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Abstract— Ill-posed inverse boundary value problems are
usually approached as problems of inference under a given
set of boundary observations. The parameters and data are
modelled as random variables so that to encompass the un-
certainty of their actual values. This uncertainty is expressed
in probability distributions of the variables which are subse-
quently conjuncted to form the basis of the regularized inverse
problem. In this work, we consider the linearized inverse
conductivity problem, also known as electrical impedance
imaging problem, where a finite set of noise infused boundary
voltage measurements is used to reconstruct the conductivity
distribution in the interior of simply connected domains.
We derive the primal and dual problems in the generalized
Tikhonov formulation, and cast the linearized inverse problem
as a quadratic optimization problem with an inequality �2
norm constraint. We show that Tikhonov regularization can
be implemented in the context of primal-dual interior point
methods to yield optimal images and regularization parame-
ters with respect to the choice of prior information equations
and the noise level in the data. The approach can be extended
in nonlinear trust-region regularization using algorithms based
on consecutive linearization steps.

I. INTRODUCTION

IN Electrical Impedance Imaging (EII), a finite number
of electrodes are positioned at the boundaries of closed

conducting domains, and while some of them are used
to inject low-frequency current patterns into the domain,
others record readings of the induced voltage potential. In
the image reconstruction problem, the interior conductivity
distribution must be recovered using the acquired noise-
infused boundary measurements. This nonlinear problem is
radically ill-posed and therefore a regularization technique
is necessitated in order to yield a stable and unique solution.
In order to solve the inverse problem, one should attend first
to the forward problem of computing the boundary Dirichlet
data when the domain’s interior electrical properties and the
excitation boundary conditions are known. For a more de-
tailed explanation on the technique and the current status of
the development in the image reconstruction in impedance
imaging we refer the interested reader to the recent review
[14].
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The technology of EII or electrical impedance tomog-
raphy (EIT) is now applied in various fields such as bio-
medical imaging, industrial process monitoring by means
of nondestructive testing and geophysics. In biomedicine,
EII applications include functional brain imaging, detection
of epilepsy, internal hemorrhage and mammography. More
information on these tomographic techniques and applica-
tions and results can be found in [10], [6] and [4]. In the
industrial environment, impedance tomography systems are
already in use for monitoring chemical processes, industrial
filters, fluidized beds and gas-liquid separators [26].

II. THE FORWARD ELECTROSTATIC PROBLEM

Let Ω⊂Rn, n = 2,3 a simply connected bounded domain
with smooth boundary ∂Ω and continuous isotropic electri-
cal conductivity x. In the low-frequency range, Maxwell’s
time-harmonic equations reduce to the elliptic partial dif-
ferential equation

∇ · (x∇u) = 0 in Ω (1)

where u is the scalar voltage potential within the domain.
If Γ1 ⊂ ∂Ω is the subset of the boundary underneath the
L disjoint electrodes, so that ∂Ω = Γ1 ∪Γ2 and Γ2 is the
inter-electrode gap, then the current density on the surface
of the l’th electrode driving a current of magnitude Il into
the domain is given by

∫
Ll

x∇u · n̂ ds =

{
Il on Γ1

0 on Γ2.
(2)

for l = 1, . . . ,L. In the above Ll denotes the surface of the
l’th electrode and n̂ the outward unit normal on ∂Ω as indi-
cated in the schematic diagram 1. The voltage measurement
Vl recorded by the l’th electrode is given by

u+ zlx∇u · n̂ = Vl on Γ1 (3)

where zl denotes the electrode’s contact impedance. The
model (1)-(3), also known as the complete electrode model
[24], admits a unique solution when the Dirichlet (ground)
condition u

∣∣
Lg

= 0 and the charge conservation principle

∑l
i=1 Il = 0 are enforced [21], [13]. For the derivation of the

forward problem we introduce the following Sobolev spaces
for the data and the parameters. For the conductivity and
potential distributions we assume x ∈ L2(Ω) and u ∈ H1(Ω)
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respectively, therefore for the boundary currents Il and mea-
surements Vl the Hilbert spaces H−1/2(Γ1) and H1/2(Γ1)
are appropriate. The measurements are to be understood
in terms of a trace operator acting on u. In domains with
arbitrary boundary shape and complicated interior structure
the forward problem is often approached numerically using
a finite element method. The description of the numerical
approximation methods is outside the scope of this paper so
it suffices to mention that the forward problem was solved
using the EIDORS package, which implements the complete
electrode model using Galerkin method, assuming piece-
wise constant conductivity and potential in the expansion of
linear nodal Lagrangian functions [17]. For more details on
the technology of finite elements and the various electrode
models in impedance imaging we refer the reader to [24],
[11] and [16].

From the solution of the forward problem, we extract
the injective, self-adjoint and positive definite Neumann to
Dirichlet mapping operator Λx := H−1/2(Γ1) → H1/2(Γ1)
which lays the foundations for the inverse problem. It was
Calderón who proved the injectivity of Λx in the linearized
impedance imaging problem and showed that the complete
knowledge of Λx in the continuum setting, uniquely deter-
mines the distribution of the interior conductivity[5]. In se-
quence, we proceed to form the nonlinear forward operator
F := L2(Ω)→ H1/2(Γ1), so that to relate the parameters of
interest to their corresponding boundary observations [17]

F(x) = yexact + ε = y (4)

Throughout the paper we assume that y are measurements
contaminated with a noise signal w of level w so that 0 <
‖y−F(x∗)‖H−1/2(Γ1) ≤ w and y /∈ R(F).

III. THE INVERSE PROBLEM

In the discrete case, where x = {xi}k
i=1 and y = {yi}m

i=1,
we allow X and Y to be the parameter and data spaces,
and consider that these are finite dimensional linear spaces
with independent homogeneous and constant probability
densities µx(x) and µy(y) respectively. To enhance compre-
hension of the material to follow we include a small intro-
duction on the main concepts involved in our analysis, in the
approach of [22]. Let X be a finite dimensional manifold
to which we assign the notion of volume. Independently of
any probability defined over X , for all A ⊆ X we assign
a volume V (A). If the element volume of the manifold with
coordinates x = {x1,x2, . . . ,xk} is dVX = v(x)dx, then the
volume of a region A ⊆ X is

VA =
∫

A
v(x)dx (5)

As X is finite dimensional, the total volume VX is finite. In
effect, if the probability density is normalized with respect
to the volume as

µ(x) =
v(x)
VX

(6)

then any region A ⊆X is associated with a probability that
is proportional to the volume VA . This notion of ‘volumetric

probability’, enables the understanding of the homogeneous
probability distribution of a certain event, and although
rather trivial in its structure, it plays a significant role in
the derivation of the inverse problem theory. According to
Tarantola in [22], no coherent inverse theory can be set
without the introduction of the homogeneous probability
distribution. From a practical point of view, it is only
in highly degenerated inverse problems that the particular
form of µ(x) has an impact on the problem. All the
probability densities f (x) defined over a set of coordinates
x of manifold X are considered to be absolutely continuous
with respect to the homogeneous probability density µ(x).

In this context, let S = X ×Y be the joint manifold
with a homogeneous marginal probability density function

µ(y,x) = µy(y)µx(x) (7)

where µx(x) and µy(y) are by definition independent. Allow
also the density function that combines the conditional
probability density of x given observations y according to
the EIT model θ(y|x) and the marginal µx(x) as

Θ(y,x) = θ(y|x)µx(x) (8)

Moreover, allow a prior probability density ρ(y,x) defined
on the manifold S reflecting the state of prior information
about the data and the solution, so that

ρ(y,x) = ρy(y)ρx(x) (9)

under the fundamental assumption that the prior probability
densities ρy(y) and ρx(x) are independent, and thus no
correlation between the data and the parameters exists apart
from what is included in Θ(y,x). When the information
content in the data is combined with the available prior
information it is easy to derive the a posteriori state of in-
formation. Applying a conjunction rule on the probabilities
we can arrive at the probability density function

σ(y,x) ∝
ρ(y,x)Θ(y,x)

µ(y,x)
(10)

from which we can deduce the required a posteriori estimate
of the parameters

σx(x) ∝ ρx(x)
∫

Y

ρy(y)θ(y|x)
µy(y)

(11)

A. The Gaussian model

Consider that we are in possession of an array of dif-
ferential data β = F(xα)− y and we seek to recover a
perturbation h in the parameters from a strictly feasible
initial estimate of the distribution xα . In this, if h is
small enough in norm, so that to be recovered from the
linearization of (4) at xα , one arrives at the algebraic system

F ′(xα)h = Ah = β (12)

where A is a linear, compact and self-adjoint integral oper-
ator with a non-closed range, the discrete Fréchet derivative
of F evaluated at xα .

3869



When the EIT model uncertainties can be described by a
Gaussian probability density function with zero mean and
standard deviation σ , embedded in a covariance matrix
Cm 
 0, where C 
 0 denotes C positive definite, with a
well defined inverse and square root, then

θ(β |h) ∝ exp
(
−1

2
‖β −F(h)‖2

C−1
m

)
(13)

If the noise in the data is also Gaussian with zero mean and
covariance matrix Cy 
 0 then

ρy(β ) ∝ exp
(
−1

2
‖β‖2

C−1
y

)
(14)

and similarly if we further assume that in the linear model
space the density function of the prior information on the
parameters is multivariate Gaussian with mean hp then

ρx(h) ∝ exp
(
−1

2
‖h−hp‖2

C−1
x

)
(15)

where Cx 
 0 is the model prior information covariance
matrix and hp ∈ intX the prior information guess on
the solution. Assuming that h and ε are independent and
importing the relations (13)-(15) into (11) yields,

σx(h) ∝exp
(
−1

2

(
F(h)−β

)T
C−1

d

(
F(h)−β

))·
exp

(
−1

2

(
(h−hp)TC−1

x (h−hp)
)) (16)

with Cd = Cm +Cy. Using (16) and F(h) ≈ Ah the solution
we seek to reconstruct corresponds to the point where the a
posteriori estimate is maximized, hence the approach leads
to a quadratic minimization problem with optimum solution

h∗ = arg max
h∈X

σx(h) ≡ arg min
h∈X

f (h) (17a)

where

f (h) =
1
2

{‖Q(Ah−β )‖2
2 +‖P(h−hp)‖2

2

}
(17b)

where Q =
√

(Cd)−1 ∈ Rm×m 
 0 and P =
√

(Cx)−1 ∈
Rk×k 
 0. In the above formulation, one should notice that
none of the actual covariances is used; indeed it is merely
their inverses which are introduced in the construction of
the problem. In fact, Cx, Cy and Cd may not even exist
or their densities may be improper, however the existence
of their inverses simply imposes that fact that there is no
linear combination of the random variables, parameters or
data, that has a vanishing variance [12].

Ill-posed problems are notorious for their exhibited in-
stability when these are attempted in the framework of
unconstrained optimization algorithms [7], [9]. Consider for
instance, the case where the data are infused with some
Gaussian noise, the EIT model is thought to be exact and
there is no available prior information about the data or the
solution. In such occasion, ρy(y) = µy(y) and ρx(x) = µx(x)
and the space of the data becomes a finite subset of the
space of square integrable functions, Y ⊂ L2(Ω) effectively

reducing the linearized inverse problem into a minimum
norm problem whose solution

h† = arg min
h∈Rk

1
2

∥∥Ah−β
∥∥2

2 (18)

also referred to as the Moore-Penrose solution, is un-
bounded in norm in S [7], [2], [22]. In effect, ill-posed
problems can only be cast in the framework of constrained
optimization [3]. Due to the ill-posedness of the problem,
the discrete Fréchet derivative of the forward operator F :
X →Y evaluated in the interior of X , is an ill-conditioned
matrix with exponentially decaying eigenvalues. In fact, it
is safe to assume that in general A has a cluster of nearly
zero singular values, and thus with respect to the level
of precision in the data, it is effectively rank deficient.
From the singular value decomposition (SVD) of A∈Rm×k,
assuming m ≤ k

A = U SV T (19)

where U ∈ Rm×m and V ∈ Rk×k are the orthogonal matrices
holding the singular vectors in X and Y so that UTU = I
and V TV = I and S ∈Rm×k is the diagonal with the singular
values of A in descending order, we can obtain the nontrivial
null space of A

N (A) = {si|si ≤ w} 
= /0 (20)

and write the solution to (18) as a sum of the singular
functions weighted by the measurements

h† =
m

∑
i=1

〈ui,β 〉Y
si

vi (21)

where 〈 , 〉Y the inner product in Y and si ∼ O(e−2i). For
the solution to remain bounded the Picard criterion [18]
imposes that the coefficients 〈ui,β 〉Y should decay faster
than si. If the data vector is split into the exact and noisy
components like β = β exact +ε , we can write the minimum
norm solution in terms of the ‘correct’ and the ‘erroneous’
components

h† =
m

∑
i=1

〈ui,β exact〉Y
si

vi +
m

∑
i=1

〈ui,ε〉Y
si

vi (22)

As i → m both components seemingly increase as si → 0.
In the high frequency region, i.e. i ∼ m, the coefficients
〈ui,β exact〉Y reduce to zero due to the smoothing kernel of
the Laplacian operator in the EIT model which essentially
makes β exact = F(h∗) a low frequency smooth function. In
contrast, the values of 〈ui,ε〉Y rise asymptotically and along
with the small singular values cause h† to grow unbounded.
This is graphically illustrated in the Picard plot shown
in figure 2. This result which relates to the compactness
of the elliptic operator A is fundamental in the theory of
linear ill-posed inverse problems and we state it next for
completeness.

Definition 3.1: A linear operator A from a Hilbert space
X to a Hilbert space Y is said to be compact if it maps
bounded sets in X to relatively compact sets in Y .
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Theorem 3.2: Suppose A : X →Y where X and Y are
Hilbert spaces, is linear, bounded and therefore compact op-
erator. Suppose in addition that X is not finite dimensional.
Then A−1 : Y → X , if it exists, cannot be bounded.

Proof: The compactness of A is a direct consequence
of the Arzela-Ascoli theorem which can be found in [27].
Here we sketch a less rigorous proof based on contradiction.
Suppose the inverse A−1 exists and is bounded. Then
A−1A is also compact since the product of a bounded
and a compact operator is compact. For this to hold X
must be finite dimensional and I should not be invertible.
Consequently, A−1 must be unbounded and discontinuous.
In corollary, the linearized problem is ill-posed, violating
Hadamard’s third criterion for well-posedness [7]. In the
discrete case, A yields an ill-conditioned matrix with ex-
ponentially decreasing singular values. This completes the
proof.

IV. FORMULATING THE PRIMAL PROBLEM

Taking a first-order approximation approach by neglect-
ing O(h2) terms and above in the Taylor expansion of F
we proceed to consider the linearized regularized inverse
problem

min
h∈Rk∩{h |‖P(h−hp)‖2

2≤t}
1
2

∥∥Q(Ah−β )
∥∥2

2 (23)

where the inequality constraint imposes that the linear step
solution has a P-norm with upper bound t. The common
approach to this problem is to cast it as a bi-criterion
optimization problem following the ideas suggested by
Boyd et al [3] and Golub et al. [8], effectively combing
the Q-weighted least-squares and the inequality �2 norm
terms in a Lagrangian function. In his monumental work
on the problem, Tikhonov [23] showed that the problem
(23) admits a unique and stable regularized solution which
has the analytic form

htik = (ATC−1
d A+C−1

x )−1ATC−1
d β (24)

Assuming high quality instrumentation for the collection
of the data, so that the noise in the measurements is
uncorrelated and normally distributed around zero, and
a negligible amount of model uncertainty, the Tikhonov
solution reduces to

htik = (AT A+ τPT P)−1(AT β + τPT Php) (25)

where τ ∈ R the strictly positive regularization parameter
that weights the two norms in (23). Although, the method
is quite popular for this type of problems and it is often
preferred for its direct implementation, see also the appli-
cations in [9] and [25], it presents a fundamental difficulty;
that of computing the optimum value of the parameter τ .
This has been the subject of intense research activity in the
field of inverse problems and various numerical techniques
have been suggested, among which the L-curve criterion
by Hansen [9] and the generalized cross validation method
by Nguyen et al. [15] essentially relating the parameter to

the error level in the data. Effectively, if 0 < γ1 ≤ γ2 ≤
. . .≤ γmin(m,k) < ∞ are the generalized singular values of the
pair (A,P), so that A = USXT , P = VCXT and γi = ci + si

satisfying CTC + ST S = I, the optimum parameter τ is
known to be situated in the interior of the interval [w,γ1]
[18].

From a numerical prospective, Tikhonov regularization
performs a smooth �2 low-pass filtration in the singular
values of A thereby suppressing the high frequency compo-
nents of (A,P), that is mainly γi and ui for large i. In doing
so, it performs a systematic truncation on the eigenfunctions
of the solution, removing not only the noise amplification
but the high frequency components of the solution itself,
like sharp edges and detailed features, effectively compro-
mising the spatial resolution in the reconstructed images
in order to preserve stability. The amount of filtration
in the singular values is decided upon the choice of the
regularization parameter τ , for which we can define the so-
called Tikhonov filters

f̂i =
γ2

i

γ2
i + τ

i = 1 : min(m,k)

in which case if the effective rank of A is r < min(m,k),
the generalized Tikhonov solution takes the form

htik =
r

∑
i=1

f̂i
〈ui,β 〉Y

si
Xi +

k

∑
i=r+1

〈ui,β 〉Y Xi (26)

Notice that the low-pass filters operate by comparing the
value of the generalized singular value to the choice of the
regularization parameter, like

γi � τ ⇒ f̂i ∼ 1 and γi � τ ⇒ f̂i ∼ 0 (27)

Finding the optimal value of τ so that to optimize the
filtration is quite a hard problem in its own merits, as Rojas
et al. point out in [20] and [19]. The reports proceed to
explain that apart from controlling the inconsistencies in the
data and the model, the regularization parameter should also
measure the conformance of the probabilistically chosen
prior information, and therefore provide an estimate of how
much the regularized problem deviates from its original ill-
posed counterpart. Intuitively, from (25) and (22) it follows
that τ∗ should decay to zero as w→ 0, causing h† and htik to
coincide. Despite being a bi-criterion optimization problem
in its origins, in many respects the Tikhonov problem can
be thought of as a least squares problem with an always-
binding inequality constraint, in which case its solution
can be easily shown to satisfy the appropriate Lagrange
function. This approach, also used in [8], is adopted for
the derivation of the primal and dual inverse impedance
problems next.

V. THE PRIMAL AND DUAL INVERSE PROBLEMS

Let f : Rk → R, g : Rk → R, where g is convex and f is
non-convex. If f = 1

2‖Q(Ah−β )‖2
2 and g = 1

2‖P(h−hp)‖2
2,

then the primal Tikhonov problem is

min
h∈X ,g(h)≤t

f (h) (28)
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The Lagrange function L : Rk ×R → R of the problem is

L (h,λ ) = f (h)+λ (g(h)− t)

=
1
2

hT Aqh− cT h+
1
2

β T QT Qβ

+
λ
2

[(
hT PT Ph−2hT PT Php +‖Php‖2

2

)− t
]
(29)

with Aq = AT QT QA, c = AT QT Qβ , and infimum h∗ = (Aq +
λPT P)−1c at ∇hL = 0, and if p(t) = h∗ is the optimum
primal solution given by

p(t) = inf
h∈X ,g(h)≤t

f (h)

and R the domain of the primal function so that

R =
{

t |h ∈ X ,g(h) ≤ t, p(t) < ∞
} 
= /0

then for all dual multipliers λ ≥ 0, the dual function takes
the form

q(λ ) = inf
h∈X

{
f (h)+λg(h)

}
= inf

{(t,h) | t∈R,h∈X ,g(h)≤t}

{
f (h)+λg(h)

}
= inf

{(t,h) | t∈R,h∈X ,g(h)≤t}

{
f (h)+λ t

}
yielding the dual problem [1]

inf
λ≥0

inf
t∈R

{
p(t)+λ t

} ≡

max
λ≥0,Aq+λPT P�0

−1
2

c̃T (Aq +λPT P)−1c̃− λ
2

t
(30)

where c̃ = c + λhpPT P. The optimum inverse solution
is the point on the surface of a spherical trust-region
‖g(h)‖2

2 = t with radius t, where the composite function
{λ‖g(h)‖2

2 + ‖ f (h)‖2
2} attains its infimum. By a trivial

manipulation we can transform the primal (28) into an
unconstrained minimization problem with an objective term
Φ(h,λ ) convex in h and concave–linear in λ like

inf
h∈X

Φ(h,λ ) (31)

where

Φ(h,λ ) =
1
2

hT (Aq +λPT P)h− (cT +λhpPT P)h− λ
2

t
(32)

VI. OPTIMALITY CONDITIONS

A point (h,λ ) is considered to be the optimum solution
of the problem (23) iff it satisfies the first-order KKT
conditions of optimality

(Aq +λPT P)h = c+λhpPT P (33a)

S(λ ,h) =
λ
2

(∥∥P(h−hp)
∥∥2

2 − t
)

= 0 (33b)

λ ≥ 0 (33c)

and the Hessian of the convex Φ(h,λ )

(Aq +λPT P) 
 0 (33d)

is positive definite for all h ∈ X .

VII. THE INTERIOR POINT TRUST-REGION ALGORITHM

For the inverse problem, we implement a primal-dual
interior point trust-region algorithm, considering a total of
k +1 degrees of freedom for a model with k parameters of
interest [19]. Perturbing the optimality conditions (33) we
derive the primal-dual Newton system of equations

H(Φ)
[

δh
δλ

]
= −D(Φ)

(h,λ ) ← (h,λ )+ν(δh,δλ )
(34a)

where ν > 0 is the size of the step length in the the dual
direction and the primal-dual Hessian H(Φ)∈Rk+1×k+1 has
the form

H(Φ) =
[

∇h(∇hL ) ∇λ (∇hL )
∇hS ∇λ S

]

=
[

Aq +λPT P PT P(h−hp)
λ

(
PT P(h−hp)

)
1
2‖P(hT −hp)‖2

2 − t)

] (34b)

Similarly, the perturbed primal-dual gradient D(Φ) ∈ Rk+1

is given by

D(Φ) =
[

∇hL
S−µ

]
=

[
(Aq +λPT P)h− c−PT Php

λ
2

(∥∥P(h−hp)
∥∥2

2 − t
)
−µ

]
(34c)

where µ > 0 is the interior point method parameter which
decays asymptotically µ → 0+ as the optimum point is
approached (h,λ ) → (h∗,λ ∗).

VIII. CONCLUSIONS AND FUTURE WORK

In this work we have derived the primal and dual
problems in Tikhonov regularization and suggested a trust-
region interior point algorithm for their optimal solution.
We have demonstrated how the inverse conductivity can be
reconstructed while optimizing the Tikhonov regularization
parameter at the same time.

Implementing a Gaussian model for the uncertainty in
the model, the noise in the boundary measurements and
the prior information on the solution, yields analytic ex-
pressions for the inverse solution as the conjunction of the
probabilities is radically simplified by the presence of the
exponentials in the associated probability density functions.
Nonetheless, we anticipate that interesting analysis and
results will arise by considering alternative probability den-
sities which reflect more sophisticated priors about the con-
ductivity and noise signals. An alternative noise covariance
for example, may be more appropriate to resemble the noise
signal in industrial experiments where insufficient insulation
in the measuring leads encourages noise correlation.
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Fig. 1. The schematic diagram of an EIT system, showing a domain
Ω of conductivity distribution x, having a boundary ∂Ω and an outward
unit normal vector n̂. the diagram illustrates also the array of boundary
electrodes Γ1 =

⋃L
i=1 Γi

1 and the inter-electrode gap Γ2 = ∂Ω\Γ1.
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Fig. 2. The Picard plot for a typical example of an EIT problem with 100
measurements infused with a noise signal of σ = 10−6. The (o) line shows
the normalized exponentially decreasing singular values si, i = 1 : 100 of A,
the (�) plot connects the corresponding absolute values of the coefficients
〈ui,β 〉L2(Ω) and the (∗) line the associated i’th components of h†.
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