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Abstract— This paper considers the problem of computing
lower bounds on the worst-case performance of nonlinear
systems using gradient-based optimisation. Four different
gradient-based local optimisation methods are applied to a ro-
bust performance analysis problem for a nonlinear aeroelastic
system. The first method formulates the optimisation problem
in the classical Euler-Lagrange setting and computes the
gradient by backward integration of the resulting adjoint
system. The second method also uses the Euler-Lagrange
formulation, but uses complex perturbations to calculate the
gradient. The third method employs Sequential Quadratic
Programming, while the fourth method considered is Simulta-
neous Perturbation Stochastic Approximation (SPSA), which
uses a stochastic approach to decide the search direction.
The performance of all four methods is evaluated in terms
of computational complexity, numerical accuracy, and ease
of implementation, and compared with a standard industrial
approach based on a gridding of the uncertain parameter
space.

I. INTRODUCTION

The robustness analysis of linear time invariant (LTI)
systems subject to parametric and/or nonparametric uncer-
tainty is now a relatively mature subject, and many powerful
tools are available which can readily be applied to practical
problems - see for example [1], [2] and [3] for an overview
of recent aerospace applications and case-studies. The ro-
bustness analysis of nonlinear systems is, of course, a much
more difficult problem, and, so far, most developments in
this area have been at a theoretical level. Methods for
computing upper bounds on robust stability or performance
generally rely on generalisations of Lyapunov or Small-
Gain theories, and are often computationally intractable and
prone to conservatism. Due to the inherent non-convexity
of the problem, relatively few methods are available with
which to compute lower bounds on either robust stability
or performance - the standard approach currently employed
by the aerospace industry, for example, is exhaustive off-
line simulation using either stochastic (Monte-Carlo) or
deterministic (gridding the uncertain parameter space) ap-
proaches, [4].

In [5], a promising new approach to nonlinear robust
performance analysis was presented, which formulated the
problem in the classical Euler-Lagrange optimisation setting
[6]. This algorithm was applied successfully to the robust
performance analysis of a ducted fan experimental test rig
in [7] and an F-16 autopilot simulation in [8]. In [9],
the algorithm was modified to improve its convergence
properties, by using Armijo’s Rule, [10], instead of a simple
steepest ascent method, to update the estimate of the worst-
case uncertain parameters at each iteration. In this paper,
we consider another modification to the algorithm, i.e. we
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use the recently introduced complex perturbation approach
[11], to numerically approximate the gradient (in the stan-
dard Euler-Lagrange framework, gradient information is
calculated by backward integration of an adjoint system,
[7]). Two other gradient-based optimisation methods are
also considered in this study - Sequential Quadratic Pro-
gramming (SQP), [12] [13], and Simultaneous Perturbation
Stochastic Approximation (SPSA) [14].

In [4], the potential usefulness of optimisation methods
for the robustness analysis of complex nonlinear indus-
trial systems was highlighted. Many industrial contributors
to [4], however, felt that more computational experience
was required in applying optimisation methods to realistic
problems. The main purpose of this study (and the main
contribution of this paper) is to add to that computational
experience, and to gain some insight into the trade-offs be-
tween reliability, computational complexity and ease of im-
plementation among the different optimisation algorithms,
when applied to a realistic benchmark robustness analysis
problem. In addition, the performance of the optimisation-
based approaches described above is compared with a
standard industrial approach based on a gridding of the
uncertain parameter space. Various advantages and disad-
vantages of the different optimisation-based approaches are
revealed in the study - in general, however, their superiority
(both in terms of reliability and efficiency) to the current
industrial state-of-the-art is clearly demonstrated.

The paper is organised as follows: In Section II, the
aeroelastic system considered in the paper is described. In
Section III, the robust performance analysis problem for this
system is formulated as an optimisation problem. Section
IV briefly describes the various methods used to solve this
problem. The results of the application of each method are
presented and evaluated in Section V. Section VI contains
some conclusions.

II. A NONLINEAR AEROELASTIC SYSTEM

The aeroelastic system considered in this study consists
of a nonlinear model of a NACA 0012 airfoil with two
degrees of freedom, i.e., pitch angle, α, and plunge dis-
placement, h. The equations of motion for the system are
given by[

mT mW xα b
mW xα b Iα

] {
ḧ
α̈

}
+

[
ch 0
0 cα

] {
ḣ
α̇

}

+

[
kh 0
0 kα (α)

] {
h
α

}
=

{−L
M

} (1)

where mT is the total mass, mW is the mass of the wing
only, and Iα is the moment of inertia about the elastic
axis. The terms a and xα represent the non-dimensionalised
elastic axis and center of mass locations by the length of
midchord, b, respectively. The location of the elastic axis,
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TABLE I
UNCERTAIN PARAMETERS

Nominal Value Uncertainty Unit
Ũ = 16.0 −2.00 ≤ ∆U ≤ 2.00 [m/sec]
ã = -0.6 −0.15 ≤ ∆a ≤ 0.15 [·]
k̃α0

= 6.833 −0.68 ≤ ∆kα0
≤ 0.68 [N·m/rad]

k̃α1
= 0.0 9.00 ≤ ∆kα1

≤ 11.00 [N·m/rad2]
k̃α2

= 0.0 600.92 ≤ ∆kα2
≤ 734.45 [N·m/rad3]

k̃α3
= 0.0 23.91 ≤ ∆kα3

≤ 29.23 [N·m/rad4]
k̃α4

= 0.0 −4579.14 ≤ ∆kα4
≤ −5596.72 [N·m/rad5]

m̃T = 12.387 −0.1239 ≤ ∆mT ≤ 0.1239 [kg]
m̃W = 2.0490 −0.02049 ≤ ∆mW ≤ 0.02049 [kg]
b̃ = 0.135 −0.00135 ≤ ∆b ≤ 0.00135 [m]
ρ̃ = 1.225 −0.01225 ≤ ∆ρ ≤ 0.01225 [kg/m3]
c̃α = 0.036 −0.0018 ≤ ∆cα ≤ 0.0018 [kg·m2/sec]
c̃lα = 6.28 −0.0628 ≤ ∆clα ≤ 0.0628 [·]
c̃lβ = 3.358 −0.03358 ≤ ∆clβ

≤ 0.03358 [·]
c̃mβ = -1.94 −0.195 ≤ ∆cmβ

≤ 0.195 [·]
c̃h = 27.43 −1.3715 ≤ ∆ch ≤ 1.3715 [kg/sec]
kh = 2844.4 −284.44 ≤ ∆kh ≤ 284.44 [N/m]

TABLE II
DEPENDENT PARAMETERS

Parameter Value Unit
cmα (0.5 + a) clα [·]
xα [0.0873 − (b + a · b)] /b [m]
Iα mW x2

α b2 + 0.0517 [kg·m2]

a, has a significant role in determining the overall stability
of the system, however, its exact location is very difficult to
determine accurately. To reflect this fact, it is represented
in the model as

a = ã + ∆a (2)

where ã is a nominal value and ∆a is the predicted level of
uncertainty. The terms ch and cα are the plunge and pitch
structural damping coefficients, and the structural stiffness
for the plunge and pitch motions is given by kh and kα,
respectively. The term kα(α) is a nonlinear function of α,
given by [15]:

kα(α) =
∞∑

i=0

kαi
αi [N·m/rad] (3)

where the kαi
’s are constants. For numerical simulation

purposes, the following 4th-order approximation is used for
kα(α) [15]:

kα(α) = kα0
+ kα1

α + kα2
α2 + kα3

α3 + kα4
α4 (4)

where each of the coefficients is given by

kαi
= k̃αi

+ ∆kαi
(5)

for i = 1, 2, . . . , 4 and ∆kαi
represents a bounded level

of uncertainty for each coefficient. As shown in [15], the
above approximation closely matches experimental results
for deviations in α up to ±11.49◦. In addition, the following
quasi-steady aerodynamic model for the lift, L, and the
moment, M are used [15]:

L = ρ U2 b (clα fα + clβ β) (6a)

M = ρ U2 b2 (cmα fα + cmβ β) (6b)

where ρ is air density, U is the freestream velocity, clα

and cmα are the aerodynamic lift and moment coefficients,
respectively, β is the flap defection, and

fα =

[
α +

ḣ

U
+

(
1

2
− a

)
b α̇

U

]
(7)

See [15] for the definitions of the other terms.
There are seventeen uncertain parameters in the model,

and the nominal value and the uncertainty bound for each
of these parameters are given in Table I. Three other para-
meters in the model, which are functions of the uncertain
parameters, are given in Table II. In [15], a control law to
regulate pitch angle by adjusting the flap deflection angle
β was designed for the nominal system. Using feedback
linearisation, the desired control input for the flap deflection
angle is computed. In [15] an adaptive control law is
also designed to estimate the nonlinear torsional spring
constants, kαi

. However, only the fixed gain part of the
controller is used in the present study. For this control law,
the resulting zero dynamics are Hurwitz stable in the range
of −1 ≤ a ≤ 1 and 0 < U ≤ 30 [m/sec], [15]. Due to
physical limitations, the actual flap deflection is restricted
to ±12◦.

III. ROBUST PERFORMANCE ANALYSIS PROBLEM

Following [5], we formulate the robust performance
analysis problem using the following finite L2 gain cost
function:

max
xδ∈∆δ

J =
1

2

∫ tf

t0

gT (x)g(x)dt (8)

where t0 and tf are fixed, g(x) is a piecewise continuous
function, the cost function is subject to

ẋ = f(x, xδ) (9a)

ẋδ = 0 (9b)

where the initial condition is given by x0 = x(t0), ∆δ is a
hyperbox in �p, and p is the number of uncertain parame-
ters. Bounds for the values of the uncertain parameters xδi

are given by
xδi

≤ xδi
≤ x̄δi

(10)

for i = 1, 2, . . . , p, where xδi
and x̄δi

are constants. Hence,
the problem is to find the optimal initial condition xδ to
maximize the cost function.

For the aeroelastic system given in (1), the vector of
uncertain parameters is given by

xδ = [∆U, ∆a, ∆kα0
, ∆kα1

, ∆kα2
, ∆kα3

, ∆kα4
,

∆mT , ∆mW , ∆b, ∆ρ, ∆cα, ∆clα , ∆clβ ,

∆cmβ
, ∆ch, ∆kh

]T

(11)

where the bound for each parameter is given in Table I.
To avoid numerical problems, each uncertain parameter is
normalised so that it is bounded as follows: −1 ≤ xδi

≤ 1,
for i = 1, 2, . . . , 17.

Since the main control objective in the aeroelastic system
is regulation of the pitch angle, an appropriate cost function
for robust performance analysis is

max
xδ∈∆δ

J =
1

2

∫ tf

t0

Q1 α2(t) + Q2 α̇2(t)dt (12)
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where Q1 and Q2 are positive scaling factors, given by
10 and 1, respectively, which are used to (approximately)
relatively equally penalise the values of α and α̇, and t0
and tf are set equal to 0 and 5 sec, respectively. The
initial condition for (1) is given by α(t0) = 0.0483 [rad],
α̇(t0) = 3.1819 [rad/sec], h(t0) = 0.0135 [m], ḣ(t0) =
0.2485 [m/sec].

In the following, the different approaches used to solve
the above robust performance analysis problem are briefly
described.

A. Gridding The Uncertain Parameter Space

For the purposes of comparison with standard methods
currently employed by industry, the worst-case value of the
cost function in (12) was evaluated for all possible combi-
nations of the extreme points of the uncertain parameters.
This required 131072 (217) cost function evaluations. The
maximum value of the cost function found was 15.888
and the corresponding worst-case combination of uncertain
parameters is given by

xδ = [−1,−1,−1, +1,−1, +1, +1,−1, +1,−1,

+ 1,−1, +1,−1, +1,−1, +1]
T (13)

These results can be considered as the current industrial
benchmark for this type of problem [4]. Note that the
exponential increase in computation time places severe
limits on the number of uncertain parameters that can be
considered under this approach. In addition, since only
the vertices of the uncertain parameter space are checked,
worst-cases that occur in the interior of the parameter space
are guaranteed to be missed a priori.

B. Euler-Lagrange Optimisation Framework

In the classical Euler-Lagrange framework, the aug-
mented cost is given by

J =

∫ tf

t0

gT g + λT [f − ẋ] + λT
δ [0 − ẋδ]dt (14)

where λ and λδ are the Lagrange multipliers. Taking the
first variation of this cost, δJ , gives the following adjoint
system (the gradient is a row vector in this paper):

λ̇ = −
(

∂f

∂x

)T

λ −
(

∂g

∂x2

)T

y (15a)

λ̇δ = −
(

∂f

∂xδ

)T

λ (15b)

with boundary conditions:

λ(tf ) = 0 (16a)

λδ(tf ) = 0 (16b)

Thus, δJ becomes:

δJ = λT
δ (t0)δxδ (17)

The initial value of λδ can, therefore, be interpreted as the
gradient of the cost function with respect to the uncertain
parameters, i.e.,

λT
δ (t0) =

∂J

∂xδ

⏐⏐⏐⏐
t=t0

(18)

λδ(t0) can be obtained at each numerical iteration by
backward integration of the adjoint system, (15), with the
final condition, λδ(tf ) = 0. Considering the Lagrange
multiplier term by term

λδi
(t0) =

∂J

∂xδi

⏐⏐⏐⏐
t=t0

(19)

for i = 1, 2, . . . , p there are three possible values for the
initial condition:

x∗
δi

=

⎧⎨
⎩

xδi
= x̄δi

and λδi
(t0) > 0

xδi
= xδi

and λδi
(t0) < 0

xδi
≤ xδi

≤ x̄δi
where λδi

= 0

(20)

More details of the Euler-Lagrange framework can be found
in [6]. The original update law used in [5], [7], and [8] is
given by

xuncnst
δi

= xcurrent
δi

+ λδi
(t0) (21)

for i = 1, 2, . . . , p, so that

xupdated
δi

=

⎧⎨
⎩

xδi
, for xuncnst

δi
< xδi

x̄δi
, for xuncnst

δi
> x̄δi

xuncnst
δi

, otherwise
(22)

for i = 1, 2, . . . , p. Since the update law, (21), is an
unscaled steepest ascent direction, it may jump all over
the uncertain space when the gradient is too large and it
may converge very slowly when the gradient is too small.
Indeed, very slow convergence of the original algorithm
was reported in [16], where the algorithm was applied to a
flight control law robustness analysis problem for a Cessna
Citation aircraft. To avoid this problem, the xuncnst

δ can be
updated in the following way:

xuncnst
δi

= xcurrent
δi

+ γkλk
δi

(t0) (23)

where k is the iteration step, and γk is the step-size to
be determined. The step size γk can be chosen using the
Maximisation Rule (In minimisation problems this is known
as the Minimisation rule.) or Armijo’s Rule. In this paper
Armijo’s rule is adopted - σ and ζ are first chosen in the
range of (0, 1) and then γk is set to

γk = ζmγmax (24)

where m is the smallest integer such that

J
[
xcurrent

δ + γkλk
δ (t0)

]−J
(
xcurrent

δ

) ≥ σγk‖λk
δ (t0)‖2 (25)

The design parameters are given by σ = 10−10, ζ = 1/2,
and γmax = 1. More details of this scheme can be found in
[10]. Finally, the stop condition is given by [12]∣∣∣ J

(
x

updated
δ

)
− J

(
xcurrent

δ

)∣∣∣ ≤ ε (26)

where ε is equal to 10−6.
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C. Gradient Approximation using Complex Perturbations

Finite difference methods for gradient approximation usu-
ally try to reduce the step size as much as possible in order
to minimise the round off error. Below a certain (problem
dependent) value of the step size, however, subtraction
cancellation error will make the estimate of the gradient
equal to zero. As pointed out in [17], this problem can be
overcome if the cost function is perturbed in a complex
direction as follows:

∂J(xδ)

∂xδi

∣∣∣∣
xδ=x∗

δ

≈ Im [J(xδ + jhi)]

h
(27)

for i = 1, 2, . . . , p, where Im(·) is the imaginary part of the
argument, j is the imaginary number

√−1, hi is a vector
of the same dimension as xδ whose elements are all zero
except the i-th element which is h, and h is a real number.
The approximation error is O(h2), which is the same as
for the central difference method. Note, however, that since
for this formulation there is no subtraction cancellation
error, h can now be made arbitrarily small (as long as it
remains inside the numerical range for real numbers of the
computer). In this paper, h is set to 10−50 and the expected
numerical error is then only O(10−100). The gradient of
J(xδ) can be approximated by applying the above operation
p-times for each i.

In [11] the above complex perturbation method is applied
to approximate the gradient of a cost function J(xδ) for a
dynamical system. By substituting xδ in (9a) by xδ + jhi,
(9a) becomes ẋ = f(x, xδ + jhi). Then, the following two
sets of differential equation are obtained:

ẋR(t) = Re[f(x, xδ + jhi)] (28a)

ẋI(t) = Im[f(x, xδ + jhi)] (28b)

where Re(·) is the real part of the argument. Note that the
above operation, i.e., calculating the real and the imaginary
parts of f(x, xδ + jhi), is easy in most cases. Finally, the
solution, x(t) = xR(t) + jxI(t) is obtained by solving
the differential equation, (28), with the initial condition,
xR(t0) = x(t0) and xI(t0) = 0. After obtaining the
solution, x(t), it is substituted into the cost function, (12).
Taking the imaginary part, the approximate differential can
then be calculated using (27). By repeating this step for
each of the xδi

, the approximate gradient is obtained. The
complex perturbation approach can be used to calculate the
gradient in any gradient-based optimisation algorithm - in
this paper we used it as an alternative method to calculate
the gradient in the Euler-Lagrange algorithm described in
the previous section.

D. Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is a powerful
nonlinear programming method which has been applied
to a wide variety of problems. In each iteration of SQP,
the nonlinear optimisation problem is approximated as a
Quadratic Programming (QP) problem and the QP is solved
using the Lagrange method, active set method, etc [12] [13].

The QP problem corresponding to (8) is given by

min
sk∈�p

1

2
skT

Hksk +
∂J

∂xδ

∣∣∣∣
xδ=xk

δ

sk (29)

where Hk is the Hessian to be approximated and the
gradient of J(xδ) is computed using a finite-difference
approximation. Then, the solution for sk is determined using
some QP algorithm. Since the search direction is determined
in the above equation, the xδ is updated as follows:

xuncnst
δi

= xcurrent
δi

+ γksk (30)

where γk is determined by some maximisation rule. In
this paper, the SQP implementation in “fmincon” of the
MATLAB optimisation toolbox is used. More details about
the algorithm can be found in [18].

E. Simultaneous Perturbation Stochastic Approximation

Simultaneous Perturbation Stochastic Approximation
(SPSA) is a stochastic optimisation method. Unlike with
algorithms that use finite difference based gradient approx-
imation, the computational cost to approximate the gradient
does not increase with the dimension of the parameter
space. The stochastic approximation for the gradient is
given by [14]

gk =
J(xcurrent

δ + ck∆k) − J(xcurrent
δ )

2ck

∆
−1

k (31)

where

∆k = [∆k1, ∆k2, . . . , ∆kp]
T (32a)

∆
−1

k =
[
∆−1

k1
, ∆−1

k2
, . . . , ∆−1

kp

]T
(32b)

and ck is equal to c/(k+1)m1 . The distribution of each ∆ki

for i = 1, 2, . . . , p is the Bernoulli ±1 distribution with a
probability of 1/2 for each outcome. Several other possible
distribution functions are given in [14]. The update law is

xuncnst
δi

= xcurrent
δi

+ γkgk (33)

where γk is equal to γ/(k + 1 + A)m2 . The optimal
values for the parameters in the algorithm were chosen by
following the method suggested in [14], and they are given
as follows: m1 = 0.101, m2 = 0.602, c = 10−9, A = 30,
γ = (1 + A)0.602 × 10−3. A more detailed description of
how to choose each design parameter can be found in [14].
Finally, the algorithm stops when (26) is satisfied for 20
consecutive iterations.

IV. RESULTS AND DISCUSSION

Since the nonlinear optimisation problem considered in
this paper is likely to have multiple local optima, each
optimisation algorithm was run 100 times, each time starting
from a different randomly chosen initial guess for the
uncertain parameters. Results for the 100 trials of each
method, together with those for the gridding approach using
131072 grid points, are given in Tables III and IV. From
Table III, the maximum value of the cost function (i.e. the
best estimate of worst-case performance) was computed by
the SQP algorithm to be 17.7535, with the corresponding
worst-case uncertain parameter combination given as:

x∗
δ = [−0.30, −0.75, −1.0, +1.0, −1.0, +1.0,

+ 1.0, −1.0, +1.0, −1.0, −1.0, −1.0, +1.0,

−1.0, −1.0, −1.0, +1.0]

(34)
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TABLE III
THE COST FUNCTION VALUES FOR 100 TRIALS

Method Min Max Average Standard Deviation
Gridding 1.2216 15.8881 3.7590 2.8988

Euler-Lagrange 2.5249 17.6606 16.9590 1.4720
Complex Perturbation 16.8927 17.6971 17.3164 0.1739

SPSA1 7.6930 15.8592 12.6520 1.8124
SPSA2 1.5476 16.8531 12.6339 3.1783

SQP 2.0214 17.7535 16.2245 4.0672

TABLE IV
NUMBER OF COST FUNCTION EVALUATIONS FOR 100 TRIALS

Method Min Max Average Standard Deviation Total
Gridding 131072 131072 131072 0 131072

Euler-Lagrange 42 454 129.50 62.56 12950
Complex Perturbation 190 1718 586.19 213.95 53619

SPSA1 78 2041 380.04 444.38 38004
SPSA2 66 22212 382.39 883.88 3786010

SQP 151 2181 630.27 342.21 63027

Since the SPSA is a stochastic approach, to evaluate the performance it runs 100 times for each 100 trials.
1 the values in this row are in average sense from 100 runs for each trial.
2 the values in this row are in average sense from the total runs of all trial, i.e. 100×100 runs.
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Fig. 1. Pitch angle phase-plane plots for the nominal and the worst-case

Note that ∆U∗ and ∆a∗ are not on the boundary of their
possible range of variation (their actual values are given
by -0.61 m/sec and -0.11, respectively), and thus the true
optimal solution can never be found by a gridding approach
unless it has a very fine gridding, which is computationally
prohibitive in practice. Figures 1shows the phase-plane plot
for the pitch angle for the nominal system (all uncertainties
equal to zero) and for the worst-case parameter combina-
tion. Whereas for the nominal system the controller quickly
regulates the pitch angle to zero, the phase-plane plot for
the worst-case uncertainty combination shows the presence
of a limit cycle.

As can be seen from the tables, although each opti-
misation method was able to find an optimal or close
to optimal solution, there were significant differences in
terms of computational performance between the differ-
ent approaches. Note that since the most computationally
expensive part for this type of problem is the simulation
of the model, the computational cost is measured by the

number of function evaluations. For the gridding approach,
the number of function evaluations required is significantly
larger than for any of the optimisation methods - this is
of course inevitable for any problem with a reasonably
large number of uncertain parameter, given the exponential
growth in computation time for this approach. The SQP
method computed the maximum value of the cost function,
however, it was computationally less efficient than the other
optimisation methods. In addition, the standard deviation of
the cost found by SQP is the worst of all the methods,
i.e. it seems to be more susceptible to getting trapped
in local maxima. The Euler-Lagrange approach is clearly
the most efficient algorithm of the five considered - it
requires less than a quarter as many function evaluations
as the SQP algorithm. In terms of reliability, the average
optimal cost computed by the Euler-Lagrange approach is
also significantly closer to the true maximum value than that
computed by the SQP algorithm and the standard deviation
of the cost for 100 trials is the second smallest after the
complex perturbation.

Although the above results for the Euler-Lagrange formu-
lation are very promising, there are a number of problematic
issues with the practical implementation of this approach.
Due to the fact that this approach calculates gradient in-
formation through the backward integration of the adjoint
system, the quality of the results is particularly sensitive
to numerical integration errors. This is the reason why
the Euler-Lagrange algorithm didn’t find the exact optimal
solution - because of inaccuracy in the integration, the
gradients point in the wrong direction at the final stage
of the optimisation and the resulting convergent points are
scattered around the global optimum. The integration of the
adjoint system can also take significantly more time than
is required for integration of the original system, since all
the time histories of the states for the original system have
to be stored and interpolated to solve the adjoint system
backwards in time. In addition, we note that for complex
systems, deriving the adjoint system (15) could be a very
difficult process.
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TABLE V
WORST PARAMETERS COMBINATION FROM EACH OPTIMISATION : NORMALISED VALUE

Method ∆U ∆a ∆ka1 ∆ka2 ∆ρ ∆cmβ Distance From SQP
Gridding -1.0000 -1.0000 1.0000 1.0000 1.0000 1.0000 2.9234

Euler-Lagrange -0.3711 -0.7749 0.9970 0.4707 -0.6983 -1.0000 0.6134
Complex Perturbation -0.3525 -0.7570 0.6795 0.3566 -1.0000 -0.9931 0.7205

SPSA -1.0000 -1.0000 0.6696 0.6696 0.8162 1.0000 3.6063
SQP -0.3048 -0.7483 1.0000 1.0000 -1.0000 -1.0000 0

The complex perturbation approach found the second
highest value of the cost function after that found by SQP.
The number of function evaluations is approximately 7%
lower than that required by SQP. However, the consistency
of convergence for this method is much better than for
all other methods - the standard deviation of the cost
for 100 trials is around 10% of the values given by the
other methods. This result is not surprising because the
gradient approximation is extremely accurate with this
method. However, since the complex approach doubles the
dimension of the differential equations in the model, it
increases the computation time for the cost function evalua-
tion at each iteration. This could represent a significant extra
computational burden for systems where the dimension of
the original differential equations is already very high.

Since SPSA is a stochastic approach, to evaluate the cost
for each trial, i.e., each initial xδ, the SPSA algorithm was
run 100 times to get some probabilistic performance values.
The maximum value of the cost from the SPSA is the
worst among all the optimisation methods. The number of
function evaluations required on average , however, is quite
small. Overall, the performance of SPSA for this problem
was not very impressive. Based on the results, it would
seem to be more useful for problems where the probability
that the maximum can be obtained in a small number of
function evaluations is very high. However, the average
value of the cost obtained with this method is still much
better than that achieved by the gridding approach. Hence,
as pointed out in [14], the real power of SPSA will be shown
when the number of uncertain parameters is extremely large,
for example around several hundreds instead of seventeen.
In that case, other methods will suffer from the curse of
dimensionality but the SPSA may give some reasonable
answers with reduced computational cost.

The worst parameter combination found by each method
is shown in Table V. The parameters which are not shown in
the table are the same as (34) for all methods. In the table,
the distances from the various parameter combinations
to the worst-case found by the SQP method are shown.
The distances from the Euler-Lagrange and the complex
perturbation worst-cases are closer than the others.

V. CONCLUSIONS

The problem of analysing the worst-case performance
of a nonlinear aeroelastic system was formulated as an
optimisation problem and solved using gradient-based lo-
cal optimisation methods. A “brute-force” approach based
on a gridding of the uncertain parameter space was also
applied. Four different gradient-based local optimisation
methods were applied and evaluated. The first method
formulates the optimisation problem in the classical Euler-
Lagrange setting and computes the gradient by backward

integration of the resulting adjoint system. The second
method also uses the Euler-Lagrange formulation, but uses
complex perturbations to calculate the gradient. The third
method employs Sequential Quadratic Programming, while
the fourth method considered is Simultaneous Perturbation
Stochastic Approximation (SPSA), which uses a stochastic
approach to decide the search direction. The study high-
lighted the various advantages and disadvantages of each
method, in terms of convergence, reliability, computational
cost, and implementation difficulty. In general, gradient-
based optimisation methods were seen to outperform the
current industrial state-of-the-art for this problem.
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