, v), and for every
user i:

λi
u = Ki

l (f
i
l , fl) + λi

v if f i
l > 0 , (5)

λi
u ≤ Ki

l (f
i
l , fl) + λi

v if f i
l = 0 . (6)

Conditions (5) and (6) can also be expressed in the following
path-oriented manner: For any two nodes in the network u
and v, and any path p that connects u and v, if f i

l > 0 for
every l ∈ p then

λuv � λu − λv =
∑
l∈p

Ki
l (f

i
l , fl) ≤

∑
l∈p′

Ki
l (f

i
l , fl) (7)

where p′ is any other path connecting u and v.
In general, the NEP of a convex network game need not

be unique. Still, uniqueness is guaranteed for certain network
topologies. We shall refer to this property as topological
uniqueness. More precisely:

Definition 3: A network G has the topological uniqueness
property if the NEP is unique for any convex network game
over G.

C. Nearly Parallel Networks

We briefly repeat here some definitions and results from
[20] concerning nearly-parallel networks. These results show
that network topologies can be divided into two classes. The
first essentially contains the networks shown in Figure 1, and
networks which are serial connection of those networks. The
second class contains all networks in which one of the basic
networks shown in Figure 2 is embedded, in the following
sense.

(a) (c)(b)
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Fig. 1. Basic networks that define the class of nearly-parallel networks
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Fig. 2. Basic networks that are not nearly-parallel

Definition 4: A network G′ is said to be embedded in
the wide sense in network G′′ if the latter can be obtained
from the former by some sequence of the following three
operations: (1) Edge subdivision: An edge is replaced by two
edges with a single common end vertex. (2) Edge addition:
The addition of a new edge joining two existing vertices.
(3) Terminal vertex subdivision: The addition of a new edge,
joining the terminal vertex O or D with a new vertex v, such
that a nonempty subset of the edges originally incident with
the terminal vertex are incident with v instead.

Definition 5: A two-terminal network G is called nearly
parallel if it is one of the networks in Figure 1, or can be
constructed from one of the networks in Figure 1 by a series
of edge subdivisions.

Of the five networks in Figure 1, network (e) is the most
interesting, as the other four may be considered a special case
of this network for routing purposes. However, the formal
definition of nearly parallel networks does require to consider
all these basic networks. Note also that only network (e)
supports meaningful bi-directional traffic (between nodes A
and B) when routing traffic between the prescribed source
and destination nodes.

Proposition 1 ([20]): For every two-terminal network G,
one, and only one, of the following conditions holds:

(i) G is nearly parallel or is a serial connection of two or
more nearly parallel networks.

(ii) One (or more) of the networks in Figure 2 is embedded
in the wide sense in G.

To simplify terminology, from here on we shall use the
term “nearly parallel network” to refer to any network that
meets condition (i) of the last proposition, namely both to
nearly parallel networks in the sense of Definition 5 and to
serial connections thereof.
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III. UNIQUENESS OF THE NASH EQUILIBRIUM

It has been established in [22] that parallel-link networks
posses the topological uniqueness property, namely that
uniqueness of the NEP is guaranteed under Assumptions
A1-A3. Our main result states that topological uniqueness
(in the sense of Definition 3) holds for the larger class of
nearly parallel networks, and only for that class.

Theorem 1: A two-terminal network G has the topological
uniqueness property if, and only if, G is a nearly parallel
network.

The proof is presented in the following subsections.

A. Uniqueness for Nearly Parallel Networks

The following proposition repeats the sufficiency part of
Theorem 1.

Proposition 2: If G is nearly parallel, then the NEP is
unique for every convex network game (I, d,J ) over G.
The proof, which is omitted here due to space limitations,
may be found in [25].

B. Counter-examples to Uniqueness

This subsection establishes the necessity part of Theorem
1. We will show that a counter-example (namely, a convex
network game with multiple Nash equilibria) may be found
for any network which is not nearly parallel. Recall from
Proposition 1 that in any network which is not nearly parallel,
one of the networks in Figure 2 is embedded in the wide
sense. We start with two basic examples:
Example 1: Consider the network in Figure 2(a). Let the
cost functions be of the form J i

l (f
i
l , fl) = f i

l T
i
l (fl), with

the latency functions T i
l (x) and the demand di for each user

given in the following table

user di e1 e2 e3 e4 e5
1 6 “∞” “∞” 7x x f1(x)
2 4 “∞” x f2(x) “∞” 2x
3 4 x + 21 “∞” “∞” f2(x) x

where

f1(x) =
{

x if x < 6
1
3

(
e3(x−6) + 17

)
if x ≥ 6

(8)

and

f2(x) =
{

x if x < 4
1
3

(
e3(x−4) + 11

)
if x ≥ 4

. (9)

Note that this functions are continuously differentiable. The
infinite values in the table indicate large enough functions,
so that the user always prefers not to use this link.
Each user can thus choose to divide its flow between two
different routes. User 1 can choose between e3 and e4–e5,
user 2 can chose between e2–e5 and e3, and user 3 can
choose between e4–e5 and e1. It is easily verified that one
Nash equilibrium is formed if each user diverts all of its flow
to its first option, and another Nash equilibrium is formed if
each user will divert all of its flow to the second option. For
example, in the first NEP, (7) may be verified by noting that
for user 1,

K1
e3(6, 6) < K1

e4(0, 4) + K1
e5(0, 8) (10)

and in the second NEP:

K1
e4(6, 6) + K1

e5(6, 6) < K1
e3(0, 4). (11)

Similar inequalities may be verified for users 2 and 3.
Example 2: A similar example can be constructed for the
network in Figure 2(c). The demand and T i

l (x) functions for
each user are:

user di e1 e2 e3 e4 e5
1 6 2x “∞” 2x “∞” f1(x)
2 4 f2(x) “∞” “∞” x 6x
3 4 “∞” x f2(x) “∞” 6x

where f1(x) and f2(x) are as defined in Example 1. Each
user can choose how to divide its flow between link e5 and
some other route, e1–e3 for user 1, e1–e4 for user 2 and
e2–e3 for user 3. It may be verified as above that one Nash
equilibrium is obtained when user 1 ships all its flow through
e5, while users 2 and 3 avoid e5. Another Nash equilibrium
is obtained when users 2 and 3 ship all their demand on e5,
while user 1 selects the e1–e3 path.

These two examples show that multiple equilibria exist in
the networks of Figure 2(a) and 2(c). We need now to extend
the examples to the other networks in Figure 2, and then to
any network in which these basic networks are embedded.
To this end, we will require the considered equilibrium point
to be stable with respect to small perturbations, so that the
series addition of links with small enough cost does not alter
the equilibrium. We use the following definition.

Definition 6: A Nash equilibrium of the network game is
called strong if for any path p from O to D that is used by
user i, namely f i

l > 0 for every l ∈ p, it holds that∑
l∈p

Ki
l (f

i
l , fl) <

∑
l∈p′

Ki
l (f

i
l , fl) (12)

for any other path p′ that connects O and D.
Note that in a strong NEP each user employs a unique path
from origin to destination. It may be verified that the NEPs
in examples 1 and 2 are strong.

Lemma 1: Let G be a network over which there exists a
convex network game with two distinct strong NEPs. Then
for any network G′ in which G is embedded in the wide sense,
there exists a convex network game with two different strong
NEPs.

Proof: The proof is similar to that of a corresponding
claim in [20]. Let f and f̂ be the two strong NEPs in G
and denote by pi and p̂i the unique paths of user i in f
and f̂ respectively. Since the definition of embedding in
the wide sense is recursive we need only consider the case
where G′ was obtained from G by one of the following
operations: (1) the subdivision of an edge, (2) the addition
of an edge, or (3) the subdivision of a terminal vertex. In
case (1) the cost function of each direction of the edge that
was subdivided is equally split between its two parts. It is
trivially seen that the new game over G′ remains a convex
network game, which supports the two distinct equilibria
of G. In case (2) we may set the cost functions of each
user on the added edge so that Ki

l (0, 0) is higher then
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max(
∑

l∈pi Ki
l (f

i
l , fl),

∑
l∈p̂i Ki

l (f̂
i
l , f̂l)). In that case no

user has an incentive to use the new edge and the equilibrium
points do not change. In case (3) a new node is added to G,
with an edge that connects it either to D or to O. If we would
set the cost on that link to zero the NEPs would obviously not
be affected. However, since a null cost violates Assumption
A3, we choose a small non-zero cost function for that link.
Since the two equilibria in G are strong we may set the
marginal costs Ki

l (f
i
l , fl) on that link sufficiently small f and

f̂ are still NEPs. Specifically we select J i
l so that Ki

l (f
i
l , fl)

is less then the difference between used routes and unused
routes for f i

l ≤ di. �
Proposition 3: For every network G in which one of the

networks in Figure 2 is embedded in the wide sense, one
can find a convex network game for which the equilibrium
is not unique.

Proof: Example 1 demonstrates the claim for the net-
work in Figure 2(a). A symmetric example can be used for
the network in Figure 2(b). Example 2 shows the same for
the network in Figure 2(c). We can apply Example 2 to
the network in Figure 2(d) by imposing small enough costs
on the additional link e6 without affecting the two strong
equilibria (as argued in Lemma 1). Lemma 1 now proves
the proposition. �

Propositions 2 and 3 together with Proposition 1 complete
the proof of Theorem 1.

IV. WEAKLY CONVEX NETWORK GAMES

In this section we consider the uniqueness of the Nash
equilibrium under slightly weaker conditions on the link cost
functions. These weaker conditions enable us to embed the
Wardrop equilibrium (with a finite number of user classes)
within the finite-user game model. We start by delineating
the relation between the (multiclass) Wardrop equilibrium
and the Nash equilibrium in our model.

A. Wardrop and Nash Equilibria

Consider the same network model as defined above, except
that the user index i ∈ I now designates a user class. Each
user class may be thought of as a continuum of infinitesimal
users, all sharing the same cost characteristics. The latency of
link l for class-i users is given by T i

l (fl), which we assume to
be a positive and strictly increasing function. A flow profile
f is a (multiclass) Wardrop equilibrium if∑

l∈pi

T i
l (fl) = min

p

∑
l∈p

T i
l (fl) for every i ∈ I , (13)

where pi is any route employed by user-class i, and p′ is any
other feasible route for that class.

It was shown in [20] that the Wardrop equilibrium is
unique for any choice of (non-negative, strictly increasing)
latency functions T i

l (fl) if and only if the network is nearly
parallel.

The Wardrop equilibrium and the Nash equilibrium with
finitely-many (atomic) users may be related from two dif-
ferent viewpoints. First, the Wardrop equilibrium may be
obtained as the limit of the Nash equilibrium point when the

number of users is increased to infinity while their individual
flow demands decrease accordingly [13]. More relevant here,
the Wardrop equilibrium is mathematically equivalent to a
finite-user Nash equilibrium with properly defined costs, to
be specified shortly. This relation was already observed in [5]
for the Wardrop equilibrium with a single user class, which
is well known to be equivalent to a (single-user) optimization
problem; see also [9]. Later, [10] indicated the equivalence
of the (still single-class) Wardrop equilibrium to the Nash
equilibrium in a routing game where a distinct player is
assigned to each origin-destination pair.

Returning to our Wardrop equilibrium problem with link
latencies T i

l (fl), consider a corresponding routing game
where each user i corresponds to user class i, and let the
link costs for that user be given by

J i
l (f

i
l , fl)

�
=

∫ fi
l

0

T i
l (fl − f i

l + x)dx . (14)

Recalling (4), it is easily verified that Ki
l (f

i
l , fl) = T i

l (fl),
namely T i

l is the marginal cost for this cost function. As T i
l is

strictly increasing in fl by assumption, it follows that the cost
of each user is strictly convex in its own decision variables.
The equivalence between the Nash equilibrium of this routing
game and the Wardrop equilibrium in the original model
follows immediately by comparing the optimality conditions
for the Nash equilibrium in (7) with the definition of the
Wardrop equilibrium above.

It is readily seen that the cost functions in (14) satisfy our
basic Assumptions A1-A3, except for the fact that Ki

l (f
i
l , fl)

is not strictly increasing in f i
l (as it is only a function of fl),

which violates Assumption A3. This motivates us to consider
a weaker version of this assumption.

B. Uniqueness of the NEP for Weakly Convex Games

Consider the following relaxed version of Assumption A3.
Assumption A3’: Same as Assumption A3, except that the
cost functions Ki

l (f
i
l , fl) are only required to be weakly

increasing in f i
l .

We define a weakly convex network game similarly to a
convex network game, except that Assumption A3 is replaced
by Assumption A3’. Under this weaker assumption, the
Nash equilibrium need no longer be unique even for nearly-
parallel networks. Still, the following uniqueness results can
be established; for a proof and further remarks see [25].

Theorem 2: Let (I, d,J ) be a weakly convex game over
a network G. If G is nearly parallel, then the following
uniqueness properties hold for any Nash equilibrium point:

(i) The link flows (fl, l ∈ L) are unique.
(ii) The marginal link costs (namely Ki

l (f
i
l , fl) for all l, i)

are unique.
(iii) For any user i whose costs satisfy the stronger As-

sumption A3, this user’s flows (f i
l , l ∈ L) are unique.

Consequently, the link costs for this user are unique as
well.

We note that the last part of this theorem in fact implies
Proposition 2. Further note that Assumption A3’ does not
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suffice to ensure uniqueness of the per-user flows, as can be
seen by a simple counter-example.

As outlined in the previous subsection, a multiclass
Wardrop equilibrium with non-negative, strictly increasing
latency functions T i

l (fl) may be represented as a weakly
convex network game model. Theorem 2 thus recovers the
uniqueness of the link flows for the Wardrop equilibrium
for nearly parallel networks. Furthermore, this theorem may
be applied in an obvious manner to the mixed Nash-Wardrop
problem [6]. Thus, Theorem 2 applies to any combination of
large (atomic) users and (a finite number of) infinitesimal-
user classes.

V. CONCLUSION

As networks become larger and less centralized, it is
usually hard to give theoretical predictions regarding the
precise operating conditions of the network. Equilibrium
analysis provides a useful proxy for this purpose, which has
been used both for the qualitative understanding of basic
phenomena, as well as for setting up the quantitative models
that are essential for network management. Uniqueness of
the equilibrium is important both for analysis and man-
agement. When the equilibrium is not unique, the network
behavior becomes less predictable. Simulation results, for
example, cannot be relied on to give a complete picture
of the network operation. From the management point of
view, several schemes have propose the use of pricing and
related management tools to enforce the efficiency of the
equilibrium. It is usually easy to maintain the efficiency of
some equilibrium point, but when the equilibrium is not
unique it is not clear that the intended equilibrium point will
indeed be the one to take effect, and the management task
tends to become much harder.

This paper provides a complete characterization of two-
terminal network topologies for which the Nash equilibrium
is unique, under broad conditions on the cost functions, and
for any number and size of network users. Unfortunately, the
class of networks for which this broad sense of uniqueness
holds is restricted. Thus, alongside the verification of unique-
ness for nearly parallel networks, the result also points out
those network configuration that might bring about multiple
equilibria.

Our analysis in Section IV applies to the mixed Nash-
Wardrop equilibrium problem, provided that the number of
infinitesimal-user classes is finite. A more general model,
which allows a continuum of infinitesimal-user classes along-
side the large (atomic) users, is considered in [25].

We have not dealt in this paper with multi-terminal net-
works, in the sense that different flows (of different users, or
even of the same user) may correspond to different source
and destination pairs. While either necessary or sufficient
conditions may be extracted from our results, it remains
open whether a complete characterization of topological
uniqueness may be given for this case.
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