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Variable structure control for parabolic evolution equations

Laura Levaggi

Abstract—1In this paper it is considered a class of infinite-
dimensional control systems in a variational setting. By using
a Faedo-Galerkin method, a sequence of approximating finite
dimensional controlled differential equations is defined. On
each of these systems a variable structure control is applied
to constrain the motion on a specified surface. Under some
growth assumptions, the convergence of these approximations
to an ideal sliding state for the infinite-dimensional system is
shown. Results are then applied to the Neumann boundary
control of a parabolic evolution equation.

I. INTRODUCTION

Variable structure control methods and in particular sliding
mode controls, are by now recognised as classical tools for
the regulation of systems governed by ordinary differential
equations in a finite dimensional setting. For an overview of
the finite-dimensional theory see [1].

While being easy to design, they possess attractive prop-
erties of robustness and insensitivity with respect to dis-
turbances and unmodeled dynamics. These characteristics
are all the more important when dealing with infinite-
dimensional systems. In many control applications such as
heat transfer processes, chemical processes, flexible manipu-
lators, the state evolution is governed by a partial differential
equation. The complexity of these plants results in models
having significant degrees of uncertainty. Thus motivated,
recent research has been devoted to the extension of sliding
mode control and therefore the use of discontinuous feedback
laws, to the infinite-dimensional setting. While earlier works
[2], [3], [4], [5] were confined to some special classes of
systems, at present both theory and application of sliding
mode control have been extended to a rather general setting
[6], [7], [8], [9], [10], [11]. In particular in [6] the key
concept of equivalent control is introduced in a general
Hilbert space framework for evolution equations governed
by unbounded linear operators that generate Cy-semigroups.
Also it is shown that, under some stability assumptions,
the ideal sliding can be uniformly approximated by “real”
motions evolving in a boundary layer of the sliding manifold,
thus ensuring the validity of the method for application
purposes. The relationship between the equivalent control
method and generalised solutions of infinite-dimensional
systems with discontinuous right-hand side is presented in
[9], [10].

All the results in the above cited literature only take
into consideration distributed control systems, i.e. they deal
with bounded input operators. In this paper we make a first
attempt to consider the extension of sliding modes to a class
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of boundary control problems in a general setting. To the
author’s knowledge there exist only a few results in this
direction in the linear case [12], [13], where by application of
integral transformations the problem is reduced to the control
of a finite-dimensional differential-difference equation. Our
approach goes instead in the direction of [14]. In Section
Il we define the general abstract variational framework in
which we set up our control problem. In particular, the
main assumptions we make on the operator governing the
evolution, are weak continuity and coerciveness, so that both
linear and non-linear operators are comprised in this setting.
In Section I we present our main result: a Faedo-Galerkin
method is used to construct a sequence of finite-dimensional
approximations of the given problem. On each of these
the standard variable structure control theory of [1] can
be applied. We then assume that for each approximation a
control law is chosen to constrain the evolution in a boundary
layer of a given sliding manifold and study the limit as
the dimensions diverge. We show that, under some growth
assumption on the norm of these controls, a limit motion
exists, which satisfies the sliding condition. Then, in Section
IV we apply the obtained results to the Neumann boundary
control of a heat equation.

II. ABSTRACT SETTING AND PROBLEM
STATEMENT

In this paper we are going to consider a class of parabolic
partial differential equations with controllers acting on the
boundary. In particular we will study the case of Neumann
boundary conditions and finite dimensional control space.
Also, we suppose that a manifold S is given, on which we
want to restrict the motion of our system. We then analyse
the problem of the existence of an admissible control law
for which this ideal sliding motion is possible.

Before going into the details of the precise abstract setting
of the problem, we show two examples of application to give
an idea of the family of systems we intend to study.

Example 2.1: Let Q) be a bounded, open subset of IR"
with smooth boundary I, 7" > 0 and A be the laplacian
differential operator on IR™. Consider the following evolution
equation

%(tw) = AQ(t,z) + q(x)Q(t,z) te(0,T), z €9
a0 (t,0) =u(t)g(o) te(0,T), o€l
Q(0,7) = Qo(x) r € Q.

(1
Here @ : [0,T] x Q — IR represents the evolution of the
“state vector”, u : [0, 7] — IR is a scalar control law, g : T' —
IR and q : IR™ — IR is bounded. This equation represents
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a model of heat conduction with both diffusion and heat
generation (if ¢ is nonnegative). Now for v : 2 — IR we can
define (informally) a sliding surface .S as the set of functions
f:Q — IR such that

[ fan@ds =0
Q
In this case a sliding motion (¢, z) on S would satisfy

Q(t,x)y(z)de =0, t>0

Example 2.2.'QIn the above example the evolution operator
governing the system motion is linear, however this is not
fundamental in our discussion. In fact the abstract setting we
are going to set up also covers nonlinear cases. For instance
we could change the operator in (1) with the following Leray-
Lions type evolution

0Q

5 (t:0) = div (a(z, Q) - VQ + b(z, Q)

where a and b are IR"-valued Carathéodory functions on
Q x IR satisfying the following conditions:

n
alz|? < Z a;;(z,Y)22;
ij=1

\Zazj(iﬁ»y)zﬂ < Bi(h(z) + |2| +[y])

Jj=1

for some a > 0, 81 > 0, h € L?(Q) and all i, z € IR",
y € IR and a.e. x € ;

|bi(z, y)| < Ba(k(x) + [yl)

for any i and y € IR, some k € L*(2), B2 > 0 and a.e.
x e Q.

A. VARIATIONAL FORMULATION

The setting of the abstract problem follows [15], [16], [17]:
let V be a separable, reflexive Banach space, H be a Hilbert
space, V' C H with continuous injection. The space H is
identified with its dual, while we denote by V' the dual space
of V, so that we have

VCcHCcCV.

For ui, us € H the scalar product in H will be denoted by
(u1,uz) and the derived norm by |u;|. We will denote by
||| the norm in V" and by || - ||« that in V. The dual pairing
between the two spaces will be written as (-, ). Also, we
will assume that on V it is defined a semi-norm [-] such that

[v] + Alv| = B|lv]l, YveV, forsome ) 3>0. (2)

It is assumed that all the above (infinite-dimensional) spaces
are real vector spaces; results can be extended to the complex
case with the necessary modifications. For any 7" > 0 we can
define the following spaces of vector-valued functions:

T
L*(0,T;V) = {f:[0,T] —>V:/O I £(®)|%dt < +o0}

L*0,T;H) ={f :[0,T] = H : sup [f(t)] <+o0}.
t€[0,T]
The space L2(0,T; V') can be defined analogously. Also, it
is possible to define on these spaces a concept of derivative,
in a distributional sense (see i. e. [16] Chapter III). The
following result [17] will be useful in the sequel.
Theorem 2.1: Let

W(0,T) = {f € L*(0,T;V) : % € L*(0,T; V’)}.

All functions in W (0,T) are, after eventual modification
on a null measure set, continuous from [0,7] in H, i..
wW(0,T) c C°0,T; H).

For t € (0,T) let A(t) : V — V' be an operator satisfying
the following assumptions:
e for all v,w € V the map

t — (A(t)v,w) is measurable; 3)
o for all ¢ and any u,v,w € V the map
a — (A(t)(u + av),w) is continuous; 4)
o there exist constants ¢; > 0, co > 0 such that

[A@®)v|l« < ellv|| +c2, Vv eV, 5)

o there exist constants o > 0 and v € IR such that

(A(t)v,v) > av]® +v|v]*Yv € V. (6)

o A(-) is 2-weakly continuous, i.e.

vg — v weakly in W(0,7T) =
A(vp(-) — A()v(-) weakly in L2(0,T;V'). (7)

Let U C IR™ be closed and convex and let f : [0, 7] x U —
V' be measurable in ¢ € [0,T] for all v € U and linear in u
for all ¢. Since it will always be understood that admissible
control laws u take values in U, we will write u € L*(0,7)
instead of L?(0,T;U) and denote by ||ul|2 the usual Lo-
norm of the function w.

We are now ready to write the abstract evolution equation
we are going to study. The evolution of the system will be
given by a vector-valued function y € W (0,T) satisfying
the following abstract Cauchy problem

{ % +A(t)y(t) = f(t,u(t)) q.o.t ®
y(0) = yo,
with w € L2(0,T) and for some yo € H (by Theorem 2.1

this makes sense). The differential equation above as to be
understood as an equality in the dual space V', i.e. setting

a(t;v,w) = (At)v,w), t>0, v,w,eV )

and in view of Theorem 2.1, the differential problem (8) is
equivalent to the following variational formulation

{ & Wt),0) +alt;y(t),0) = (f(tu(t),v) Yo eV,
y(0) = yo (10)
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Existence and uniqueness results of the solution of such
equations, under our assumptions, can be found in [15] under
monotonicity assumptions and in [16], [17] for the linear
case.

Example 2.3: Let us see how Example 2.1 fits into this
framework. Let H = L?(Q)) and

0
V_Hl(Q)_{feH: o GHi—l,...,n}.
Ox;
On V we set [v]? = |[Vo]? and ||v||? = [v]? + |[v]%. Let v €
V' be arbitrary; by scalar multiplication and using Green’s
formula one finds that the solution ) of (1) has to satisfy

G0 = [ AQw@ de + Qi)
= —/ V.Q(t,v) - Vu(z) dzx
Q
+ [ utig(o)vio)do + (a @t )0
I

Therefore setting yo = Qo and y(t) = Q(¢,-) we get the
(autonomous) variational formulation of our abstract setting
in the form (10) with

a(v,w) = (Vv, Vw) — (qu, w) an

and

<f(a10,v>:=L/nug(0)v(d)d0- (12)

r
Now (4) and (5) are easily verified and (6) follows from
afv,0) = (6] = (qv.0) = [ = (supa) o
Also, the operator A defined as (Av, w) := a(v, w) is linear
and bounded, therefore it is 2-weakly continuous and we
have (7).

Moreover, on V the trace operator 7 of restriction of a
function to the boundary of €2 is well defined [17]. The range
of 7 is the Banach space Z = H'/2(T") and ~ is continuous
from V onto H'/2(T"). Therefore f is well defined for any g
in the dual of H'/2(T"), hence for example for all g € L?(T")
and linear in u as required.

The same reasonings hold also for the nonlinear operator
in Example 2.2; in this case the proof of the required weak
continuity in (7) can be found in the literature [14], [18].

III. MAIN RESULTS

In this section we introduce the concept of sliding surface
for the control problem (10) and show how sliding motions
can be defined in this context.

Assume we are working in the framework set up in Section
II. Thanks to separability, there exists a countable basis for
V, so that it is possible to define a family {V} } ke v of finite
dimensional subspaces of V

S UN k)

Uwn=Ww

keIN

Vi, = span {v1 g, ..

such that
Vi C Vita,

Then it is possible to define approximate solutions of (10)
by projecting on the subspaces V}, using the standard Faedo-
Galerkin method. We thus define the following family of
variational problems: find yy, : [0,7] — V}, such that

{ (Wi (t),v) + alt; (1), v) = (F(t, (1)), v) Yo € Vi,

yr(0) = Yo,k
(13)

with yo 1. € Vj for all k and a sequence {uy} in L%(0,7T).
Note that, since Vj, has dimension N, the above problem
can be written as an ordinary differential equation. In fact,
since yx(t) € Vi, there exists a vector & (t) € IRN* such

that
Nk

Y(t) = > (& (t))i vk
i=1
The differential equation in (13) is satisfied for all v € Vj
iff it is valid for every element of the basis of V},. Therefore,
if
Ng
Yok = > (Eok)iVik,

i=1

fr(t) = ((f(t,ur(t), vig) i=t1,..., Ny

and
A — (o ® )y, E (1Y — aft: v A
k(t) = (aij (t))Z,J:L.-.,Nm az](t) = a(t7vl,kﬁvj’k)7
k
My = (mgj)(t))i,j:L...,Nk, m;(t) = (Vik, Vi),

the differential problem (13) is equivalent to the following
ordinary Cauchy problem

{ My, &,(t) + Ap & (t) = fr(t)
§e(0) = o k-

We now prove a convergence result for the approximations
Yk, under some conditions on the controls sequence {uy}.

Theorem 3.1: Let the assumptions in Section II be sat-
isfied and {uy} be a sequence in L2(0,7T). Let y; be the
solution of (13) and suppose that yo, — yo in H for
k — +oo. Suppose moreover that the following condition
on the growth of the control norms is satisfied

(14)

t
nwﬁm@SM/W%@Pw+Mt§T (1)
0

for some non-negative constants M and N and that there
exist a constant C' > 0 such that for any u € L*(0,T)

T
A|vwmmmﬁgcmﬁ. (16)

Then there exist a control law u* € L?(0,T) and a function
y* € W(0,T) verifying (10), such that, for some subse-
quence,

yr — y* weakly in W(0,T)

yr — Y~ weakly* in L°°(0,T; H)

up — u* weakly in L?(0,T).
PROOF. Writing (13) for v = yi(t) we get

Wk (1), yx (1) + alt; yi (1), i () = (F(E,ur (), yr(2))-

1236



As the first term on the left is in fact the time derivative of
lyx (t)|? /2, integrating the above identity we have

SnOF + [ attinn(s).u(s) ds =

%ka(O)l%r/O (f(t,un(s)), ye(s)) ds.

By (6), (2) and (16) we obtain the following inequality
1 t
Sl +a [ )P <
0

1 t
Sl OF = [ ln(s)ds
0

welula ([ ye(s) P ds + / t[yk<s>12ds)1/2

for some constant ¢ > 0. Consider now for x > 0 the
function h(z) = (ax)/2—cy/x. It is easy to show that it has
minimum for z = (c/a)?, therefore c\/z < (ax + c*/a)/2,
thus

3lnOF + 5 [ o) <

SO + (5 + |)/t| (5)ds +
2yk 5 v ; Yyr(s)|“as % U3

Now, since by hypothesis |yo.x — yo| tends to zero, the term
|y (0)]? is bounded. Moreover by (15)

t t
(0 + a / [y ()2ds < e1 + ez / ()P ds (17)
0 0

for some constants cq,cy > 0. Since o > 0 we get

t
k(O < e + e / i (5) 2 s
0

Therefore, by Gronwall’s lemma we obtain for some constant
K >0

lyellLoso,rsmy = sup |yr(t)| < K (18)

t€[0,7)

therefore from (17) we also have

T
/ [yx(s)]? ds < const
0

and lastly, using (2) and (5)

T
1ywll 22 0,7v) = (/ Ika(8)||2d5> < const,
0

T
/ |A(®)yx(t)||« dt < const.
0

Since spheres are weakly compact in both L?(0,T; V') and
L?(0,T;V"), weakly* compact in L>(0,T;H), we can
extract a subsequence of {yx} (which for simplicity we still
denote by {yx}) converging to some y* € L?(0,7;V) N
L>(0,T; H) for both the weak topology of L2(0,T;V)
and the weak* topology of L°°(0,T; H) and such that Ayy,
weakly converges to some 7 in L?(0,7;V’). By (15) we

also have that |lug||2 is bounded, thus eventually passing to
a further subsequence, there exists u* € L?(0,T) such that
uy, converges to u* weakly in L2(0, T). Also, by the linearity
of f in u we can proceed as in the proof of Theorem 1.1, p.
159 of [15] to conclude that

{ Sy (t) +n(t) = f(t,u*(t))
y(O) = Yo-

Also, by a standard argument (see i.e. [14], Theorem 3) one
can prove that ¢, — 9* weakly in L2(0,T; V'), i.e. yr. — y*
weakly in W(0,T). Thus, by (7) n(t) = A(t)y*(¢) and the
proof is complete. U

Having achieved the above convergence result, we introduce

as in [14], a set D which can be either V or a sufficiently

large open subset of H and a mapping s : D — IR™

continuously Fréchet differentiable on D. The sliding surface

S we consider is defined as S = {y € D : s(y) = 0}.

Proceeding as in [14], by slightly modifying proofs, it is

possible to prove the following

Corollary 3.1: Let the assumptions of Theorem 3.1 hold.

Let z(t) = s(yx(t)) and assume that one of the following

is satisfied:

(1) D=1V, sis affine and z;; — 0 uniformly in ¢;

(2) By(0,K) C D, V is compactly embedded in H (here
By denotes a ball in H, while K is defined in (18)
above) and zj(t) — 0 for almost every ¢ € [0, 7.

Then the limit motion y* of Theorem 3.1 belongs to the
sliding manifold S.

Remark 3.1: Note that by (14) every y; solves a finite-
dimensional problem, thus for the approximate solutions all
results of the classical theory of variable structure systems
and sliding mode control of [1] are valid. Therefore existence
results for system motions satisfying the requirements in
Corollary 3.1 and design methods to achieve them are
available. Note that under the hypothesis that f depends
linearly on u it is not necessary to rely on the Filippov
solution concept to give a meaning to the discontinuous
equations (14), since the equivalent control method can be
applied. In fact in this case the approximability property is
verified and ambiguous behaviours cannot arise. See also the
discussion of existence under relaxed hypotheses developed
in [14].

IV. AN APPLICATION

In this Section we show an application of the obtained
results on the control problem introduced in Example 2.1.
We have already proved (see Example 2.3) that this partial
differential equation with Neumann control fits in the ab-
stract setting of Section II. Also, condition (16) is a direct
consequence of the continuity of the trace operator on V.

We then set s : H — IR, with s(z) = (x,v) and
S = kerS. For convenience we suppose that the chosen
bases of the subspaces V), are orthonormal, so that the matrix
Mj, in (14) is the identity (this is not restrictive since in
the general case M} is symmetric, positive definite and
a linear change of coordinates is sufficient to reconduct
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this problem to the orthonormal one). Then, setting g =

((9,Tvik)L2(1) Ji=1,... N,» (14) can be rewritten as
{ (t) + Ak & (t) = un(t) gk
1(0) = ok

Then z4(t) = s(ui(t)) = (y
((ik,7Y) )iz1....N,- Let V() = z2(t)/2; then
V(t) = zi(t) 4 (t) = 2e(t) [vF (—Ar&r(t) + ur(t)gr) ]

By standard finite dimensional theory [1] a sliding mode
exists on Sy = {z € R™x : v}z = 0} if 4 g, # 0. Also,
in this case, setting

k(t),7) = YE&k(t), with v, =

sign (2 (t))
’Y;{%

with U(t) > |y Ag&i(t)| the sliding surface is globally
attractive and reached in finite time. Moreover, if d;, > 0
and |s(yx(0))| < dx the control

_ U)o
uk(t) = YL g |2 (t)] + Ok

constrains the motion of the system in a di-boundary layer
of Sk. Let us now consider the term ! A&, (t); since we
assumed that the basis of V}, is orthonormal, we have

Y Ar€e(t) = alyk(t), Pe ),

: V. — Vj is the projection on V. Likewise we

ug(t) = —=U(t)

where Py
have

Vg = /Fg(o) (P ) (o) ds.

Thus, if for example v € V' and
[ s@)1(@)do 20,
r

since P,y — <y in V, there exists K such that fykTgk #0
for all £ > K. In order to apply Theorem 3.1 we also have
to show that (15) holds. Recalling that

a(yx(t), P v) = (Vyx(t), VP v) — (qyk(t), P v)

we just have to show that, at least for suitable ~-s, the first
term can be estimated using |y (t)|. Proceeding formally, by
Green’s formula we have

(Vyr(t), VPrv) = = (yr(t), A(Py 7))
+ [ wo) gL P do

Thus (15) can be satisfied if sufficiently regular decompo-
sitions {V;} of H'(Q) are chosen and if the function ~y
satisfies a ~ P~y = 0, at least on some subsequence. For
example thlS is true if v € Viy for some N and d =0.

Remark 4.1: In this paper we have chosen a variational
setting for our problem, by which we can encompass also
some non-linear partial differential equations. For the linear
case, another common abstract setting involves semigroup
theory. In the above example our operator A : V' — V’ could
be, in some sense, substituted by A : D(A) C H — H, with

D) = {ye 1@ 5L =0} Ay=ay+ay
Note that the last condition on y above is related to “vy €
D(A*)”, which is frequently encountered in the literature on
output control of infinite-dimensional systems.

Remark 4.2: In many applications the function z(t) of
the example represents the system’s output. The modulus
of the control law we have chosen depends on the whole
state norm, which could be unavailable for measurement. In
[8] observers are designed to overcome this difficulty in the
case of distributed control. It would be interesting to study
their application to this case also.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have analysed the convergence behaviour
of finite dimensional Faedo-Galerkin approximations of a
class of variational problems, when sliding motions are taken
into consideration. We have thus shown that, under some
growth hypothesis on the norms of the controls, a sliding
motion exists.

This is a first attempt to extend variable structure control to
boundary control problems for infinite-dimensional systems
and much work has still to be done in this area. Apart
from the need to extend these results to different boundary
control problems, it would be interesting to study how these
results are related to a notion of equivalent control, which
has already by introduced in the infinite-dimensional setting
and to approximability of ideal sliding motions by real ones.
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