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Abstract— Definitions for pseudospectra of an analytic matrix
function are given, where the structure of the function is
exploited. Various perturbation measures are considered and
computationally tractable formulae are derived. The results are
applied to a class of retarded delay differential equations. Special
properties of the pseudospectra of such equations are determined
and illustrated.

I. INTRODUCTION

Closeness to instability and transient response are key issues
in understanding the behaviour of physical systems subject to
perturbation. The computation of pseudospectra has become
an established tool in analysing and gaining insights for both
phenomena (see, for instance, Trefethen [1], and the references
therein). More explicitly, pseudospectra of a system are sets
in the complex plane to which its eigenvalues can be shifted
under a perturbation of a given size. In the simplest case of
a matrix (or linear operator) A, the ε-pseudospectrum Λε is
defined as

Λε(A) := {λ ∈ C : λ ∈ Λ(A + P ),
for some P with ‖P‖ ≤ ε}, (1)

where Λ denotes the spectrum and ‖ · ‖ denotes an arbitrary
matrix (or operator) norm. Equation (1) is known to be
equivalent to the following

Λε(A) = {λ ∈ C : ‖R(λ,A)‖ ≥ 1/ε},
where R(λ,A) = (λI − A)−1 denotes the corresponding
resolvent operator.

Although most systems can be written in a first-order form,
it is often advantageous to exploit the underlying structure
of an equation in its analysis, for example, one may wish to
compute pseudospectra of higher-order or delay differential
equations (DDEs). In particular, this can be of importance
in sensitivity investigations that respect the structure of the
governing system. For example, many physical problems in-
volving vibration of structural systems and vibro-acoustics
are modelled by second-order differential equations of the
form A2ẍ + A1ẋ + A0x = 0, where A2, A1, and A0

represent mass, damping and stiffness matrices, respectively.
Stability is inferred from the eigenvalues, found as solutions
of det(A2λ

2+A1λ+A0) = 0. To understand the sensitivity of
these eigenvalues with respect to perturbations with weights αi

applied to Ai, i = 0, 1, 2, the ε-pseudospectrum of the matrix
polynomial P (λ) = A2λ

2 + A1λ + A0 can be defined as

Λε(P ) :=
{λ ∈ C : (P (λ) + ∆P (λ))x = 0 for some x �= 0

and ∆P (λ) = δA2λ
2 + δA1λ + δA0

with ||δAi|| ≤ εαi, i = 0, 1, 2},

More recently, pseudospectra for matrix functions that arise
as characteristic equations in DDEs have been defined and
analysed [2]. In its simplest form of one, fixed, discrete delay
τ ∈ R

+, the delayed characteristic is of the form Q(λ) = λI−
A0−A1 exp(−λτ). Similar to (2) the associated pseudospectra
is defined in [2] as

Λε(Q)
:= {λ ∈ C : (Q(λ) + ∆Q(λ))x = 0 for some x �= 0

and ∆Q(λ) = δA0 + δA1 exp(−λτ)
with ||δAi|| ≤ εαi, i = 0, 1}.

The aim of this paper is twofold: first, to present a unified
theory for the definition and computation of pseudospectra of
general matrix functions of the form

det

{
m∑

i=0

Aipi(λ)

}
= 0, (2)

where pi is an entire function. It is easy to see that the cases
described above are in this class of matrix functions. Also
various perturbation measures are discussed, of which the
above is only a particular case (Section II). The second aim is
to emphasize some nice, and special properties in the case of
delay systems (Section III). In this sense, we discuss the effects
of weighting factors on the sensitivity of the eigenvalues in
C

+, and C
−, respectively. Next, special attention is devoted to

the asymptotic behaviour, and to the relationship between the
decay of the pseudospectrum function to zero and root chains
coming from infinity. To the best of the authors’ knowledge,
there does not exist any similar analysis in the literature.

It is important to mention that one of the practical appli-
cations of our results concerns the stability radius rC of (2),
that is, a measure of the distance of the matrix function to
instability (see also [3], [4], [5]). Specifically, if we decompose
C into two disjoint regions, a desired region Cd and an
undesired region Cu, the complex stability radius is defined
as

rC(Cd, ‖ · ‖glob) :=

inf
λ∈Cu

inf
∆

{
‖∆‖glob : det

(
m∑

i=0

(Ai + δAi)pi(λ)

)
= 0

}
,

(3)

where ‖∆‖glob is a global measure of the perturbation ∆, a
combination of δAi; this is discussed in detail in Section II. In
other words, rC defines the norm of the smallest perturbation
that destroys the Cd-stability. Furthermore, rC corresponds to
the smallest ε value at which the ε-pseudospectrum has a non-
empty intersection with Cu.
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II. PSEUDOSPECTRA FOR GENERAL MATRIX FUNCTIONS

We study the roots of the generalised matrix function given
by Eq. (2), where Ai ∈ C

n×n, i = 0, . . . , m and the functions
pi : C → C, i = 0, . . . , m are entire. In particular, we
are interested in the effect of bounded perturbations of the
matrices Ai on the position of the roots. For this, we analyze
the perturbed equation,

det

{
m∑

i=0

(Ai + δAi)pi(λ)

}
= 0. (4)

The first step in our robustness analysis is to define the class
of perturbations under consideration, as well as a measure of
the combined perturbation

∆ := (δA0, . . . , δAm).

In this work we assume that the allowable perturbations
δAi, i = 0, . . . , m, are complex matrices, that is, ∆ ∈
C

n×n×(m+1).
Introducing weights wi ∈ R̄

+
0 , i = 0, . . . , m, where R̄

+
0 =

R
+ \ {0} ∪ {∞}, we define three global measures of the

perturbations:

‖∆‖glob := ‖[w0 δA0 . . . wm δAm]‖p, (5)

or

‖∆‖glob :=

∥∥∥∥∥∥∥
⎡
⎢⎣

w0 δA0

...
wm δAm

⎤
⎥⎦
∥∥∥∥∥∥∥

p

, (6)

where ‖M‖p is the induced matrix norm given by
sup‖x‖p=1 ‖Mx‖p, p ∈ N. Notice that wj = ∞ for some
j means that no perturbation on Aj is allowed when the
combined perturbation ∆ is required to be bounded, that is
wj = ∞ =⇒ δAj = 0, for some j. Finally, we also consider
a measure of mixed-type:

‖∆‖glob :=

∥∥∥∥∥∥∥
⎡
⎢⎣

w0‖δA0‖p1

...
wm‖δAm‖p1

⎤
⎥⎦
∥∥∥∥∥∥∥

p2

, p1, p2 ∈ N̄0. (7)

For instance, when p2 = ∞ and all weights are equal to
one, the condition ‖∆‖glob < ε corresponds to the natural
assumptions of taking perturbations satisfying ‖δAi‖p1 <
ε, i = 0, . . . , m. In this special case (7) is also equal
to the p1-norm of the block diagonal perturbation matrix
diag(δA0, . . . , δAm), considered in [4], [5] for polynomial
matrices.

Notice that, if all weights are finite, then the measures given
by (5)-(7) are norms.

For any of the above definitions of ‖∆‖glob, we define the
ε-pseudospectrum of (2) as the set

Λε :=

{
λ ∈ C : det

(
m∑

i=0

(Ai + δAi)pi(λ)

)
= 0

for some ∆ with ‖∆‖glob ≤ ε} . (8)

We define f : C → R̄
+ as the inverse of the size of

the smallest perturbation which shifts a root to λ if such
perturbations exist, and zero otherwise, more precisely,

f(λ) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, when det (
∑m

i=0(Ai + δAi)pi(λ)) �= 0, ∀∆
+∞, when det

∑m
i=0 Aipi(λ) = 0

(inf {‖∆‖glob : det (
∑m

i=0(Ai + δAi)pi(λ) = 0)})−1
,

otherwise.
(9)

Therefore, we can also define the ε-pseudospectra as

Λε =
{

λ ∈ C : f(λ) ≥ 1
ε

}
.

The boundary of pseudospectra is thus formed by the level
sets of the function f , which can be computed as follows:

Theorem 2.1: For the perturbation measures (5)-(7) the
function (9) satisfies

f(λ) =⎧⎪⎨
⎪⎩
∥∥∥(∑m

i=0 Aipi(λ))−1
∥∥∥

α
· ‖w(λ)‖β ,

det
∑m

i=0 Aipi(λ) �= 0,
+∞, det

∑m
i=0 Aipi(λ) = 0,

where
w(λ) =

[
p0(λ)
w0

· · · pm(λ)
wm

]T
(10)

and

α = p, β = p, perturb. measure (5),
α = p, β = q, 1

p + 1
q = 1, perturb. measure (6),

α = p1, β = q2,
1
p2

+ 1
q2

= 1 perturb. measure (7).
Proof: Based on the small gain theorem and exploiting

the structure of ∆ and (2). See the full version of the paper
for details.

A. Connection with stability radii

Pseudospectra are closely related to the concept of the
stability radius given by (3). Note that an eigenvalue can leave
the desired region Cd of C, due to a perturbation of the system
matrices, in two ways:

1) The perturbation shift roots from Cd to Cu;
2) The perturbation causes roots at infinity to appear in Cu.

From Rouché’s theorem one derives that the individual roots
of (2) are continuous at each value of the system matrices
Ai. If the second case can be excluded, a loss of stability is
associated with roots on the boundary of Cd and it becomes
sufficient to scan this boundary in the outer optimization of
(3). In other words, the stability radius is the smallest value of
ε for which an ε-pseudospectrum contour reaches the boundary
of Cd. Formally, using (9) one has,

Corollary 2.2:

rC(Cd, ‖ · ‖glob) = inf
λ∈ΓCd

1
f(λ)

=
1

supλ∈ΓCd
f(λ)

,

where ΓCd
is the boundary of the set Cd.

The following example demonstrates that Corollary 2.2 does
not hold if perturbations create roots at infinity in Cu.
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Example 2.3: The equation p(λ) = 0, with

p(λ) = λ + 1 + δa eλ,

is C
−-stable for δa = 0. With ‖∆‖glob = |δa|, we have

inf
λ∈Γ

C−

1
f(λ)

= inf
ω≥0

|1 + jω|
|ejω| = 1,

that is, shifting roots to the imaginary axis requires |δa| ≥ 1.
However, the stability radius is zero because for any real δa �=
0, there are infinitely many roots in the open right half plane,
whose real parts move off to plus infinity as |δa| → 0+. To see
this, note that p(−λ) can be interpreted as the characteristic
function of the DDE ẋ(t) = x(t) + δa x(t − 1), which has
infinitely many eigenvalues located in logarithmic sections of
the left half plane [6].

To conclude this section we give in Table I an overview of
publications, where results from Theorem 2.1 or Corollary 2.2
were obtained for special cases.

III. PSEUDOSPECTRA OF DELAY DIFFERENTIAL

EQUATIONS

We apply the results of Section II to linear DDEs of the
form

ẋ(t) = A0x(t) +
m∑

i=1

Aix(t − τi), (11)

(under appropriate initial conditions) where we assume that
0 < τ1 < . . . < τm and that the system matrices Ai ∈
R

n×n, i = 0, . . . , m are uncertain. Following (8) and (3),
we have:

Proposition 3.1: For perturbations δAi ∈ C
n×n, i =

0, . . . , m, measured by (5)-(7), the pseudospectrum Λε satisfies

Λε =

⎧⎨
⎩λ ∈ C :

∥∥∥∥∥∥
(

λI − A0 −
m∑

i=1

Aie
−λτi

)−1
∥∥∥∥∥∥

α

× ‖w(λ)‖β ≥ 1
ε

}
(12)

and the associated stability radius of (11) satisfies

rC(C−, ‖ · ‖glob) =
1

(Pm
i=0 w−β

i )
1
β supω≥0

‚
‚
‚(jωI−A0−

Pm
i=1 Aie−jωτi)−1

‚
‚
‚

α

, (13)

where w(λ) =
[

1
w0

e−λτ1

w1
. . . e−λτm

wm

]T
and α and β are

defined as in Theorem 2.1.
Remark 3.2: For the system

ẋ(t) = (A + δA)x(t), (14)

with ‖∆‖glob = ‖δA‖p, expression (12) simplifies to

Λε =
{

λ ∈ C : ‖R(λ,A)‖p ≥ 1
ε

}
, (15)

where R(λ,A) = (λI−A)−1 is the resolvent of A. The right-
hand side of (15) can also be considered as a definition for
the ε-pseudospectrum of (14).

In general, one can formulate (11) as an abstract evolution
equation over the space X := C([−τm, 0], Rn), equipped with
the supremum norm, ‖φ‖s = supθ∈[−τm, 0] ‖φ(θ)‖2, φ ∈ X ,
namely: d

dt xt = Axt, where A is the infinitesimal generator
of (11) Now, one can alternatively define the ε-pseudospectrum
as the set {

λ ∈ C : ‖R(λ,A)‖ ≥ 1
ε

}
. (16)

Definition (16) is related with the effect of unstructured
perturbations of the operator A on stability. In this paper we
have chosen a more practical definition, by directly relating
pseudospectra to concrete perturbations on the system matri-
ces.

A. Effect of weighting

Applying different weights to the system matrices Ai of
(11), i = 1, . . . , m, leads to changes in the pseudospectra.
This can be understood by investigating the weighting function
w(λ) = w(σ + jω), where

‖w(σ + jω)‖β =∥∥∥∥∥
[

1
w0

,
e−στ1

w1
, . . . ,

e−στm

wm

]T
∥∥∥∥∥

β

, ∀σ, ω ∈ R. (17)

Note that w(λ) only depends on the real part σ, that is, w(λ) ≡
w(σ). From (17) the following conclusions can be drawn:

1) Eigenvalues in the right half plane are more sensitive to
perturbations of the non-delayed term A0;

2) Eigenvalues in the left half plane are more sensitive to
perturbations of delayed terms Ai, i = 1, . . . , m;

3) Furthermore, the intersection of an ε-pseudospectrum
contour with the imaginary axis is independent of the
weights, provided that the β-norm of w(λ) = w(0) is
constant.

B. Asymptotic properties.

We investigate the behaviour of

f(λ) :=

∥∥∥∥∥∥
(

λI − A0 −
m∑

i=1

Aie
−λτi

)−1
∥∥∥∥∥∥

α

‖w(λ)‖β

as |λ| → ∞, in order to characterize boundedness properties
of pseudospectra. We have the following results, whose proof
is omitted due to space limitations:

Proposition 3.3: For all µ ∈ R,

lim
R→∞

inf
{
f(λ)−1 : �(λ) > µ, |λ| > R

}
= ∞. (18)

As a consequence the cross-section between any pseudospec-
trum Λε, ε > 0, and any right-half plane is bounded.

Proposition 3.4: Assume that wm is finite. For all γ ∈ R
+,

let the set Ψγ ⊆ C be defined as

Ψγ :=
{

λ ∈ C : �(λ) < −γ, |λ| < e−(�(λ)+γ)τm

}
. (19)

Furthermore, let

l =

{
wm

‖A−1
m ‖ , Am regular,

0, Am singular.
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reference problem perturbation measure weights

[7] matrix pencil (5) /
[5] polynomial matrices (5),(6),(7) with p2 = ∞ /
[4] polynomial matrices (5),(7) with p2 = ∞ yes
[8] polynomial matrices (5),(7) with p2 = ∞ yes
[2] delay systems (7) with p1 = 1 and p2 = ∞ yes

TABLE I

SPECIAL CASES OF THEOREM 2.1/ COROLLARY 2.2, TREATED IN THE LITERATURE.

Then the following convergence property holds:

∀ε > 0, ∃γ > 0 such that |f(λ)−1−l| < ε, ∀λ ∈ Ψγ . (20)
Notice that for any γ > 0 the set Ψγ is a logarithmic

sector stretching out into the left half plane. Furthermore, the
collection {Ψγ}γ≥0 is nested in the sense

γ1 ≤ γ2 ⇒ Ψγ2 ⊆ Ψγ1 .

Restating the proposition in terms of pseudospectra yields:
Corollary 3.5: Let Ψγ be defined as in Proposition 3.4.

If Am is regular, then

∀ε ∈
(
0, wm

‖A−1
m ‖α

)
, ∃γ > 0 such that Ψγ ∩ Λε = φ,

∀ε > wm

‖A−1
m ‖α

, ∃γ > 0 such that Ψγ ⊂ Λε.

(21)
If Am is singular, then

∀ε > 0, ∃γ > 0 such that Ψγ ⊂ Λε. (22)
In case of singular Am, the pseudospectrum Λε thus stretches
out along the negative real axis, for any value of ε > 0,
unlike the case of regular Am, where this only happens for
ε > wm/‖A−1

m ‖α. As a consequence, infinitesimal perturba-
tions may result in the introduction of eigenvalues with small
imaginary parts (but large negative real parts).

IV. ILLUSTRATIVE EXAMPLES

To demonstrate the above results we first consider the
following DDE,

ẋ(t) = A0x(t) + A1x(t − 1) (23)

where

A0 =
[ −5 1

2 −6

]
and A1 =

[ −2 1
4 −1

]
. (24)

Figure 1(a) shows the spectrum of (23), where we have
used DDE-BIFTOOL, a Matlab package for the bifurcation
analyses of DDEs [9]. The system is shown to be stable with
all eigenvalues confined to the left-half plane. To investigate
how this stability may change under perturbations of the
matrices A0 and A1 we need to compute the corresponding
pseudospectra.

To this end, we consider perturbations of A0 and A1

using the global measure (7) with p1 = 2 and p2 = ∞.
Pseudospectra can then be computed using Theorem 2.1 with
α = 2 and β = 1. Specifically,

f(λ) =
∥∥∥(λI − A0 − A1e

−λ
)−1

∥∥∥
2

(
1
w0

+
e−λ

w1

)
. (25)

The first term on the right-hand side of (25) can be computed
as the minimum singular value of λI−A0−A1e

−λ [2]. Thus,
by evaluating f(λ) for λ on a grid over a region of the complex
plane, and by using a contour plotter to view the results, the
boundaries of ε-pseudospectra are identified.

Figures 1(b)–(d) show the ε-pseudospectra of (23) where
different weights have been applied to A0 and A1. Specifically,
(w0, w1) = (∞, 1) (b), (w0, w1) = (2, 2) (c), and (w0, w1) =
(1,∞) (d). In each panel, from outermost to innermost (or
rightmost to leftmost if the curve is not closed), the curves
correspond to boundaries of ε-pseudospectra with ε = 101.25,
101.0, 100.75, 100.5, 100.25, 100, and 10−0.5. It can be seen
that the conclusions drawn in Section III-A hold, that is,
perturbations of A0 stretch pseudospectra lying in the right-
half plane (d). While perturbations applied to A1 stretch the
pseudospectra lying in the left-half plane (b). Furthermore,
Fig. 2 shows the intersection of ε-pseudospectrum curves with
the imaginary axis. In each panel, the darkest curve corre-
sponds to an ε-pseudospectrum curve of Fig. 1(a), the next
to a curve of Fig. 1(b), and the lightest curve corresponds to
an ε-pseudospectrum curve of Fig. 1(c). Specifically, Fig. 2(a)
shows the intersection of the three curves for ε = 101.25,
Fig. 2(b) for ε = 101.0, and Fig. 2(c) for ε = 100.75. For a
given ε, these curves are seen to intersect the imaginary axis
at the same point, independent of the weighting applied to the
system matrices. Thus, demonstrating the third conclusion of
Section III-A.

Figure 3 shows for each ω ∈ [−50, 50] which ε-
pseudospectrum curve intersects the imaginary axis at λ = jω,
that is f−1(jω). The minimum of this curve represents the
stability radius of the system,

rC(C−, ‖ · ‖glob) ≈ 3.28011.

Since the minimum is reached for ω = 0 the smallest
destabilizing perturbations shift an eigenvalue to the origin.

Proposition 3.4 applies to this problem with

l =
w1

‖A−1
1 ‖2

≈ 0.4282 w1. (26)

In Figure 4(a) we show ε-pseudospectra for the weights
(w0, w1) = (∞, 1) and ε = 0.1, 0.2, 0.3, 0.4, 0.5. In Figure
4(b) we take (w0, w1) = (2, 2) and ε = 0.2, 0.4, 0.6, 0.8, 1.
In both cases only the ε-pseudospectrum for the largest value
of ε stretches out infinitely far along the negative real axis, as
follows from (26).
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Fig. 1. Weighted pseudospectra of the DDE (23). Panel (a) shows the spectrum of the unperturbed problem. In all other panels, from rightmost to leftmost,
the contours correspond to ε = 101.25, 101.0, 100.75, 100.5, 100.25, 100, and 10−0.5. From (b) to (d), the weights w0 and w1 applied to the A0 and A1

matrices were (w0, w1) = (∞, 1), (w0, w1) = (2, 2), and (w0, w1) = (1,∞), respectively.

−0.41 0 0.27
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21.5

ℜ(λ)
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(λ
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−0.41 0 0.27
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16.8

ℜ(λ)

ℑ
(λ

)

−0.41 0 0.27
1.1

10

ℜ(λ)

ℑ
(λ

)

Fig. 2. Crossings of ε-pseudospectrum curves with the imaginary axis, for ε = 101.25 (left), ε = 10 (middle) and ε = 100.75 (right). In the three cases the
darkest contour contour corresponds to the weights (w0, w1) = (∞, 1), the middle curve to (2, 2) and the lightest curve to (1,∞).

−50 0 50
0

10

20

30

40

50

ω

f−
1 (jω

)

Fig. 3. The function ω → f−1(jω) for the system (23). The minimum is
the complex stability radius.

To illustrate the effects of a singular matrix corresponding
to the largest delay, we consider the system:

ẋ(t) = A1x(t − 1) + A2x(t − 2) (27)

where

A1 =
(

δ1 0
0 δ2

)
and A2 =

(
δ3 0
0 δ4

)
.

Figure 5(a) shows the spectrum of (27) for δ1 = 10, δ2 =
2, δ4 = 1, and varying δ3 = 0 (‘◦’), 0.1 (‘×’) and 0.5
(‘+’). When the matrix A2, corresponding to the largest
delay, is singular, that is, δ3 = 0, the system has three
tails of eigenvalues. As δ3 is increased, an additional tail of
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−7

0

7

ℜ(λ)

ℑ
(λ
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−7
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7

ℜ(λ)

ℑ
(λ

)

Fig. 4. (left) - ε-pseudospectrum curves for (w0, w1) = (∞, 1) and ε =
0.1, 0.2, 0.3, 0.4, 0.5. (right) - ε-pseudospectrum curves for (w0, w1) =
(2, 2) and ε = 0.2, 0.4, 0.6, 0.8, 1.

eigenvalues enters our region of interest from �(λ) = −∞.
Consequently, as predicted also by Corollary 3.1, for δ3 = 0
we expect ε-pseudospectra to be unbounded to the left, even
for arbitrarily small ε. This is confirmed in Fig. 5(b) where
for δ3 = 0 we show contours representing pseudospectra for
ε = 10−1, 10−0.5, 100 and 100.25, with the weights set to
w1 = 2 and w2 = 2. Importantly, the two contours on the
left of Fig. 5(b) correspond to pseudospectrum contours with
ε = 10−0.5 (leftmost) and 100. These contours are associated
with the eigenvalues accumulated at �(λ) = −∞.

Next, if δ3 is fixed to one, and δ2 is brought to zero such
that A1 becomes singuar, then a different mechanism can be
observed1: two of the four tails of eigenvalues collapse to one
tail, instead of having one tail moving off towards �(λ) =
−∞. Note that the latter is not possible by Corollary 3.1,
since A2 is regular.

V. CONCLUSIONS

A unifying treatment of pseudospectra of analytic matrix
functions was presented. For a class of retarded time-delay
systems special properties of pseudospectra were derived and
related to the behaviour of eigenvalues, emphasizing the effect
of the weights in the perturbation measures and the asymptotic
behaviour of pseudospectra.
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