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Abstract— This paper deals with the input-output decou-
pling problem with asymptotic stability for a class of m-inputs
m-outputs linear mechanical systems, through parallel con-
nection with another mechanical system, called the controller.
The paper gives a procedure for the design of a controller,
which solves the above problem under some mild sufficient
conditions, thus extending [1] where only 2-inputs 2-outputs
linear mechanical systems were considered.

I. INTRODUCTION

This paper is concerned with the input-output decoupling
problem for linear mechanical systems having m-inputs and
m-outputs (m > 2) with the approach used in the paper [1]
for systems having 2-inputs and 2-outputs. The approach
used in these two papers is quite different from the standard
one: as a matter of fact we require that the controller be
another mechanical system to be physically connected to
the given one. Hence, with the approach proposed here,
the controlled system is just another mechanical system,
having in general more degrees of freedom than the given
one, with the desired properties: it is asymptotically stable
and it is input-output decoupled. The solution of the 2-
inputs and 2-outputs case is a controller that copies some
parts of the given system and includes a speed reducer. In
general, it is necessary to duplicate only those parts that
are essential for decoupling, since copying a larger portion
of the system results in a loss of the structural properties
of reachability and observability, and, consequently, of the
possibility of stabilizing the overall system. The extension
from the case of 2-inputs and 2-outputs systems to the
generic case of m > 2 is not trivial: it turns out that if one
tries to replicate the same procedure, in almost all cases
there is a loss of reachability and observability. Hence, in
this paper we propose a different iterative algorithm for the
design of a controller. Based on the algorithm we obtain
sufficient conditions for the solvability of the problem with
the mentioned approach.

With respect to the standard way of designing a con-
troller, constituted by a generic dynamical system taking as
input the available outputs of the system (often the whole
state), and giving as output the forces or torques to be
applied to the actuated bodies, the approach taken here has
many differences, that render it interesting. Some of such
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differences are actually restrictions, in fact the proposed
controller has to be a very special dynamical system, with a
strong structure: this limits severely the possible choices for
the designer. On the other hand, with this, it is possible to
use non-causal controllers, which is quite unusual in control
theory.

Many of the concepts used in this paper are inspired
by the classical tradition of studying mechanical systems
through the analogy with suitable electric circuits (see, e.g.,
[2]) and by the use of passivity concepts [3].

For readability, the following section reports some pre-
liminaries, already present in [1], concerned mainly with
stability and stabilization of mechanical systems; such a
problem is widely studied in the control literature, for recent
results and for more references see [4], [5] and [6],[7].

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a linear mechanical system constituted by ideal
point bodies, linear springs and linear dampers, moving on
a line. Let qi(t) be the position at time t ∈ R with respect to
an inertial reference frame of the i-th body, i = 1, 2, ..., n,
where n is the number of the bodies and let q(t) :=[

q1(t) q2(t) · · · qn(t)
]T

; let Mi ∈ R,Mi > 0, be
the mass of the i-th body, i = 1, 2, ..., n. When present,
let Ki,j ∈ R (Di,j ∈ R, Di,j ≥ 0) be the coefficient of
elasticity (the damping factor) of the spring (the damper)
possibly connecting the i-th body with the j-th one, i =
1, 2, ..., n, j = i + 1, ..., n; when present, let K0,i ∈ R

(D0,i ∈ R, D0,i ≥ 0) be the coefficient of elasticity (the
damping coefficient) of the spring (the damper) possibly
connecting the i-th body (i = 1, 2, ..., n) with the ground,
constituted by an infinitely massive body (numbered with
the index 0). Without loss of generality, in all the paper the
length at rest of all the springs will be considered null.

Notation 1: A > 0 (respectively, A ≥ 0) means that ma-
trix A is real, symmetric and positive definite (respectively,
semi-definite).

Let the system be described by the following ki-
netic and potential energies and by the following dis-
sipation function, respectively: T = 1

2 q̇
T B q̇ =

1
2

∑n
i=1 Miq̇

2
i , U = 1

2q
T H q = 1

2

∑n
i=1 K0,iq

2
i +

1
2

∑n
i=1

∑n
j=i+1 Ki,j (qi − qj)

2, F = 1
2 q̇

T D q̇ =
1
2

∑n
i=1 D0,iq̇

2
i + 1

2

∑n
i=1

∑n
j=i+1 Di,j (q̇i − q̇j)

2, where B
is the generalized inertia matrix which is diagonal and
positive definite (since all the bodies have non-null mass), D
is symmetric and semi-definite positive, and H is symmetric
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and semi-definite positive if all the springs have non-
negative coefficients of elasticity.

Now, assume that m bodies (without loss of generality,
the first m ones) are actuated by external forces ui(t), i =
1, ...,m, and let u(t) :=

[
u1(t) · · · um(t)

]T
be the

input of the system. The relevant outputs of the system
are both the positions yq(t) =

[
q1(t) · · · qm(t)

]T

of the first m bodies and their velocities yv(t) =[
q̇1(t) · · · q̇m(t)

]T
. The considered mechanical sys-

tem is then described by the following equations:

B q̈(t) + D q̇(t) + H q(t) = E u(t), (1)

yq(t) = ET q(t), (2)

yv(t) = ET q̇(t), (3)

where E ∈ R
n×m,E =

[
Im 0

]T
.

Notice that det
(
B s2 + D s + H

)
is not the null func-

tion since B is non-singular. By Laplace transformation, we
have:

yq(s) = ET (B s2 + D s + H)−1E u(s),

yv(s) = ET (B s + D + H
1
s
)−1E u(s),

where yq(s) = L
{
ET q(t)

}
, yv(s) = L

{
ET q̇(t)

}
,

u(s) = L{u(t)}. In the following, the impedance matrix
Z(s) = ET (B s + D + H 1

s )−1E and the admittance
matrix Y(s) = Z−1(s) will be used repeatedly.

It is well known that a square rational matrix function
Z(s) is positive real if Re(Z(s)) is positive semi-definite
for all s having Re(s) ≥ 0; Z(s) is BIBO stable if each

entry Zi,j(s) =
Ni,j(s)
Di,j(s)

, with Ni,j(s) and Di,j(s) being co-

prime polynomials, is proper and its denominator Di,j(s)
has all the roots with negative real part; the system (1),
(2), (3) described by the impedance Z(s) is asymptotically
stable if all the roots of det(B s2 + D s + H) = 0 have
negative real part.

It can be see (see also [1]) that, if B, D and H are
positive semi-definite, then both the impedance and the
admittance of system (1), (2), (3) are positive real.

In this paper, the controller will not be a generic dy-
namical system taking as input yq(t) and/or yv(t) and
giving as output u(t), but, rather, the controller will be
another mechanical system having m terminal points to be
physically connected to the first m bodies of the system.
The connection can be either a direct one (i.e., the terminal
point is glued to the mass of the body) or through an (ideal)
speed reducer (e.g., an ideal gear reduction unit). The speed
reducer, represented schematically in Figure 1, is a two
terminal points object, without mass, friction and elasticity,
characterized by the transmission ratio r. Denoting by vi

and ui, i ∈ {a, b}, respectively, the velocity and the force
applied to the i-th terminal point of the speed reducer, the

va

vb

ua

ub

r

Fig. 1. The pictorial representation of the speed reducer.

equations describing its behaviour are

vb = r va, (4)

ub =
1
r

ua. (5)

By integrating equation (4), if qi, i ∈ {a, b}, denotes the
position of the i-th terminal point of the speed reducer, we
have qb = r qa + c, with c being an arbitrary constant that
in this paper is taken equal to 0, without loss of generality.
In the special case where r = 1, the speed reducer is
equivalent to the direct connection, whereas when r = −1,
it corresponds to inverting the velocity. In particular, if
r1, ..., rm are the transmission ratios of the reducers used
for the connection (possibly, equal to 1), the controller is
described by:

Bcq̈c(t) + Dcq̇c(t) + Hcqc(t) = 0, (6)

yc,q(t) = ET
c qc(t), (7)

with qc(t) ∈ R
nc ,Ec ∈ R

nc×m,Ec =
[

R 0
]T

, R =
diag(r1, ..., rm), Bc diagonal and positive semi-definite, Dc

symmetric and positive semi-definite, Hc symmetric and
det(Bc s2 + Dc s + Hc) being not the null function. The
overall system is then described by the following equations:

Bq̈(t) + Dq̇(t) + Hq(t) = Eu(t) + Eλ(t), (8)

Bcq̈c(t) + Dcq̇c(t) + Hcqc(t) = −Ecλ(t), (9)

yq(t) = yc,q(t), (10)

where λ(t) is the vector of the Lagrange multipliers used
in order to take into account the equality constraint (10),
which represents the forces exchanged between the system
and the controller. Notice that, by eliminating the Lagrange
multipliers and using the equality constraint (10), the overall
system can be rewritten in the form (1), i.e., as an uncon-
strained mechanical system having n + nc − m degrees of
freedom. The input of the overall system (8), (9), (10) is
still u(t) and the relevant outputs are still yq(t) and yv(t).
The control problem studied in this paper is stated formally
as follows.

Problem 1: Find, if any, a controller of the form (6),
(7) such that the overall system (8), (9), (10) is asymp-
totically stable and input-output decoupled (the latter be-
ing equivalent to be have a non-singular and diagonal
impedance/admittance matrix).

The overall system (8), (9), (10) will be called the
(mechanical) parallel connection of the system and the
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controller, because if Y(s) and Yc(s) are the admittances
of the mechanical system and of the controller, respectively,
then the admittance of the parallel connection is Yp(s) =
Y(s) + Yc(s). In addition, as for the impedance Zp(s) of
the parallel connection, it can be easily seen that, if Zc(s)
denotes the impedance of the controller,

Zp(s) = Z(s)
(
I + Z−1

c (s)Z(s)
)−1

,

i.e. the parallel connection can be seen as a feedback system
from the output yv(t), in which the transfer matrix of the
controller is Z−1

c (s). Notice that Z−1
c (s) is not necessarily

proper and, moreover, that we are interested in a controller
whose inverse be the impedance of a mechanical system,
whence the classical tools for designing a controller that
guarantees input-output decoupling with stability cannot be
used.

A crucial property of the parallel connection of two
mechanical systems is that if two systems having positive
real impedance matrices Z1(s) and Z2(s) are connected in
parallel, the impedance matrix of the parallel connection
is still positive real. However, special care is to be used
when the property of interest is the asymptotic stability of
the system, which is stronger than the real positivity. It is
stressed that the parallel connection of two asymptotically
stable mechanical systems needs not be asymptotically
stable.

We recall the well known fact (see [8]) that, for mechani-
cal systems of the form (1), (2), (3), the stabilizability from
the input u(t) and the detectability from the output yv(t)
can be tested, respectively, by means of the following two
necessary and sufficient conditions:

rank
([

B s2 + D s + H E
])

= n,

∀s ∈ C, Re(s) ≥ 0, (11)

rank
([

B s2 + D s + H
s ET

])
= n,

∀s ∈ C, Re(s) ≥ 0. (12)

Remark 1: If det(H) �= 0, then the stabilizability and
detectability conditions (11), (12) are equivalent.

Remark 2: The structural properties of stabilizability and
detectability can be lost by the mechanical parallel con-
nection even if the original mechanical system and the
controller are stabilizable and detectable.

The goal of this paper is to find a controller having
admittance matrix Yc(s) such that the overall system is
input-output decoupled and asymptotically stable. The next
three lemmas recall important facts that will be useful in
the proof of the main result. The first one is concerned
with the possibility of stabilizing a mechanical system —
having positive real impedance Z(s) — by connecting the
m actuated bodies with the ground by means of m identical
dampers having damping coefficient equal to D > 0. Such
a connection can be seen as the parallel connection of the
given mechanical system and of the controller with singular

Bc constituted by just the m dampers, having admittance
matrix Yc(s) = [diag{D, ..., D}] = Z−1

c (s).
Lemma 1: If D > 0 and Z(s) is positive real, then

Zp(s) = Z(s)(I+D Z(s))−1 is BIBO stable. If the stabiliz-
ability and detectability conditions (11) and (12) hold, then
the parallel connection having Zp(s) as impedance matrix
is asymptotically stable.

The second intermediate result (Lemmas 2 and 3) is
concerned with the possibility of rendering positive real the
impedance matrix of a mechanical system by connecting the
m actuated bodies with the ground by means of m identical
springs having a positive and sufficiently high coefficient
of elasticity K. Such a connection can be seen as the
parallel connection of the given mechanical system and of
the controller (with a singular Bc) constituted by just the m
springs, having admittance matrix Yc(s) = K

s I = Z−1
c (s).

Moreover, the description of the parallel connection in the
form (1), (2), (3) has the same B and D matrices of the
given mechanical system, whereas for its matrix Hp we
have:

Hp = H + diag

⎛
⎝K, ..., K︸ ︷︷ ︸

m times

, 0, ..., 0︸ ︷︷ ︸
n−m times

⎞
⎠ . (13)

The following is a necessary and sufficient condition for
the impedance of the mechanical system to be positive real.

Lemma 2: If B > 0, D ≥ 0 and the stabilizability and
detectability conditions (11) and (12) hold, then ET (B s+

D + H
1
s
)−1E is positive real if and only if H ≥ 0.

As for the possibility of rendering matrix Hp positive
definite through an appropriate choice of K, a necessary
and sufficient condition is given by the following lemma
(whose proof can be found in [9]).

Lemma 3: The matrix Hp in (13) can be rendered
positive definite with a suitable choice of K if and only if
the matrix Hmm ∈ R

(n−m)×(n−m) obtained by removing
the first m rows and columns of H is positive definite.
Moreover, if Hmm > 0, then there exists K̄ ≥ 0 such that
Hp > 0 for all K > K̄.

The concept of a block decoupled admittance matrix is
used in the description of the main result.

Definition 1: An m × m admittance matrix is said
to be (p, q)-block decoupled if it is of the form
blockdiag(Y1,Y2), where Y1 and Y2 are, respectively,
p × p and q × q matrices and p + q = m.

III. MAIN RESULT

Now, in order to design a controller solving Problem 1,
the (p, q)-block decoupling problem is dealt with first. Con-
sider the pictorial representation of the given mechanical
system as a non-directed graph having n + 1 vertices, one
for each body-mass and one for the ground, and one edge
for each spring and damper. The following assumption can
be made without loss of generality.
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Assumption 1: Assume that the graph associated with the
given mechanical system is connected.

Denote by M1 the system constituted by the first p actu-
ated bodies and by the springs and dampers connecting such
bodies with each other, and by M2 the system constituted
by the latter q = m− p actuated bodies and by the springs
and dampers connecting such bodies with each other.

Denote by X1 the set of the vertices (masses) that are
connected by a path of the graph with the system M1

(that is, with a body in M1), after removing the vertices
corresponding to the bodies in M2 and the ground, and all
the edges connecting such vertices. Symmetrically, define
X2 by removing M1, the ground and the relevant edges.
Let S12 = X1 ∩ X2, S1 = X1 \ {X1 ∩ S12} and S2 =
X2 \ {X2 ∩ S12}. Let n1, n2 and n3 be the cardinalities of
S1, S2 and S12, respectively.

M1 M2

S12S1 S2

K1

K12

D12

D1 K2 D2

K3 D3

K4

K5

D4

D5

K6
D6

K7

D7

Ka Da Kb Db

Fig. 2. Decomposition of the given system. For space reasons springs and
dampers are depicted in different directions, but the reader should imagine
all the motions as horizontal.

In this way, the n degrees of freedom of the given system
can be partitioned into 5 sets, represented pictorially in
Figure 2, with n = n1+n2+n3+m. In Figure 2, the spring
labeled by K1 represents a set of springs with possibly
different coefficients of elasticity, each one connecting a dif-
ferent mass of the set S12 with M1 (K1 can be understood
as the vector of such coefficients of elasticity); the same
happens for the springs labeled by K2, ...,K7,Ka,Kb and
the dampers labeled by D1, ...,D7,Da,Db. Furthermore, not
all such springs and dampers need to be actually present,
since the case when a spring is missing can be considered
by letting its coefficient of elasticity be equal to zero,
and similarly for the dampers. However, in order to be
consistent with the definition of S1, S2 and S12, for each
i ∈ {1, 2, 4, 6} either Di or Ki �= 0.

The controller proposed to solve the (p, q)-block decou-
pling problem is a nc-degrees of freedom mechanical sys-
tem, with nc = n3+m, constituted by a copy of the masses
in M1 and M2, whose coordinates will be denoted by qc,1

and qc,2, respectively, and all the masses contained in the
set S12, with (i) a copy of all the springs and dampers that in

the given system connect such masses with each other and
with the ground, (ii) m additional dampers having damping
coefficient D > 0 connecting the bodies with coordinates
qc,1 and qc,2 with the ground and (iii) m additional springs
with sufficiently high coefficient of elasticity K connecting
the same m bodies with the ground. Such a coefficient of
elasticity is to be chosen (as it will be clear in the proof)
to guarantee the asymptotic stability of the overall system.
Moreover, q speed reducers characterized by r = −1 are to
be used to connect the bodies having coordinates qc,2 with
the corresponding bodies in M2, whereas the bodies having
coordinates qc,1 are to be glued with the corresponding ones
in M1. In this way, the matrix R used in the description
of the controller is R = blockdiag(Ip,−Iq). In order to
prove the effectiveness of the proposed controller, let Σ1

denote the p × p MIMO mechanical system obtained from
the given one by fixing to the ground the masses in M2,
and removing the masses in S2 and all the springs and
dampers directly connected with the removed masses so to
obtain a system with n1+n3+p degrees of freedom, whose
inputs and outputs are denoted by u1 and y1, respectively.
Symmetrically, define Σ2 (a q×q MIMO system) by fixing
the masses in M1 and removing all the masses in S1, with
the relevant springs and dampers, so to obtain a system with
n2 + n3 + q degrees of freedom, whose inputs and outputs
are denoted by u2 and y2, respectively.

The proof of the following theorem is omitted for brevity.
Theorem 1: Under Assumption 1, if (i) the matrix Hmm

defined as in Lemma 3 is positive definite, (ii) Σ1 and Σ2

are reachable, then there exists K̄ ≥ 0 such that for each
K > K̄ the mechanical parallel connection of the given
system with the proposed controller is asymptotically stable
and (p, q)-block decoupled.

In order to obtain a full input-output decoupled system,
the described block decoupling operation has to be iterated
on the remaining admittance submatrices. The latter the-
orem gives only sufficient conditions to perform the first
block decoupling operation and gives no information about
what could happen if such an operation is iterated on the
remaining submatrices. Therefore, in the following, it will
be stated that, if, at each block decoupling step, the obtained
system satisfies some sufficient conditions, then it will be
possible to iterate the process in order to obtain a full input-
output decoupled system.

Remark 3: After an admittance matrix has been made
(p, q)-block decoupled, the p × p admittance submatrix on
the main diagonal can be seen as the admittance matrix of
the system in which the last q inputs have been zeroed,
(that is, the last q actuated bodies have been rigidly fixed
to the ground) and the masses connected by a path only
to the last q fixed bodies have been removed. Obviously, a
symmetrical result holds for the q×q admittance submatrix.

In the following, an algorithm will be presented which,
under some conditions, can be used to design a controller
that gives an overall parallel connection which input-output
decoupled and asymptotically stable. After, its effectiveness
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will be shown.
Algorithm 1: 1) Let i = 1 and Ii = {1, . . . ,m}. Let

Sysi be the given system. Let mi = m.
2) If i = m then STOP (the system is input-output block

decoupled). Otherwise, choose an actuated body Mji ,
where ji ∈ Ii.

3) Let M2 be Mji
. Let M1 be constituted by the

remaining actuated bodies of Sysi. In this way, p = 1
and q = mi − i.

4) If the system Sysi satisfies the hypotheses of The-
orem 1 (with mi replacing m), then perform the
(1,mi − i)-block decoupling operation on the system
Sysi and go to step 6). Otherwise go to step 5).

5) Choose another actuated body for Mji
, with ji ∈ Ii,

and go to step 3). If there are no more different bodies
that can be chosen, then FAIL.

6) Consider the system obtained from the parallel con-
nection of the system Sysi and the controller de-
signed at step 4) by fixing to the ground the chosen
Mji

and removing all the masses connected by a path
only to Mji

(and the relevant springs and dampers).
Let Sysi+1 be such system and Ii+1 = Ii \{ji}. Let
i ← i + 1 and mi ← mi − 1. Go to step 2.

The strategy at the basis of the proposed procedure
consists of isolating, one by one, all the actuated bodies, and
trying to find a way that makes possible to apply Theorem
1 at each step, thus obtaining, as the overall controller,
the mechanical parallel connection of m−1 subcontrollers,
designed as described in Theorem 1. The following propo-
sition shows the effectiveness of the proposed algorithm.

Theorem 2: If Algorithm 1 terminates with STOP, the
resulting overall system is input-output decoupled and
asymptotically stable.

Proof: The proposition will be proved by induction
on the number of already decoupled input-output pairs.

Basis. To show: After choosing M1, if the given system
satisfies the conditions of Theorem 1, the parallel connec-
tion of the given system and the first designed controller is
(1,m − 1)-block decoupled and asymptotically stable.

The proof of the Basis clause is a trivial application of
Theorem 1.

Step. Assume: after having performed i < m − 1 block
decoupling operations through the parallel connection of i
subcontrollers, the obtained system is asymptotically stable
and is represented by the admittance matrix

Y
i

p(s) =

⎡
⎢⎣

Yp,1(s) ··· 0 0

...
. . .

...
...

0 ··· Yp,i(s) 0

0 ··· 0 Y
i
p,i+1(s)

⎤
⎥⎦ ,

where Y
i

p,i+1(s) is a (m− i)× (m− i) matrix (the super-
script i denotes the step number in the decoupling process).
To show: if it is possible, as described in Algorithm 1,
to choose a new actuated body in a way that Theorem 1
can be applied, then the parallel connection of the system
described in the Assume clause and the (i+1)-th designed

subcontroller is asymptotically stable and is represented by
the admittance matrix

Y
i+1

p (s) =

⎡
⎢⎣

Yp,1(s) ··· 0 0

...
. . .

...
...

0 ··· Yp,i+1(s) 0

0 ··· 0 Y
i+1
p,i+2(s)

⎤
⎥⎦ ,

where Y
i+1

p,i+2(s) is a (m − i − 1) × (m − i − 1) matrix.
Consider the system obtained by fixing to the ground the

i actuated bodies corresponding to the already decoupled
input-output pairs and removing all the masses connected
by a path only to such bodies, with the relevant springs and
dampers. Such a system is represented by the admittance
matrix Y

i

p,i+1(s). Since it is possible to choose an actuated
body among the remaining m−i in a way that it is possible
to perform the block decoupling operation, the parallel
connection of this system and the (i + 1)-th controller will
be asymptotically stable and its (m−i)×(m−i) admittance
matrix will be

Y
i+1

p,i+1(s) =

[
Yp,i+1(s) 0

0 Y
i+1

p,i+2(s)

]
.

Therefore, the overall system will be represented by the
following admittance matrix (where the dependence on s is
omitted):

Y
i+1

p =

⎡
⎢⎢⎢⎢⎣

Yp,1 ··· 0 0 0

...
. . .

...
...

...

0 ··· Yp,i 0
...

0 ··· 0 Yp,i+1 0

0 ··· ··· 0 Y
i+1
p,i+2

⎤
⎥⎥⎥⎥⎦ .

The asymptotic stability of such system follows easily and it
is also clear that the latter admittance matrix is non-singular,
thus completing the proof of the correctness of the proposed
algorithm.

In the following example, the proposed algorithm will
be illustrated for a non-trivial mechanical system, with four
inputs and four outputs.

Example 1: Consider the mechanical system depicted in
Figure 3, where n = 6, Mi > 0, D36 > 0, and Ki,j > 0.
At step 1, j1 is chosen to be 1. Therefore, the relevant sets
for the design of the first controller are S12 = {}, S1 =
{M5}, S2 = {M6}. The first controller is characterized by
nc,1 = 4 and by the values K1 and D1 for the spring and
damper. At step 2, j2 = 2, and the sets for the design of the
second controller are S12 = {}, S1 = {}, S2 = {M6}.The
second controller is characterized by nc,2 = 3 and by K2

and D2. At step 3, j3 = 3, and the sets are S12 = {M6},
S1 = {}, S2 = {}. The third controller has nc,3 = 3 and
K3 and D3 as spring and damper. The overall system, i.e.,
the mechanical parallel connection of the given system and
the three designed controllers is depicted in Figure 4. In the
figure, the little boxes filled with oblique segments represent
the glue that joins two masses together, whereas the small
square boxes without text inside represent speed reducers
with r = −1.
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K15

M5 M1 M6

K05 K23

M2

K12

M3

D36

K46

M4

K34

K36q1

q2

q4

q3

u1 u2

u3 u4

Fig. 3. The mechanical system considered in Example 1.
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Fig. 4. The overall mechanical system considered in Example 1.

IV. CONCLUSIONS

In this paper the problem of input-output decoupling has
been dealt with for linear mechanical systems under the
requirement that the controller is another mechanical system
to be physically connected to the given one. The problem
has been solved for m-input m-output systems, under some
weak conditions on the structural properties of the system.
Further work will be devoted to the case of m-inputs and
m-outputs, and to nonlinear mechanical systems.
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