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Optimal Control of Hybrid Systems Using Statistical Learning

C. Collaro, C.T. Abdallah, A. Tornambe, and U. Dole

Abstract—1In this paper we discuss how statistical learning
methods may be used to obtain solutions to various optimal
control strategies for hybrid systems. The results are illustrated
on the problem of autonomous navigation for mobile robots in
the presence of obstacles.

I. INTRODUCTION

When dynamical systems are composed of the interaction
of continuous and discrete-dynamics, they become hybrid
systems. While such systems have been around for a long
time (temperature control, process control, telecommunica-
tions systems, manufacturing systems, are examples of hy-
brid systems), and more realistically model various physical
phenomena, it was recently that their study has become a
mainstay of control theory [1], [11]. The modeling and con-
trol of such systems relies on concepts from control theory,
computer science and simulation, as well as mathematics.
At one end of the spectrum are the usual continuous-time
or discrete-time dynamics well understood by control theo-
rists, while at the other end are the event-driven dynamics
(Automata) favored by computer scientists. The combination
of these points of views leads to various hybrid models
such as hybrid automata, hybrid Petri nets, piecewise-affine
models, etc. It turns out however, that many questions related
to the modeling and control of hybrid systems are hard,
and more specifically many decision problems (is a system
stabilizable?, is it reachable?) are NP-hard [2]. In earlier
work by one of the authors [10] and others [14], [12], it
was recommended that statistical learning techniques may
offer useful, albeit approximate answers to some NP-hard
problems. It was also shown in [10], [14], [12] and others that
some difficult optimization and robust control problems may
be approximately solved using statistical learning methods.
It is exactly this track that has led us to apply such methods
in various optimal control scenarios of hybrid systems.

The remainder of this paper is organized as follows:
Section II provides a quick overview of statistical learning
concepts. In sectionlll we present a list of optimal control
problems for hybrid systems that might benefit from the
statistical learning methods. In section IV the autonomous
control problem for mobile robots, in the presence of ob-
stacles and uncertainties is studied and statistical learning
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methods are proposed for its solution. Section V presents
our results and our conclusions are summarized in section
VL

II. STATISTICAL LEARNING OVERVIEW

In order to introduce statistical learning concepts, let
(S, A) be a measurable space and let { X, },,>1 be a sequence
of independent identically distributed (i.i.d) observations in
this space with common distribution P. We assume that this
sequence is defined on a probability space (£2, X, P). Denote
by P(S) := P(S,A) the set of all probability measures
on (S, A). Suppose P C P(S) is a class of probability
distributions such that P € P. In particular, if one has no
prior knowledge about P, then P = P(S). In this case,
we are in the setting of distribution free learning. One of
the central problems of statistical learning theory is the risk
minimization problem. It is crucial in all cases of learning
(standard concept or function learning, regression problems,
pattern recognition, etc.). It also plays an important role
in randomized (Monte Carlo) algorithms for robust control
problems, as has been shown by Vidyasagar [14]. Given
a class F of A-measurable functions f from S into [0, 1]
(e.g., decision rules in a pattern recognition problem or
performance indices in control problems), the risk functional
is defined as

Re(f)i= P(f) = [ FiP=Bf(X), f .

The goal is to find a function fp that minimizes Rp
on F. Typically, the distribution P is unknown (or, as it
occurs in many control problems, the integral of f with
respect to P is too hard to compute) and the solution of
the risk minimization problem is to be based on a sample
(X1,...,X,) of independent observations from P. In this
case, the goal of statistical learning is more modest: given
e > 0,0 € (0,1), find an estimate fn € F of fp, based on
the data (X,...,X,,), such that

Igtég)P{RP(fn) > }relng(f) +e} <. (1)

In other words, one can write that with probability 1 — 4,
Rp(fy) is within ¢ of infrer Rp(f) = R*. Denote by
N }L-J) (e;0) the minimal number n > 1 such that for some
estimate fn the bound (1) holds, and let N %P(s; 0) be the
minimal number N > 1 such that for some sequence of
estimates {f,,} and for all n > N the bound (1) holds. Let
us call the quantity N }’p(s; 0) the lower sample complexity
and the quantity N Y (g;6) the upper sample complexity of
learning. These quantities show how much data we need in
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order to guarantee certain accuracy ¢ of learning with certain
confidence level 1 — 4. Clearly, N]L_-P(g;é) < Ng,p(a;é)7
and it is easy to show that the inequality can be strict.
The upper sample complexity is used rather frequently in
statistical learning theory and is usually referred to simply
as the sample complexity.

A method of empirical risk minimization is widely used
in learning theory. Namely, the unknown distribution P is
replaced by the empirical measure P,,, defined as

1 n
Po(A) == Ia(Xy), Ac A
"o
where I4(z) =1 for z € A and I4(xz) =0 for = ¢ A. The

risk functional Rp is replaced by the empirical risk Rp,,
defined by

Re, (1) = Pu(f) = [ fdPyi= 137 1(X). [ € 7
k=1

The problem is now to minimize the empirical risk Rp, on
F, and we let fp, € F be a function that minimizes Rp,
on F.

In what follows, fp, is used as our learning algorithm,
ie. fn := fp, . Determining the sample complexity of the
empirical risk minimization method is definitely one of the
central and most challenging problems of statistical learning
theory (see, e.g., [10], or Vidyasagar [14] for the relevant
discussion in the context of robust control problems). A
reasonable upper bound for the sample complexity can be
obtained by finding the minimal value of n for which the
expected value Ef(X) is approximated uniformly over the
class F by the empirical means with given accuracy £ and
confidence level 1 — 6. More precisely, denote

N(g,9)

NE p(,0) @
= min{n >1:sup P{||P, — P|lr >¢c} < 5}
PeP

where || - ||z is the sup-norm in the space (*°(F) of all
uniformly bounded functions on F. Let us call the quantity
N(g;9) the (lower) sample complexity of empirical approx-
imation on the class F.

Unfortunately, the quantity N J%‘,P (e,9) is itself unknown
for most of the nontrivial examples of function classes, and
only rather conservative upper bounds for this quantity are
available. These bounds are expressed in terms of various
entropy characteristics and combinatorial quantities, such as
VC-dimensions, which themselves are not always known
precisely and are replaced by their upper bounds. Recent
work however [12], [14], [10] has shown the applicability
of randomized algorithms in order to find bounds on the
number of samples to come within € from an optimum point
with high confidence. It is exactly these techniques we intend
to apply on the optimal control problems discussed next.

An algorithm that was proved in [10] provides a general

solution to the optimization problems encountered so far, and
gives a bound on the number of samples n that will guarantee

some accuracy and confidence. It is this algorithm that is
used later to solve our optimization problem for a hybrid
system. Note that the algorithm does not require the function
f to be optimized to be differentiable, or even continuous.
It is only required to be measurable.

III. OpPTIMAL CONTROL OF HYBRID SYSTEMS

In order to illustrate the optimal control problems that
might benefit from such algorithms, let us first focus on the
class of hybrid systems described in [3]. Note that the robots
used in the experimental set-up in section IV can actually fit
this model, when the coordination goal is to take each robot
through a path in a minimum time while satisfying a quality
performance objective (tracking errors, collision avoidance,
etc). Consider N systems each evolving according to the
state equation

Zi = gi(zi,uint); zi(m) =G i=1,--- N 3)

The control signal w; is used to attain a desired final state
belonging to the target quality set I';(u;). If s;(u;) is the
service time (the time during which system ¢ is active), we
have the following:

si(u;) = min{t > 0; 2;(7; +t) € Ti(u;)} 4

Meanwhile, the temporal state x; which represents the time
when state z; is active, evolves according to the so-called
Lindley equation

x; = max(x;—1,a;) + s;(u;) &)

The optimal control problem for such a hybrid system is then
stated as follows,

N
min J = ZLi(azi,ui) (6)

UL, UN ‘
i=1

subject to the dynamic equations (3) and (5) and where the
function L;(x;,u;) is the cost associated with system 4. As
detailed in the paper [3], one of the main difficulties is that
the max function is non-differentiable exactly at the points
x;—1 = a;. Recall that differentiability was not needed when
applying algorithm ??. In fact, if one defines the augmented
cost

J o (z,\u) = @)
Sy [Li(ws,ws) + Ni(max(zi—1, a0) + si(us) — 27)]

where L; and s; are differentiable functions, and \ is the co-
state, immediate difficulties arise in applying the first-order
necessary conditions for optimality because of the presence
of max. One has to resort then to using generalized gradients
and non-smooth optimization techniques [4] in order to pro-
ceed further [3]. On the other hand, a randomized algorithm
rooted in statistical learning, will provide an efficient albeit
approximate solution to the minimization problem.
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IV. AUTONOMOUS CONTROL OF MOBILE ROBOTS

In order to experimentally validate our algorithms, we
focus in the remainder of the paper specifically on the
problem of autonomous navigation of mobile robots. It is
important for the autonomy of such robots that they interact
with their environment. Typically, mobile robots collect
sensor information, process them to extract features or detect
obstacles, and execute appropriate control laws for optimal,
obstacle-free navigation. However, different controllers acti-
vate different behaviors such as obstacle avoidance, approach
target, etc. and they need to be coordinated for a given
navigation task. It is this coordination that when implemented
with a hybrid automaton, helps activate an event-specific
behavior. A path following navigation task is considered here.
It involves the subtasks of obstacle avoidance and approach
target [5]. These two behaviors define the nodes of the hybrid
automaton and there is a minimum safety distance, dp4
governing the discrete transitions between them. However,
the real problem is how to coordinate these behaviors from
the point of view of safety and optimality. If we fuse them
such that they are simultaneously active and the system
control vector is the sum of their control vectors, then in
spite of achieving smooth performance, we undermine our
goals of reducing complexity and dependency. If, on the
other hand, we use hard switches [5] then the system might
experience chattering, which would definitely degrade the
overall system performance. The solution to this problem
lies in removing the Zeno properties of the system by
adding nodes to the hybrid automaton in order to regularize
the overall system. Let us suppose the system dynamics
described in the plane by [ y] = F(x,y). If Foa and Fga
represent the continuous dynamics of the obstacle avoidance
and goal attraction behaviors, respectively, then the sliding
solution that will regularize the system is chosen such that
fs L Foa [5]. This is due to the fact that the repulsive
potential field under the typical reactive obstacle avoidance
behavior is orthogonal to the surface on which the behavior
becomes active [5]. The problem now is to design a controller
such that the control variable drives the mobile robot around
the obstacles at the preferred safety margin and avoids high
curvatures in the path which cross the physical limits of
the signals that the actuators can track. The main idea is
to generate near-optimal trajectories around the obstacles to
the goal, and then convert this navigation problem into a
trajectory tracking one. With the given tracking algorithm,
the steady-state tracking error can be made very small as
the robot’s steering angle ¢ exponentially converges to its
desired value ¢4 [6].

Let us suppose that the environment is characterized by
the presence of three obstacles of different dimensions as
seen in Figure 12. Since the robot has to approach the final
target along a minimum path and safely, it has to avoid
the obstacles every time they are detected. We then need to
define optimal coordination between two different behaviors:
1) Goal Attraction or attractive behavior, and 2) Obstacle
Avoidance or reactive behavior. We assume that the reactive

behavior is valid only in a circular safety region around
the obstacle (represented by the outer circles in Figure 1),
while the attractive one is true elsewhere. Based on our
assumptions:

e (X;,Y;) — Final Destination;

o (Xo, Y) — Initial Position;

o (Xob;, Yop,) — Obstacle Position in the plane;
(Gap;, Gap — Upper and lower safety Gap Bounds;
i={A,B C’} — Three Obstacles.

Thus, we represent each behavior (continuous dynamics) of
the system as a specific node of a Control Graph, while the
Guard Conditions, associated with each edge, define discrete
transitions between these different dynamics.

Robot Trajectory
25

20

15

Fig. 1. Navigation Environment

In order to design a Hybrid Automaton of the Mobile
Robot Navigation system, we need to define the three differ-
ent behaviors that characterize the robot during its navigation
through the obstacles:

1) Goal Attraction behavior:

Fga=| Fga, Fga, ],
where Fga, = Mi = —Kgpi—Kp (x—Xy), Fga, =
Mijj = —Kay — Kpa(y — Y).

2) Obstacle Avoidance behavior:
Foa=| Foa, Foa, ],
where

1
Foa, =Mi=—-+—
($ — Xo)n

r _ M — 1
S N RS L

3) Sliding behavior:

Fs =] —Foa, Foa, |

The Sliding behavior is used to regularize the system by
adding nodes to the control graph that characterized the Hy-
brid Automaton model. The sliding dynamics are orthogonal
to the repulsive potential field (obstacle avoidance) which is
true inside the Safety Area as shown in Figure 2.
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Fig. 2. Hybrid Automaton

V. SIMULATION

The aim of the simulation is to show how statistical
learning methods may be used in order to obtain optimal
solutions to autonomous navigation of a mobile robot in the
presence of obstacles. Given the model described before,
let’s suppose the dimension of the safety areas (both the
Safety Gap and the Safety Region) changing according to
some environment conditions, for example the shape of the
obstacles or the plant of the area where the mobile robots
are presumed to move.

Since the coordination goal is to take the robot through
a minimum path avoiding undesired obstacle collisions and
satisfying some other qualities performance conditions (as
minimizing the number of commutations of the robot), let’s
define the objective function of the mobile robot problem
as a linear combination of two different parameters: f, =
%D + C'where Distance=D is the length of the path of the
robot from an initial position to a final destination, and Com-
mutation=C'is the number of changes of direction requested
to the robot to reach the final target safely. While the safety
areas are circumferences, the idea is trying to change their
dimension (by modifying the radius of each circle) for two
of the three obstacles considered in the model (A and C),
and to find the optimal condition for the navigation robot
mobile problem (3). The optimal control problem for such
a Hybrid System is then stated as: M inlN:l(%Distancei +
Commutaion;). Let us suppose that environment conditions

Robot Trajectory
25

20

15

Fig. 3. Obstacle Avoidance

allow one to consider for each circle (that identifies the
Safety Region and the Safety Gap around the obstacles A and

C) different possible dimensions Figure 4. These dimensions
are given by a combination of four different set of input
values (one set for each circle Gapy ¢ and Gap , ). After

Robot Trajectory

5]

-5

Fig. 4. Safety area combinations

defining an upper bound and a lower bound for each set
Gap, € [3,7], GapA € [2,6], Gapo € [1.5,5.5], and
Gap,, € [0.5,4.5], we define nine possible values for each
interval. It turns out that there are N =n x m x k x [ = 9*

Table 1: Input values for Robot Mobile Navigation
Gap» 3 35 4 [45] 5 [55] 6 [65] 7
Gap , 2 [25] 3 | 35| 4 [45] 5 |55 6
Gapc 150 2 |25] 3 [35] 4 |45 5 |55
Gap_, 05| 1 |15] 2 | 25| 3 | 35| 4 | 45

possible combinations that characterize a sample of inde-
pendent observations (Table 1). Each observation is obtained
by a simulation of the robot mobile’s model, according to a
particular combination of the input values. The output of each
simulation provides different values of the main parameters:
length of the path and number of commutation, so that we
can evaluate the optimal condition from a set of possible
solutions. We did however apply our learning algorithm with
3600 samples (obtained from a prior experiment), and used
the following values: K4; = 5, Kp; = 1 to navigate from
(X),Yy) = (0,0) to (Xy,Y:) = (24,24) while avoiding
obstacles at (Xoa,Yo4) = (6,6),(Xo5,Y,5) = (10,16),
and (X,c,Y,c) = (18,18). In order to reach our goal,
we used the interaction properties between Simulink and
Stateflow (fig. 5). We note each combination of the input
parameters Gap ,,Gap, .}, and Gap 4, Gapc} define a par-
ticular solution to the safe navigation problem. The general
trend is that the more the Safety Gap and the Safety Area
are decreased, the larger the number of commutations, and
the longer the length of the path. This is why the Sliding
behavior, used to regularize the system, is valid in a smaller
area (see Figures fig:dessin8,fig:dessin9,fig:dessinl0).

It turns out that most of the combinations provide a
number of commutation between values four to six (see
Figure 9), and a length of the path between 41 to 46 (Figure
10). The robot never collides with the obstacles, and it
trajectories are fairly efficient.

By choosing the parameters that minimize the objective
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Switching conditions
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1 (g,

Stateflow

Fig. 5. modeling with Simulink and Stateflow

Robot Trajectory

Fig. 6. Set [7.4,4.3]

Robot Trajectory

Fig. 7. Set [5,4.4.2]

Robot Trajectory
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15

Fig. 8. Set [7,4,5,3]

Distance Histogram

Number of simulation

0
40 45 50 55
Distances

Fig. 9. length’s path Distribution

Number of Commuation Histogram

1400

1200

1000

800

600

Number of simulation

400

2 4 6 8 10 12 14 16
Commutations

Fig. 10. Commutation Distribution

function, we can see that the optimal conditions for the
navigation of mobile robot problem are given by more than
a combination (Table 2).

In particular, we can see how the dimension of the Safety
Region, relative to the Obstacle C, has to be less than 3.5,
otherwise the robot must avoid also this obstacle, increasing
the number of commutation and the path. In the other hand,
the dimension of Obstacle A, has to be fixed to the values
Gap, = 6,Gap L= 9).

Suppose these conditions are true, then the robot never
collides any obstacle, and it reaches the target in a min-
imum path (fig.13). However, by choosing (Supgap, =
6, Infcap, = 5) and (Supgape = 4.5, Infcape = 3.5)
as input values, we can see how the trajectory of the mobile
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Table 2: Optimal combinations

Gapy Gap , Gape Gap,, D C Fo
6 5 1.5 0.5 43.354 | 3 | 16.006
6 5 1.5 1 43.354 | 3 | 16.006
6 5 1.5 1.5 43354 | 3 | 16.006
6 5 2 0.5 43.354 | 3 | 16.006
6 5 2 1 43.354 | 3 | 16.006
6 5 2 1.5 43354 | 3 | 16.006
6 5 2 2 43.354 | 3 | 16.006
6 5 2.5 0.5 43.354 | 3 | 16.006
6 5 2.5 1 43354 | 3 | 16.006
6 5 2.5 1.5 43.354 | 3 | 16.006
6 5 2.5 2 43.354 | 3 | 16.006
6 5 2.5 2.5 43.354 | 3 | 16.006
6 5 3 0.5 43.354 | 3 | 16.006
6 5 3 1 43.354 | 3 | 16.006
6 5 3 1.5 43.354 | 3 | 16.006
6 5 3 2 43.354 | 3 | 16.006
6 5 3 2.5 43.354 | 3 | 16.006
6 5 3.5 0.5 43.354 | 3 | 16.006
6 5 35 1 43.354 | 3 | 16.006
6 5 35 1.5 43.354 | 3 | 16.006
6 5 3.5 2 43.354 | 3 | 16.006
6 5 35 2.5 43.354 | 3 | 16.006
6 5 35 3 43.354 | 3 | 16.006
6 5 3.5 35 43.354 | 3 | 16.006

25

20

15

> 10

5

0

S50 5 10 15 20 2

X
Fig. 11. Optimal condition for the Robot Mobile Navigation Problem

robot is no more optimal (fig.14).

Robot Trajectory
25

20

15

Fig. 12.  Optimal condition for the Robot Mobile Navigation Problem

VI. CONCLUSIONS

In this paper, we have proposed to apply statistical learning
algorithms to various optimal control problems for hybrid

systems. Such problems are particularly suited for random-
ized algorithms due to the presence of non-differentiable cost
functions, along with continuous and discrete dynamics. We
have focused our attention on the problem of autonomous
navigation of mobile robots.

In the behavior-based method above, the robot model is
assumed certain. However, in practice, the wheel radi r; and
ro of the left and right wheels change, and as a result the
robot model usually has parametric uncertainty. Such an
imprecise model cannot have a unified controller that yields
optimal performance as described in [8]. If the uncertain
parameters take values over a finite set P then we can
design a family of estimators and controllers by discretizing
the parameter space [9]. The two approaches mentioned
above address the problem of hybrid systems based mobile
robot navigation from two different perspectives. The first
approach includes a behavior-based framework and shows
how different behaviors can be integrated and implemented
as one hybrid system. The second approach considers a
single robotic task, that of parking, and uses the hybrid
systems approach to make the overall system robust to
parametric uncertainty. A possible scenario where the two
approaches are combined will lead into a situation where
the statistical learning approaches may be applied.
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