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Abstract— We consider a hybrid control system and general
optimal control problems for this system. We suppose that
the switching strategy imposes restrictions on control sets
and we provide necessary conditions for an optimal hybrid
trajectory, stating a Hybrid Necessary Principle (HNP). Our
result generalizes various necessary principles available in the
literature.

Index Terms— Optimal control, necessary conditions, switch-
ing strategy

I. INTRODUCTION

This paper deals with optimal control problems for hybrid

systems. Our definition of hybrid system is the one used

in [8]. Roughly speaking a hybrid system is a collection

of control systems called locations, possibly defined on

different manifolds, and an automaton that rules the switch-

ings between locations. The term hybrid is commonly used

to indicate the presence of both continuous and discrete

dynamics and in our case the continuous part is given by

location controlled dynamics and the discrete part by the

automaton. An optimal control problem is obtained assigning

Lagrangian running costs on each location and final and

switching costs. Recently optimization problems for hybrid

systems have attracted a lot of attention, thus both theoretical

results and applications were developed, see [2], [3], [7],

[14]. For general theory of hybrid systems we refer to [1],

[5]. For an optimal (classical) control problem, the main

tool toward the construction of optimal trajectories, and then

optimal synthesis, is the celebrated Pontryagin Maximum

Principle (PMP). The strength of PMP is evident when

it permits to describe completely the structure of optimal

trajectories and obtain a finite dimensional reduction of

the problem. A Hybrid Maximum Principle (HMP) was

developed in [11], see also [8], [9]. A key role is played

by the switching mechanism that permits to pass from one

location to another with possible restrictions on state, time

to spend in next location and feasible controls for next

location. The first two kinds of restrictions do not affect

the general strategy of PMP and a HMP can be proved in a

similar way. However the restriction on usable controls, after

location switchings, dramatically changes the possibility of

constructing “needle variations” that are the basic ingredient

to prove PMP, and HMP is no more applicable. More pre-

cisely, a classical needle variation is no longer prolongable
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after a location switching time, therefore a new class of

“admissible needle variations” must be introduced. As a first

example (in Section III), to construct such a kind of variation,

one can prolong the family of trajectories, originating from

a needle variation, via the choice of a suitable family of

controls having continuity and weak differentiability (in L1)

properties.

Then in Section IV we introduce a general concept of

”map of variations”. The basic request is again to have

weak differentiability properties, but now in the space of

bounded Radon measures, seen as the dual of the space

of continuous functions. We are able to prove the Hybrid

Necessary Principle (HNP), using results from [6], [10],

[12]. The word maximum in this context disappears, since

necessary conditions are no more written in a supremum

form.

Section II gives basic definitions of Hybrid Systems
and states HMP, Section III deals with Admissible Needle
Variations and with simple necessary conditions for hybrid

systems where the switching strategy affects the choice of

controls. Finally Section IV introduce the concept of Map of
Variations and states HNP.

II. BASIC DEFINITIONS AND HMP

We start introducing the definition of hybrid system.

Definition 1: A hybrid control system is a 7-tuple

Σ = (Q,M,U, f,U , J,S) such that

1) Q is a finite set;

2) M = {Mq}q∈Q is a family of smooth manifolds,

indexed by Q;

3) U = {Uq}q∈Q is a family of sets;

4) f = {fq}q∈Q is a family of maps

fq : Mq × Uq �→ TMq

( TMq is the tangent bundle of Mq), such that

fq(x, u) ∈ TxMq for every (x, u) ∈ Mq × Uq;

5) U = {Uq}q∈Q is a family of sets Uq whose members

are maps u : Dom(u) → Uq, defined on some interval

Dom(u) ⊂ R;

6) J = {Jq}q∈Q is a family of subintervals of R
+;

7) S is a subset of

{(q, x, q′, x′, u(·), τ) :q, q′∈Q, x∈Mq, x
′∈Mq′ ,

u(·)∈ Uq′ , τ ∈Jq′}.
The members of Q are called locations and represent the

states of the automaton. The families M , U , are, respectively,

the family of state spaces and the family of control spaces of

Σ. For each q, the manifold Mq, the set Uq, the map fq and

the set Uq are, respectively, the state space, the control space,
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the controlled dynamical law and the class of admissible
controls at location q.

The system evolves in a location q according to the corre-

sponding controlled dynamic and then switches as prescribed

by S. The intervals Jq indicate the lengths of time intervals

on which the system can stay in location q. So, for example,

if Jq = [0,+∞[ then the system can evolve in location q on

every interval of time.

For q, q′ ∈ Q, we write

Sq,q′

def
={(x, x′)∈Mq ×Mq′ : (q, x, q′, x′, u(·), τ)∈S

for some u(·)∈Uq′ and τ ∈Jq′}.

The sets Sq,q′ are called the switching sets of Σ from location

q to location q′. Moreover, for q, q′ ∈ Q and x ∈ Mq, x′ ∈
Mq′ , we write

Uq,x,q′,x′

def
= {u(·) ∈ Uq′ : (q, x, q′, x′, u(·), τ) ∈ S

for some τ ∈ Jq′}.

The set Uq,x,q′,x′ contains the controls we can use at location

q′ if there is a switching from the point x of Mq to the point

x′ of Mq′ .

Definition 2: A hybrid state is a triplet (q, x, τ), where

q ∈ Q is the location, x ∈ Mq is the state of the control

system and τ ∈ [0, sup Jq) is the time since last switching.

We denote by HS the set of all hybrid states.

The evolution of the hybrid system is as follows. Given

a hybrid initial state (q1, x0, 0), at time t0, on some time

interval [t0, t1[, with t1 − t0 ∈ Jq1
, the system evolves

according to⎧⎨⎩
q(t) ≡ q1

ẋ(t) = fq1
(x(t), u1(t)), x(t0) = x0

τ̇(t) = 1, τ(t0) = 0

for some u1(·) ∈ Uq1
such that Dom(u1) ⊃ [t0, t1].

This means that the system remains in location q1 until

τ = t1 − t0 and it evolves on Mq1
according to the

dynamic fq1
(x(t), u1(t)) for the control u1(·) ∈ Uq1

. If the

solution to the previous system can be prolonged on the

whole interval [t0, t1], then we can choose another hybrid

state (q2, x1, 0), a control u2(·) ∈ Uq2
and t2 such that

(q1, x(t1), q2, x1, u2(·), t2 − t1) ∈ S and let the system

evolve in location q2 following the corresponding controlled

dynamics on the interval [t1, t2]:⎧⎨⎩
q(t) ≡ q2

ẋ(t) = fq2
(x(t), u2(t)), x(t1) = x1

τ̇(t) = 1, τ(t1) = 0.

Then we can proceed in the same way with a location

switching and so on. Notice that the time t1 (t2 and so on)

can be chosen freely in Jq1
(respectively Jq2

and so on),

hence it represents a control for the hybrid system.

We assume that if u ∈ Uq then every time translation of

u is in Uq, more precisely we assume

(A1) If u ∈ Uq for some q ∈ Q, then for every σ ∈ R the

control ũ(t) = u(t + σ) satisfies ũ ∈ Uq.

Hence we can always assume that t0 = 0.

Let us now give a precise definition of trajectories, cost

functionals and optimal control problems.

Definition 3: A trajectory is a map X : [0, T ] → HS,

X(t) = (q(t), x(t), τ(t)), such that the following holds.

There exist 0 = t0 < t1 < . . . < tν = T such that, if

i ∈ {1, . . . , ν}, then q(·) is constant in [ti−1, ti[ and equal

to qi ∈ Q, τ(t) = t − ti−1 on [ti−1, ti[, ti − ti−1 ∈ Jqi
.

Moreover, for every i ∈ {1, . . . , ν}, there exists ui ∈ Uqi

such that:

• xi(·) := x|]ti−1,ti[
(·) is an absolutely continuous func-

tion in ]ti−1, ti[, continuously prolongable to [ti−1, ti];
•

d
dt

xi(t) = fqi
(xi(t), ui(t)) for a.e. t ∈]ti−1, ti[;

• (xi(ti), xi+1(ti)) ∈ Sqi,qi+1
if i = 1, . . . , ν − 1;

• ui+1 ∈ Uqi,xi(ti),qi+1,xi+1(ti) if i = 1, . . . , ν − 1.

Remark 1: In this setting, for a Cauchy type problem, it

is not appropriate to choose first a sequence of controls and

then determine the trajectory associated to it, because a priori

the sequence could not be admissible, in the sense that there

could exist no trajectory corresponding to it. This is due to

the fact that in every location q, it is possible to use, as

controls, only a subset of Uq, depending on the switching

strategy.

Definition 4: If Σ is a hybrid system, then a Lagrangian
for Σ is a family L = {Lq}q∈Q, Lq : Mq × Uq → R

such that, for every trajectory X, for every i ∈ {1, . . . , ν}
and for every control ui associated to xi, the function t �→
Lqi

(xi(t), ui(t)) is integrable in ]ti−1, ti[.

Definition 5: If Σ is a hybrid system, then a switching

cost function is a family Φ = {Φq,q′}(q,q′)∈Q×Q such that

each Φq,q′ is a real valued function defined on Sq,q′ .

Definition 6: If Σ is a hybrid system, then an endpoint

cost function is a family ϕ = {ϕq,q′}(q,q′)∈Q×Q such that

each ϕq,q′ is a real valued function defined on Mq × Mq′ .

If L = {Lq}q∈Q is a Lagrangian, Φ = {Φq,q′}(q,q′)∈Q×Q

is a switching cost function, ϕ = {ϕq,q′}(q,q′)∈Q×Q is an

endpoint cost function for the hybrid control system Σ, then

we can define the corresponding cost functional C, by letting

C(X) =

ν∑
j=1

∫ tj

tj−1

Lqj
(xj(t), uj(t)) dt

+
ν−1∑
j=1

Φqj ,qj+1
(xj(tj), xj+1(tj)) + ϕq1,qν

(x1(t0), xν(tν)),

where X is a trajectory for Σ.

Definition 7: Given a hybrid control system Σ, a cost

functional C and two non empty subsets Nin,Nfin of HS,

we call with P the problem of minimizing C(X) over all

trajectories X for Σ such that:

i) (q1, x1(t0), 0) ∈ Nin ;

ii) (qν , xν(tν), tν − tν−1) ∈ Nfin.

Remark 2: Note that there could be no trajectory sat-

isfying boundary data. However, we expect that in many

applications the set Nfin should be chosen so to impose

restriction only on the final location q and point x. So if

(q, x, t) ∈ Nfin then Nfin should contain also all the points
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(q, x, s) with s ≤ supJqν
(with possible equality only if

supJqν
∈ Jqν

).

The Maximum Principle gives a necessary condition for

a trajectory X to be a solution of P . The set of variations

involves trajectories having the same history (see [8]) of the

candidate optimal one, that is having the same switching

strategy.

Definition 8: If Σ is a hybrid system and L is a La-

grangian for Σ, then we say that (ψ,ψ0) is an adjoint pair

along a trajectory X if:

1) ψ = (ψ1, . . . , ψν) is such that, for every i ∈
{1, . . . , ν}, ψi : [ti−1, ti] → T ∗Mqi

is an absolutely

continuous function, ψi(t) ∈ T ∗
xi(t)

Mqi
and

ψ̇i(t) = − < ψi(t),
∂

∂x
fqi

(xi(t), ui(t)) >

+ψ0
∂

∂x
Lqi

(xi(t), ui(t))

for a.e. t ∈ [ti−1, ti];
2) ψ0 ∈ R

+.

In order to state the switching condition, we need a

concept of a tangent cone. In this paper, as in [12], we use

the notion of a Boltyanskii approximating cone.

Definition 9: Let S be a subset of a smooth manifold X
and let s̄ ∈ S. A Boltyanskii approximating cone to S at s̄ is

a closed convex cone K in the tangent space Ts̄X such that

there exists a neighborhood W of 0 in Ts̄X and a continuous

map ω : W ∩ K → S with the property that ω(0) = s̄ and

ω(w) = s̄ + w + o(‖w‖) as w → 0 via values in W ∩ K.

Definition 10: If Σ is a hybrid system, L is a Lagrangian

and Φ is a switching cost function, then we say that an adjoint

pair (ψ,ψ0) along a trajectory X satisfies the switching

condition if

(−ψi(ti), ψi+1(ti)) − ψ0∇Φqi,qi+1
(xi(ti), xi+1(ti)) ∈ K⊥

i

for every i ∈ {1, . . . , ν − 1}, where Ki is a Boltyan-

skii approximating cone to the set Sqi,qi+1
at the point

(xi(ti), xi+1(ti)) and K⊥
i is its polar cone.

Definition 11: If (ψ,ψ0) is an adjoint pair along X, and

Hi is given by

sup{< ψi(t), fqi
(xi(t), u) > −ψ0Lqi

(xi(t), u) : u ∈ Uqi
},

then we say that (ψ,ψ0) satisfies the Hamiltonian value

condition if, for every i ∈ {1,. . ., ν − 1},

• if ti−ti−1∈ Int(Jqi
), then Hi =Hν = 0;

• if ti − ti−1 is the left endpoint of Jqi
, but Jqi

is

nontrivial, then Hi ≤ 0;

• if ti − ti−1 is the right endpoint of Jqi
, but Jqi

is

nontrivial, then Hi ≥ 0.

As explained in the introduction for “simple” switching

constraints a Hybrid Maximum Principle is valid. The con-

dition ensuring this is precisely the following:

Assumption (H). For every q, q′ ∈ Q, x ∈ Mq, x′ ∈ Mq′ ,

we have Uq,x,q′,x′ = Uq′ .

Assumption (H) says that in every location q ∈ Q we can use

always all the controls in Uq. Thus the admissible controls

do not depend on the location switchings and the classical

“needle variations” are still admissible variations.

Hybrid Maximum Principle. Consider the problem P and
assume (H). Let X be a solution for P . Then, under suitable
assumptions, there exists an adjoint pair (ψ,ψ0) along
X that satisfies the switching condition, the Hamiltonian
maximization, nontriviality, transversality, and Hamiltonian
value conditions for P .

There are some technical assumptions to require for the

Hybrid Maximum Principle to hold true. These are specified

in [9], [11], [12].

III. SIMPLE NECESSARY CONDITIONS

We present some introductory results about necessary

conditions for optimality for hybrid systems that do not

satisfy assumption (H). We postpone to the next section the

statement and the proof of the Hybrid Necessary Principle.

So this section is intended as a clarifying introduction to the

subject of the next section.

Remark 3: Assumption (H) is not verified by many me-

chanical control systems. For example, to describe a car with

gears, one can use a hybrid system, where each location

corresponds to a gear of the car and the control is the

acceleration. In this case it is clear that, when a switching

from a low gear to a higher one happens, not all the controls

can be used; see [4].

Suppose that every Mq is equal to R
dq for some dq ∈ N,

dq ≥ 1 and that every Uq is a compact subset of R
l for some

l ∈ N, l ≥ 1. So fq : R
dq × Uq → R

dq and assume that

fq ∈ C2(Rdq × Uq; R
dq ). (1)

Moreover, consider the case

Uq = L
pq

loc(R;Uq) (2)

for some 1 ≤ pq ≤ +∞ and

Lq ∈ C2(Rdq × Uq; R). (3)

The symbol L
pq

loc(R;Uq) denotes the set of functions from R

to Uq belonging to Lpq (K;Uq) for every compact subset K

of R.

Remark 4: In order to avoid too many technicalities, we

prefer to consider simplified hypotheses about the manifolds,

the vector fields and the lagrangians. However it is possible

to prove the results in a similar way using weaker assump-

tions.

Needle variations are the basic tool to prove the Pontryagin
Maximum Principle in non-hybrid setting and the Hybrid
Maximum Principle in hybrid setting. Needle variations

consist in modifying the supposed optimal control in a small

interval of times and to understand how the trajectory and

the cost vary. In our case, since the choice of admissible

controls depends by the switching strategy, needle variations

do not produce admissible trajectories.

For simplicity, we consider only admissible needle vari-

ations of the following type: the control is the same of the

candidate optimal trajectory until a certain time τ̄ , then we

produce a constant variation for a small interval of times

and finally, in the following locations, we consider controls
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satisfying the switching conditions and some continuity and

differentiability properties.

Definition 12: Fix a trajectory X and i ∈ {1, . . . , ν}.

We say that the family of trajectories Xε = (q, xε, τ),
Xε : [0, T ] → HS (ε > 0) is an admissible needle variation
at location i if

1) X0 ≡ X;

2) Xε(t) = X(t) for every t ∈ [0, ti−1];
3) the curves ε �→ xε

j(tj−1) are differentiable at ε = 0+

for every j ∈ {1, . . . , ν};

4) there exists a time τ̄ ∈ [ti−1 + ε, ti] such that

uε
i (t) =

⎧⎨⎩
ui(t), t ∈ [ti−1, τ̄ − ε[,
ω, t ∈ [τ̄ − ε, τ̄ [,
ui(t), t ∈ [τ̄ , ti],

(4)

for some ω ∈ Uqi
, where the symbol uε

j (j ∈
{1, . . . , ν}) denotes the control at location j of xε

j ;

5) for every j ∈ {i + 1, . . . , ν}, uε
j → uj strongly in

L1([tj−1, tj ]) as ε → 0+ and
uε

j−uj

ε
⇀ θj weakly in

L1([tj−1, tj ]) as ε → 0+ for some θj ∈ L1([tj−1, tj ]).

Remark 5: Notice that, in Definition 12, we require that

Xε, when ε > 0, is a family of trajectories. This means

that, for a fixed ε > 0, Xε is a trajectory and hence, by

Definition 3,

(xε
j(tj), x

ε
j+1(tj)) ∈ Sqj ,qj+1

for every j ∈ {1, . . . , ν − 1} and

uε
j+1 ∈ Uqj ,xj(tj),qj+1,xj+1(tj)

for every j ∈ {1, . . . , ν − 1}.

Moreover we require the existence of a location qi, i ∈
{1, . . . , ν}, in which a variation originates. In particular we

demand that, in the fixed location qi, the variation is a

classical needle variation and so the expression of the control

uε
i is given in (4). In another location qj , j ∈ {1, . . . , ν},

j 
= i, we have the following possibilities.

1) If j < i, then uε
j = uj and xε

j = xj since the variation

originates in location qi.

2) If j > i, then we need some regularity properties

of the control with respect to the parameter ε. These

properties are described in 5 of Definition 12. Recall

that for HMP we may choose uε
j = uj so that 5 is

trivially satisfied.

For an admissible needle variation Xε we define:

vj(t) =
d

dε
xε

j(t)|ε=0
. (5)

The following lemmas holds. For a proof see [6].

Lemma 1: Let Xε be an admissible needle variation. Then

xε converges to x uniformly as ε goes to 0.

Lemma 2: Let Xε be an admissible needle variation. Then

vj ≡ 0 if j < i, vi(t) = 0 if ti−1 ≤ t < τ̄ ,{
v̇i(t) = Dxfqi

(xi(t), ui(t))vi(t),
vi(τ̄) = fqi

(xi(τ̄), ω) − fqi
(xi(τ̄ , ui(τ̄))),

(6)

in the i-location if τ̄ ≤ t ≤ ti, while⎧⎪⎨⎪⎩
v̇j(t) = Dufqj

(xj(t), uj(t))θj(t)

+Dxfqj
(xj(t), uj(t))vj(t)

vj(tj−1) = d
dε

xε
j(tj−1)|ε=0

(7)

if j > i.

Remark 6: The evolution equation for vj in general is an

affine equation, since a term depending on θj appears. For

hybrid systems with assumption (H), we may consider usual

needle variations and so the resulting equation for vj is linear.

Remark 7: It is useful to recall that equation (7) is valid

only if j > i, i.e. only if the variation is originated in a

previous location. Therefore, to prove (7) only properties 3

and 5 of Definition 12 are needed.

Let us evaluate the variation of the Lagrangian cost. Define

Gε(t) :=

j−1∑
h=1

∫ th

th−1

Lqh
(xε

h(s), uε
h(s))ds

+

∫ t

tj−1

Lqj
(xε

j(s), u
ε
j(s))ds

when tj−1 ≤ t < tj , and w(t) := d
dε

Gε(t)|ε=0+
.

Lemma 3: Let τ̄ ∈]ti−1, ti[ be the time at which an

admissible needle variation originates. If t ∈]τ̄ , ti[, then w

satisfies the following differential equation:{
ẇ(t) = ∂

∂x
Lqi

(xi(t), ui(t))vi(t)

w(τ̄) = Lqi
(xi(τ̄), ω) − Lqi

(xi(τ̄), ui(τ̄)).

Moreover if i < j ≤ ν, then we have:⎧⎪⎪⎨⎪⎪⎩
ẇ(t) = ∂

∂x
Lqj

(xj(t), uj(t))vj(t)

+ ∂
∂u

Lqj
(xj(t), uj(t))θj(t), tj−1 < t < tj

w(tj−1) = limt→t
−

j−1
w(t).

The following proposition follows from the previous lem-

mas.

Proposition 1: Let X be a trajectory and let Xε be an

admissible needle variation. Then, for every adjoint pair

(ψ,ψ0) along X and for every j ∈ {1, . . . , ν} the function

ψj(t) · vj(t) − ψ0w(t) + qj(t) (8)

is constant in [tj−1, tj ], where vj is defined by (5) and qj is

any function defined by

q̇j(t) = −ψj(t)
∂

∂u
fqj

(xj(t), uj(t))θj(t)

+ψ0
∂

∂u
Lqj

(xj(t), uj(t))θj(t)

if j > i, while qj ≡ 0 otherwise.

Proof: If j < i, then vj ≡ 0, qj ≡ 0 and w(t) = 0 for

every t ∈ [0, tj ].
If j = i, where qi is the location at which the admissible

needle variation originates, then

d

dt
[ψi(t) · vi(t) − ψ0w(t)]

= ψ̇i(t) · vi(t) + ψi(t) · v̇i(t) − ψ0ẇ(t) = 0

726



and so we have the thesis when j = i.

Now if j > i, then

d

dt
[ψj(t) · vj(t) − ψ0w(t) + qj(t)]

= ψ̇j(t) · vj(t) + ψj(t) · v̇j(t) − ψ0ẇ(t) + q̇j(t) = 0.

So, the proof is finished.

Let us deduce necessary conditions from the previous

analysis. For simplicity, consider optimal control problems

where the cost is formed only by the lagrangian part, that is

the switching cost and the endpoint cost vanish. We suppose

that X is an optimal trajectory and we consider an admissible

needle variation Xε. Clearly, by optimality, C(X) ≤ C(Xε).
This implies that

w(T ) ≥ 0.

Let us consider an adjoint pair (ψ,ψ0) along X with the

properties that, for every j ∈ {1, . . . , ν}, ψj(tj) ·vj(tj) ≤ 0.

Thus

ψν(tν) · vν(tν) − ψ0w(tν) ≤ 0.

For every qν(·) defined as in Proposition 1 with qν(tν) ≤ 0,

it holds:

ψν(t) · vν(t) − ψ0w(t) + qν(t) ≤ 0

for every t ∈ [tν−1, tν ]. Therefore in the ν − 1 location we

have

ψν−1(tν−1) · vν−1(tν−1) − ψ0w(tν−1) + qν(tν−1) ≤ 0

and so

ψν−1(t) · vν−1(t) − ψ0w(t) + qν(tν−1) + qν−1(t) ≤ 0

for every qν−1 with qν−1(tν−1) ≤ 0 and for every t ∈
[tν−2, tν−1]. Iterating this argument we conclude that

ψj(t) · vj(t) − ψ0w(t) +

ν∑
l=j+1

ql(tl−1) + qj(t) ≤ 0 (9)

for every j ∈ {1, . . . , ν}, t ∈ [tj−1, tj ] and for every function

ql with ql(tl) ≤ 0.

Equation (9) gives a necessary condition for optimality

when the hybrid system does not satisfy assumption (H).

IV. HYBRID NECESSARY PRINCIPLE

This section deals with a general Hybrid Necessary Prin-
ciple when assumption (H) does not hold. Again for sake of

simplicity we assume (1).

Let X be an optimal trajectory for the problem P and let

ε̄ > 0. We denote with K a cone in R
d1 × . . . × R

dν , with

v = (v1, . . . , vν) an element of K and with (u1, . . . , uν) the

controls of the candidate optimal hybrid trajectory X. The

aim of next definition is to give a rigorous description of

all variations we are able to consider. In analogy with [12],

we treat variations depending by two parameters: ε and v.

ε is a real positive number, while v belongs to a cone in a

finite dimensional manifold. The reader can think v as the

parameter responsible for the variation of the initial points of

each trajectory xj , j ∈ {1, . . . , ν}, and ε as parameterizing

the control variation.

Definition 13: (Map of variations). A map V defined

on [0, ε̄] × K, V (ε, v) = (x
(ε,v)
1 , u

(ε,v)
1 , . . . , x

(ε,v)
ν , u

(ε,v)
ν ),

is called a map of variations if, for every (ε, v) ∈ [0, ε̄]×K,

the following hold:

1) for every i ∈ {1, . . . , ν}, u
(ε,v)
i ∈ Uqi

and u
(δε,δv)
i →

ui in L1(ti−1, ti) as δ → 0+;

2) for every i ∈ {1, . . . , ν}, x
(ε,v)
i :]ti−1, ti[→ R

di is

an absolutely continuous function continuously pro-

longable to [ti−1, ti] such that d
dδ

x
(δε,δv)
i (ti−1)|δ=0

=
vi and

d

dt
x

(ε,v)
i (t) = fqi

(x
(ε,v)
i (t), u

(ε,v)
i (t)) for a.e. t;

3) for every i ∈ {1, . . . , ν−1}, the control u
(ε,v)
i+1 belongs

to U
qi,x

(ε,v)
i

(ti),qi+1,x
(ε,v)
i+1 (ti)

;

4) the maps

(ε, v) �→ x
(ε,v)
i (ti)

and

(ε, v) �→ γ(ε, v) :=

ν∑
i=1

∫ ti

ti−1

Lqi
(x

(ε,v)
i (t), u

(ε,v)
i (t))dt

are differentiable at (0, 0) in the direction R
+ × K;

5) for every i ∈ {1, . . . , ν}, there exist a vector-valued

Radon measure α
(ε,v)
i,f,V and a scalar Radon measure

α
(ε,v)
i,L,V such that

fqi
(xi, u

(δε,δv)
i ) − fqi

(xi, ui)

δ
⇀∗ α

(ε,v)
i,f,V

and

Lqi
(xi, u

(δε,δv)
i ) − Lqi

(xi, ui)

δ
⇀∗ α

(ε,v)
i,L,V

as δ ↓ 0, where the convergence is intended in the

weak∗ topology of the space of Radon measure, seen

as the dual of continuous functions.

We denote by V the set of all maps of variations.

Remark 8: The main reasoning in the proof of the HNP

follows the classical approach. We consider feasible cones

generated by final points of admissible variations and prof-
itable cones formed by points that realize a cost lower than

that of the candidate trajectory. To have optimality these two

cones must be separated, i.e. there exists a hyperplane that

separates the cones. From these considerations we deduce

necessary conditions.

In Definition 12 (map of variations), we require various

assumptions. In particular, the assumptions 1, 2 and 3 guar-

antee that maps of variations produce admissible trajectories

for our hybrid system. Moreover assumption 4 implies the

existence of the cone generated by the variations and, finally,

assumption 5 is necessary in order to have differentiability

properties of trajectories. Notice that we consider only weak

differentiability properties of trajectories. We remand to the

paper by Piccoli and Sussmann [10] for the general theory
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about differentiability of trajectories with respect a family of

parameters.

For V ∈ V , consider the map C̃V defined on [0, ε̄] × K

into (Rd1 × R
d2) × · · · (Rdν × R

d1) × R given by

(ε, v) �→ ((x
(ε,v)
1 (t1), x

(ε,v)
2 (t1)), . . . ,

(x(ε,v)
ν (tν), x

(ε,v)
1 (t0)), γ(ε, v)).

By Definition 13, C̃V is differentiable at (0, 0). Therefore

we may define the cone

KV := DC̃V (0, 0)([0, ε̄ × K]). (10)

Definition 14: If V ∈ V , (ψ,ψ0) is an adjoint pair along

X and (ψ−
1 , . . . , ψ−

ν ) ∈ R
d1 × · · · × R

dν , then we say that

the covector inequality holds if

−ψ0

ν∑
i=1

∫ ti

ti−1

∂

∂x
Lqi

(xi(t), ui(t))

∫ s

ti−1

Mi(s, r)dα
(ε,v)
i,f,V (r)ds

+

ν∑
i=1

(
ψ−

i · vi + ψi(ti)

∫ ti

ti−1

Mi(ti, s)dα
(ε,v)
i,f,V (s)

)

+

ν∑
i=1

ψi(ti−1)vi − ψ0

ν∑
i=1

∫ ti

ti−1

dα
(ε,v)
i,L,V (s) ≤ 0, (11)

where Mi(t, s) is the fundamental matrix solution to the

linear system ẏ(t) = ∂
∂x

fqi
(xi(t), ui(t))y(t).

Definition 15: If V ∈ V , (ψ,ψ0) is an adjoint pair along

X, (ψ−
1 , . . . , ψ−

ν ) ∈ R
d1 ×· · ·×R

dν and Ki is a Boltyanskii

approximating cone to Sqi,qi+1
at (xi(ti), xi+1(ti)) for every

i ∈ {1, . . . , ν − 1}, then we say that the general switching
condition holds if

((−ψi(ti),−ψ−
i+1)− ψ0∇Φqi,qi+1

(xi(ti), xi+1(ti)))∈K⊥
i ,

(12)

for every i ∈ {1, . . . , ν − 1}, where K⊥
i denotes the polar

of the cone Ki.

Definition 16: If V ∈ V , (ψ,ψ0) is an adjoint pair along

X, (ψ−
1 , . . . , ψ−

ν ) ∈ R
d1 ×· · ·×R

dν and Kν is a Boltyanskii

approximating cone to Sqν ,q1
at (xν(tν), x1(t0)), then we

say that the general endpoint condition holds if

((−ψν(tν),−ψ−
1 ) − ψ0∇ϕqν ,q1

(xν(tν), x1(t0))) ∈ K⊥
ν ,

(13)

where K⊥
ν is the polar of the cone Kν .

The following theorem holds.

Theorem 1: (Hybrid Necessary Principle). Let X be an

optimal trajectory for problem P . For every convex cone K̂

contained in ∪V ∈VKV , where KV is the cone of feasible

directions given by the map of variation V , there exist an

adjoint pair (ψ,ψ0) along X and (ψ−
1 , . . ., ψ−

ν )∈ R
d1 ×· · ·×

R
dν such that the covector inequality, the general switching

condition and the general endpoint condition hold for every

V ∈ V , (ε, v) ∈ [0, ε̄] × K such that DC̃V (0)(ε, v) ∈ K̂.

Proof: A complete proof of the theorem is contained

in [6]. In this paper we give just an idea of it.

Consider an optimal trajectory X. If V ∈ V , ε ∈ [0, ε̄] and

v ∈ K, then we may consider X(ε,v)(·) a candidate hybrid

trajectory obtained piecing together x
(ε,v)
i , i = 1, . . . , ν.

Then X(ε,v)(·) is a trajectory if and only if

• (x
(ε,v)
i (ti), x

(ε,v)
i+1 (ti)) ∈ Sqi,qi+1

for i = 1, . . . , ν − 1;

• (q1, x
(ε,v)
1 (t0), 0) ∈ Nin;

• (qν , x
(ε,v)
ν (tν), tν − tν−1) ∈ Nfin.

Since X is optimal we have that C(X(ε,v)) ≥ C(X) whenever

the previous conditions hold.

For every V ∈ V , the cone KV , defined in (10), is

the cone of feasible directions. Let P be the set of points

((z1, z
′
1), . . . , (zν , z′ν), r) of (Rd1×R

d2)×· · ·×(Rdν×R
d1)×

R such that (zi, z
′
i) ∈ Sqi,qi+1

for every i ∈ {1, . . . , ν} and

r ≤C(X)−
ν−1∑
i=1

Φqi,qi+1
(zi, z

′
i)−ϕq1,qν

(z′ν , zν)−
ν∑

i=1

σi(zi, z
′
i)

where σi are smooth functions, σi(xi(ti), xi+i(ti)) =
0 for every i ∈ {1, . . . , ν} and σi(zi, z

′
i) is strictly

positive if (zi, z
′
i) 
= (xi(ti), xi+i(ti)). If KP is

a Boltyanskii approximating cone to P at the point

((x1(t1), x2(t1)), . . . , (xν(tν), x1(t0)), CL(X)), where CL

is the Lagrangian cost, then the optimality of X implies that

the cones KV and KP are weakly separated; see [13]. From

this we deduce the covector inequality, the general switching

condition and the general endpoint condition.
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