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Abstract— This paper introduces sampling techniques for
impulsive systems analogous to the classical Euler one-step
method. Moreover a method of approximating measures with
absolutely continuous controls is also offered. The paper con-
cludes with an invariance result that is an application of the
sampling technique.

I. INTRODUCTION

Impulsive systems arise when state variable is allowed to
move at different time scales. The usual time progression is
regarded as the “slow” movememnt and the “fast” movement
happens over a small time interval that resembles the effect of
a point-mass measure. We adopt the mathematical formalism
introduced in [8], [9], [10], in which the controlled dynamic
inclusion is the sum of a slow time velocity belonging to a
set F (x) and a fast time contribution coming from another
set G(x)dµ, where µ is a vector valued measure.

Throughout the paper, the following data with accompa-
nying assumptions are given:

(H1) A closed convex cone K ⊆ IRm;
(H2) A multifunction F : IRn ⇒ IRn with closed graph and

convex values, and satisfying

f ∈ F (x) =⇒ |f | ≤ c(1 + |x|) ∀x ∈ IRn.

(where c > 0 is a given constant);
(H3) A multifunction G : IRn ⇒ Mn×m (where Mn×m

denotes the n × m dimensional matrices with real
entries) with closed graph and closed convex values,
and satisfying

g ∈ G(x) =⇒ ‖g‖ ≤ c(1 + |x|) ∀x ∈ IRn.

The set of vector-valued Borel measures defined on the
interval [0, T ] ⊂ IR with values in K is denoted by
BK([0, T ]). Suppose µ ∈ BK([0, T ]) is given. The impulsive
system considered in this paper is described by a differential
inclusion of the form{

dx ∈ F
(
x(t)

)
dt + G

(
x(t)

)
dµ(dt)

x(0−) = x0.
(1)

The trajectory x(·) is a function of bounded variation,
however additional information must be available in order
to give a definition of solution with desirable properties. In
particular, we seek that a solution concept to (1) for which
solutions can be obtained as a limit of (1) time-discretized
Euler-type arcs, and (2) solutions to a classical system in
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which the measure µ is approximated by an absolutely
continuous measure.

Even in the case when the multifunctions F (·) and G(·)
are singleton-valued (that is, they are just regular functions),
these properties are not available without additional consid-
erations. A simple example in [1] illustrates the dilemma,
and thereby shows that naive time-discretization schemes
can lead to wildly different solutions. In this example,
the approximate controls converge to two different graph
completions (which are defined in the next paragraph).

The main goals of this paper are (1) to develop a time
discretization method analogous to the classical Euler one-
step method (see Section III) and show that they appropri-
ately limit to solutions of (1), and (2) to introduce a concept
of graph convergence of measures for which solutions of
the approximate control problems appropriately limit to
solutions of (1). In the final section of this paper we consider
applications to flow invariance.

II. THE SOLUTION CONCEPT

Suppose u(·) : [0, T ] → IRm is the distribution function
of µ given by u(t) = µ([0, t]). A graph completion of u(·)
is a Lipschitz map (φ0, φ) : [0, S] → [0, T ]× IRm satisfying

(g1) φ0(·) is non-decreasing with 0 ≤ φ̇0(s) ≤ 1,
(g2) for every t ∈ [0, T ] there exists s ∈ [0, S] so that(

φ0(s), φ(s)
)

=
(
t, u(t)

)
and

(g3) for almost all s ∈ [0, S], φ̇(s) = (1 − φ̇0)k(s) where
k(·) : [0, S] → K is measurable and satisfies |k(s)| ≤ 1
almost everywhere.

This definition is called a normalized graph completion in
[12], however, as explained there, it is equivalent to more
general definitions but avoids further technical complications.
Note that |φ̇(s)| ≤ 1 for almost all s ∈ [0, S].

We now discuss a definition of solution to (1) that is a
modification of the definition given in [1], [2], [3]. Suppose
the measure µ ∈ BK([0, T ]) is given. Consider a three-tuple

Xµ :=
(
x(·), φ(·), {yi(·)}i∈I

)
(2)

with the following constituents: x(·) : [0, T ] → IRn is of
bounded variation with its points of discontinuity equal to
the set T of µ’s atoms, φ(·) : [0, S] → IRm is a graph
completion of µ’s distribution function u(·), and {yi(·)}i∈I
is a collection of Lipschitz functions, each defined on the
nondegenerate interval Ii := [s−i , s+

i ] := φ−1
0 (ti) and

satisfying yi(s±i ) = x(ti±).
Definition 2.1 (Bressan-Rampazzo (B-R)): Consider a

three-tuple Xµ as in (2), and let

y(s) =
{

x(t) if s /∈ ∪i∈IIi, t = φ0(s)
yi(s) if s ∈ Ii.

(3)
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Then Xµ is a Bressan-Rampazzo (B-R) solution of (1)
provided y(·) is Lipschitz on [0, S] and satisfies{

ẏ(s) ∈ F
(
y(s)

)
φ̇0(s) + G

(
y(s)

)
φ̇(s)

y(0) = x0.
(4)

An alternate definition of solution is developed in [11] that
is framed in the original t-domain. It is shown there that the
two solution concepts coincide.

III. A SAMPLING METHOD WITH PRESCRIBED

MEASURE

An Euler-type discretization procedure is introduced in
this section that produces approximate discrete solutions
(called sampled trajectories) when the measure µ and a
graph completion are given. The limit of a subsequence
of approximations will be shown to graph-converge in the
Hausdorff metric to some solution Xµ of (1). With Xµ as in
(2), its graph is defined as the set

gr Xµ = {(t, x(t)) : t ∈ [0, T ]}∪{(ti, yi(s)) : s ∈ Ii, i ∈ I}.
The idea is to discretize the ordinary trajectory y(·) that is
defined in (3), where the “compactness of trajectories” is
known to hold, and to project it down into t-space.

Let N be a positive integer, and let h := S
N be the step-

size parameter. Let s0 = 0 = t0, and for each j = 1, . . . , N ,
let sj = jh, tj = φ0(sj), and λj = tj − tj−1. Sampled
points {xj}N

j=1 are defined and “velocity” data are selected
as follows (the parameter N is suppressed in this notation):

x0 = x0 f0 ∈ F (x0) g0 ∈ G(x0)
x1 = x0 + λ1f0 + g0

(
φ(s1) − φ(s0)

)
f1 ∈ F (x1) g1 ∈ G(x1)

...
...

...
xj+1 = xj + λjfj + gj

(
φ(sj) − φ(sj−1)

)
fj+1 ∈ F (xj+1) gj+1 ∈ G(xj+1)

...
...

...
xN = xN−1 + λNfN−1 + gN−1

(
φ(sN ) − φ(sN−1)

)
We denote by ΩN the graph of a sampled trajectory:

ΩN :=
{
(tj , xj) : j = 0, . . . , N

}
. (5)

The Hausdorff distance between two compact subsets A
and B of IRn is denoted by distH(A, B). A multifunction
Γ : IRn ⇒ IRn with compact values is locally Lipschitz if
for all compact C ⊂ IRn, there exists a constant c so that

distH
(
Γ(x), Γ(y)

)
≤ c‖x − y‖ ∀x, y ∈ C.

The main result of this section follows.
Theorem 1: Suppose µ ∈ BK([0, T ]) and a graph com-

pletion φ(·) are given.
(a) For every sequence {ΩN}N of graphs of sampled trajec-

tories, there is a solution Xµ of (1) and a subsequence
{ΩNk}k of {ΩN}N so that distH

(
ΩNk , gr Xµ

)
→ 0

as k → ∞.
(b) Assume F and G are locally Lipschitz. For every

solution Xµ of (1), there exists a sequence {ΩN}N of
graphs of sampled trajectories so that

distH
(
ΩN , gr Xµ

)
→ 0 as N → ∞.

Proof: Suppose the sequences {fj}, {gj}, {xj} are
constructed by the sampling method described above. We
first show there exists a constant c1 independent of N so
that

max
j

{
|xj |, |fj |, ‖gj‖

}
≤ c1 (6)

for all j and N ∈ IN . Indeed, since 1 is the Lipschitz constant
of φ(·) and with c as in (H2) and (H3), we have

|xj+1| ≤ |xj | + h|fj | + ‖gj‖h
≤ |xj | +

[
c(1 + |xj |) + c(1 + |xj |)

]
h

= hα +
[
1 + hα

]
|xj |,

where α := 2c. It follows from the discrete Gronwall
inequality that |xj | ≤ eαS(1 + |x0|) − 1, and that then (6)
holds by (H2) and (H3) with c1 := c[eαS(1 + |x0|)].

Define the multifunction M : [0, S]× IRn ⇒ IRn by

M(s, y) = F (y)φ̇0(s) + G(y)φ̇(s), (7)

which is L × B measurable, has nonempty compact convex
values, and has linear growth. Moreover, M(s, ·) has closed
graph for almost all s ∈ [0, S]. For each N ∈ N, let Ω̃N be
the sampled trajectory in s-time:

Ω̃N :=
{
(sj , xj) : j = 0, . . . , N

}
. (8)

Also consider its related polygonal arc yN(·) defined on
[0, S] given as a linear interpolation of points in ΩN . Note
for later use that

distH
(
Ω̃N , gr yN (·)

)
≤ max

{
h, 2c1h

}
. (9)

We claim there exist sequences of positive numbers δN

and rN so that δN → 0 and rN → 0 and a sequence of
measurable sets AN ⊆ [0, S] so that m(AN ) → 0, where all
limits are as N → ∞, and that these sequences satisfy

inf
{
|ẏN (s)−v| : v ∈ M

(
s, yN(s)+ δNIB

)}
≤ rN , (10)

almost everywhere on [0, S]\AN . To see this, let δN =
2c1S/N where c1 is as in (6). Note for each j =
1, 2, . . . , N − 1 and s ∈ [sj−1, sj ] that∣∣yN (s) − xj | ≤

∣∣xj+1 − xj

∣∣
=

∣∣λj+1fj + gj

(
φ(sj+1) − φ(sj)

)∣∣
≤ h

[
|fj | + ‖gj‖

]
≤ δN .

Next, for s ∈ [0, S − h], define

ΦN
0 (s) := 1

h

∫ s+h

s
φ̇0(s′)ds′ and

ΦN (s) := 1
h

∫ s+h

s φ̇(s′)ds′,

and recall that ΦN
0 (s) → φ̇0(s) and ΦN

0 (s) → φ̇(s) for
almost all s ∈ [0, S] as N → ∞. By Egoroff’s Theorem [7],
there exist measurable sets AN ⊆ [0, S] with m(AN ) → 0
(and for notational simplicity, we may assume [S − h, S] ⊆
AN ) and satisfying rN → 0 as N → ∞, where rN was
taken to be

rN = c1 max
s∈[0,S]\AN

{∣∣ΦN
0 (s) − φ̇0(s)

∣∣, ∣∣ΦN (s) − φ̇(s)
∣∣}
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Now let vN (s) := fj φ̇0(s) + gjφ̇(s) on [sj , sj+1] and note
that vN (s) ∈ M(s, xj) for almost all s ∈ [sj , sj+1]. Recall
that ẏN(s) = ΦN

0 (sj)fj + gjΦN(sj), and thus

max
s∈[0,S]\AN

∣∣ẏN (s) − vN (s)
∣∣ ≤ rN .

We have shown that (10) holds.
From the compactness of trajectories theorem [4, Theorem

4.1.11], there exists a trajectory y(·) of M and a subsequence
(we label as {yNk(·)}k) of {yN (·)}N so that yNk(·) → y(·)
uniformly on [0, S]. One sees easily that this means

distH
(
gr yNk(·), gr y(·)

)
→ 0 (11)

as k → ∞. We define the components of a solution Xµ to
(1) as follows. Let x(·) : [0, T ] → IRn be given by x(t) =
y
(
η(t)

)
, and define the functions yi(·) (for each i ∈ I) as

the restriction of y(·) to Ii.
Now recall ΩN as in (5) and Ω̃N as in (8), and observe

the second coordinates are the same for each j = 1, . . . , N .
Similarly, the second coordinates of gr Xµ and gr y(·) :={(

s, y(s)
)

: s ∈ [0, S]
}

are the same for each t /∈ T ,
t = φ0(s); and when t ∈ T , the set of projections onto the
second coordinate are the same. Thus the difference between
the Hausdorff distances of ΩN and gr Xµ on the one hand,
and Ω̃N and gr y(·) on the other is affected by only the first
coordinate. It follows that

distH
(
ΩN , gr Xµ

)
≤ distH

(
Ω̃N , gr y(·)

)
, (12)

where the righthand is at most h larger than the left side. By
the triangle inequality, one has

distH
(
Ω̃N , gr y(·)

)
≤ distH

(
Ω̃N , gr yN (·)

)
+ distH

(
gr yN(·), gr y(·)

)
Finally, passing to the subsequence {Nk} and starting from
(12), it follows from the previous inequality, (9), and (11)
that distH

(
ΩNk , gr Xµ

)
→ 0, which finishes the proof of

part (a).
To prove part (b), assume now that F and G are locally

Lipschitz, and Xµ is as in (2) and is a solution of (1). Let y(·)
be defined as in (3), and so there exist measurable selections
f(·) and g(·) of F

(
y(·)

)
and G

(
y(·)

)
respectively so that

ẏ(s) = f(s)φ̇0(s) + g(s)φ̇(s) a. e. s ∈ [0, S]. In a manner
similar to proving the discrete bound (6), one can show there
exists a constant c2 so that |y(s)| ≤ c2. Observe that for
0 ≤ s̄ < ŝ ≤ S, and c3 := 2(1 + c2), one has

|y(ŝ) − y(s̄)| ≤
∫ ŝ

s̄ |ẏ(s)| ds ≤ c3(ŝ − s̄). (13)

Let L > 0 be the Lipschitz constant for F and G on c2IB,
and denote by projF (y)(f) the projection of f into F (y)
(which is unique since F (y) is convex). If |yj| ≤ c2 (j =
1, 2) and f ∈ F (y1), then |f − projF (y2)(f)| ≤ L|y1 − y2|.
Similar considerations hold with F replaced by G.

We use the notation of the sampling method, and will show
there exists a sequence {ΩN} that graph converges to gr Xµ.

Now, define f0 := 1
h

∫ s1

0 projF (x0)

(
f(s)

)
ds,

g0 := 1
h

∫ s1

0 projG(x0)

(
g(s)

)
ds, and x1 as described in our

sampling method. We observe

x1 − y(s1) = I + II + III + IV, where
I := φ0(s1)−φ0(0)

h

∫ s1

0

[
projF (x0)

(
f(s)

)
− f(s)

]
ds,

II :=
∫ s1

0

[
projG(x0)

(
g(s)

)
− g(s)

] (
φ(s1)−φ(0)

h

)
ds,

III :=
∫ s1

0

(
φ0(s1)−φ0(0)

h − φ̇0(s)
)

f(s) ds,

IV :=
∫ s1

0
g(s)

(
φ(s1)−φ(0)

h − φ̇(s)
)

ds.

Recall φ0(·) is Lipschitz of rank 1, and so by the Lipschitz
property of F , we have

|I| ≤ L
∫ s1

0

∣∣y(s) − x0

∣∣ ds ≤ Lc3

∫ s1

0
s ds = Lc3

2 h2,

where the second inequality follows from (13). In the same
way, one can show |II| ≤ Lc3

2 h2 since φ(·) is Lipschitz
of rank r. To estimate III and IV , we re-use earlier
notation to redefine ΦN (·) on [0, S] by setting ΦN (s) :=
max

{∣∣∣φ0(sj+1)−φ0(sj)
h − φ̇0(s)

∣∣∣ ,
∣∣∣φ(sj+1)−φ(sj)

h − φ̇(s)
∣∣∣}

whenever s ∈ [sj , sj+1]. Then it follows that both |III| and
|IV | are bounded above by c(1 + c2)

∫ s1

0
ΦN (s) ds. Putting

all this together, we have

|x1 − y(s1)| ≤ Lc3h
2 + 2c(1 + c2)

∫ s1

0 ΦN (s) ds.

Proceed inductively: fj := 1
h

∫ sj+1

sj
projF (xj) f(s) ds and

gj := 1
h

∫ sj+1

sj
projG(xj) g(s) ds, and let xj+1 be as in the

sampling method construction. The same argument used
above can operate at each iteration, and inductively, one has
the following estimate:

|xj − y(sj)| ≤ Lc3jh
2 + 2c(1 + c2)

∫ sj

0 ΦN (s) ds.

Since ΦN (s) is bounded above and converges to 0 almost
everywhere, it follows that Ω̃N := {(sj, xj) : j = 1, . . . , N}
satisfies distH

(
Ω̃N , gr y(·)

)
→ 0 as N → ∞. The bound

in (12) is still valid here, and the conclusion of (b) readily
follows.

IV. APPROXIMATE CONTROLS

The original and perhaps most natural approach to defining
solutions to the impulsive inclusion (1) is to consider limits
of a sequence of solutions xN (·) of an approximate control
problem of the form

ẋN (t) ∈ F
(
x(t)

)
φ̇0(t) + G

(
x(t)

)
u̇N(t), (14)

where dµN = u̇N (·)dt are absolutely continuous measures
that approximate µ in some sense. See, for example, the
discussion in [1]. We introduce in this section a concept of
“graph convergence” of measures that is appropriate to carry
out such an analysis. Graph convergence as defined below
seems to be a stronger condition than expected, however
even if the solutions of (14) are unique (which happens,
for example, in the singleton case F (x) = {f(x)} and
G(x) = {g(x)} with f(·) and g(·) Lipschitz functions),
the limit arc may in general not be unique if the measures
converge in a weaker sense.
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Suppose we are given the following: a measure µ ∈
BK([0, T ]), an associated graph completion (φ0, φ) :
[0, S] → IR × IRn and a sequence {µN} of absolutely con-
tinuous measures belonging to BK([0, T ]) whose associated
distribution functions uN (t) := µN

(
[0, t]

)
are Lipschitz.

Definition 4.1: The sequence {µN}N of absolutely con-
tinuous measures graph-converges to (µ, φ) provided

(i) there exist numbers SN > 0 such that SN → S;
(ii) for each N , there exists a strictly increasing function

φN
0 (·) : [0, SN ] → [0, T ] that is onto and Lipschitz of

rank at most one, and such that
∫ min{S,SN}
0

∣∣φ̇N
0 (s) − φ̇0(s)

∣∣ ds → 0 as N → ∞
(iii) for each N , the sequence of functions defined

by φN (s) :=
(
uN ◦ φN

0

)
(s) are Lipschitz with

lim supN→∞ ‖φ̇N (·)‖∞ ≤ 1, and satisfy

∫ min{S,SN}
0

∣∣φ̇N (s) − φ̇(s)
∣∣ ds → 0 as N → ∞.

The main result in this section follows.
Theorem 2: Suppose the measure µ ∈ BK([0, T ]) and an

associated graph completion φ(·) : [0, S] → IRn are given.

(a) Suppose {µN} is a sequence of absolutely continu-
ous measures that graph-converges to

(
µ, φ(·)

)
, and

{xN (·)} is a sequence of absolutely continuous arcs
satisfying

ẋN (t) ∈ F
(
xN (t)

)
+ G

(
xN (t)

)
u̇N (t). (15)

Then there exists a solution Xµ of (1) and a subse-
quence {xNk(·)} of {xN (·)} such that

distH
(
gr xNk(·), gr Xµ

)
→ 0 as k → ∞.

(b) Conversely, suppose F and G are locally Lipschitz
multifunction and Xµ :=

(
x(·), φ(·), {yi(·)}i∈I

)
is a

solution of (1). Then there is a sequence {µN} of
absolutely continuous measures that graph converge to(
µ, φ(·)

)
, and a sequence xN (·) of solutions to (15) so

that distH
(
gr xN (·), gr Xµ

)
→ 0 as N → ∞.

Proof: Suppose we are given the measures dµN =
u̇N(t)dt, the functions φN

0 (·) and φN (·) satisfying Def-
inition 4.1, and solutions xN (·) of (15). Set S̄N :=
min{S, SN}. Let yN (s) = (xN ◦φN

0 )(s). Note, for almost all
s ∈ [0, S̄N ], ẏN (s) ∈ F

(
yN (s)

)
φ̇N

0 (s) + G
(
yN (s)

)
φ̇N (s).

It follows that there exist measurable selections fN (s) ∈
F

(
yN (s)

)
and gN (s) ∈ G

(
yN (s)

)
so that ẏN(s) =

fN (s)φ̇N
0 (s) + gN (s)φ̇N (s). Recall Definition 4.1 imposes

a priori bounds on the Lipschitz rank of φN
0 (·) and φN (·),

and that F (·) and G(·) satisfy linear growth assumptions. A
standard argument involving Gronwall’s inequality implies
there exists a constant c4 independent of N that is an upper
bound of both ‖fN (·)‖∞ and ‖gN(·)‖∞.

Let M : [0, S] × IRn ⇒ IRn be defined as in (7), and
define żN(·) : [0, S̄N ] → IRn by żN(s) := fN(s)φ̇0(s) +
gN (s)φ̇(s), and define zN(·) : [0, S̄N ] → IRn by zN(s) :=
x0 +

∫ s

0
żN(s′) ds′. It is clear from the definitions that

żN(s) ∈ M
(
s, yN(s)

)
a. e.s ∈ [0, S̄N ]. (16)

Furthermore, it is readily seen that

sup
s∈[0,S̄N ]

∣∣zN (s) − yN(s)
∣∣ ≤ c4

{
‖φ̇N

0 − φ̇0‖1 + ‖φ̇N − φ̇‖1

}

which implies via the assumption of the graph convergence
of the measures that yN − zN approaches zero uniformly. In
view of (16) and the compactness of trajectories theorem [4,
Theorem 4.1.11], there exists y(·) : [0, S] → IRn that is a
trajectory of M and to which a subsequence of {zN(·)}, and
hence also of {yN(·)}, converges uniformly. That is, there
exists a subsequence Nk for which

distH
(
gr yNk(·), gr y(·)

)
→ 0 as k → ∞. (17)

We now define Xµ as before - see the paragraph containing
(11) in the previous section. Similar reasoning as employed
there shows also that distH

(
gr xNk(·), gr Xµ

)
is bounded

above by

distH
(
gr yNk(·), gr y(·)

)
+ sup

s∈[0,S̄Nk ]

|φNk
0 (s) − φ0(s)|

which goes to zero as k → ∞ by (17) and the assumption
contained in Definition 4.1(ii). This finishes the proof of part
(a).

We turn to part (b). Suppose F and G are now locally
Lipschitz and Xµ is a solution to (1). For N = 1, . . ., we
proceed to construct the absolutely continuous measures µN

and solutions xN (·) of (15) that will converge in graph to
Xµ. Fix N > 0 and set h = S

N , and for j = 1, . . . , N ,
set sj = jh and tj = φ0(sj). We will first introduce a new
partition {t̄j} of [0, T ] consisting of N distinct points that
resembles the partition {tj} but has repeated nodes “pulled
apart” and indexed accordingly, so that

|t̄j − tj | ≤ h2 for all j. (18)

Next, we define φN
0 (·) : [0, S] → [0, T ] as a linear

interpolation of points {(sj , t̄j}, which is onto and Lipschitz
of rank at most 1. We claim that φ̇N

0 (·) converges to φ̇0(·)
in L1[0, S]. Indeed, let φ̃N

0 (·) : [0, S] → [0, T ] be a linear
interpolation of points {sj, tj}. The difference between the
linear interpolations φN

0 (·) and φ̃N
0 (·) is that φN

0 (·) maps sj

to t̄j , whereas φ̃N
0 (·) maps sj to tj . For s ∈ [sj, sj+1], we

have
∣∣φ̇N

0 (s) − ˙̃
φN

0(s)
∣∣ =

1
h
|t̄j+1 − t̄j − tj+1 + tj | ≤ 2h, (19)

where the inequality is justified by (18). The Lebesgue

differentiation Theorem says that ˙̃
φN

0(s) → φ̇0(s) as N →
∞ for almost all s ∈ [0, S], and since these functions are
bounded above by 1, the Dominated Convergence Theorem
implies that ˙̃

φN
0(·) → φ̇0(·) in L1[0, S]. It follows from this

and (19) that φ̇N
0 (·) → φ̇0(·) in L1[0, S] as claimed.

Now define uN (·) : [0, T ] → IRn as the piecewise linear
interpolation satisfying uN (t̄j) = φ(sj). Let φN (·) := (uN ◦
φN

0 )(·), and note φN (sj) = φ(sj) for all j and for s ∈
[sj , sj+1] that

φ̇N (s) = u̇N
(
φN

0 (s)
)
φ̇N

0 (s)
= φ(sj+1)−φ(sj)

t̄j+1−t̄j

t̄j+1−t̄j

h = φ(sj+1)−φ(sj)
h .
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Since φ(·) is Lipschitz of rank 1, it follows that each of
φN (·) are also of rank at most 1. Completely analogous
to the proof above showing φ̇N

0 (·) → φ̇0(·) in L1[0, S]
as N → ∞, one has that φ̇N (·) → φ̇(·) in L1[0, S] as
N → ∞. Therefore, with µN the absolutely continuous
measure satisfying dµN = u̇N (t)dt, we have shown that µN

graph converges to (µ, φ(·)) as N → ∞ (where SN = S for
all N in Definition 4.1).

We now turn to approximating a given a solution Xµ by
a solution of (15). By Theorem 1(b), there exists a sequence
of sampled trajectories whose graphs converge to gr Xµ.
Denote these graphs as we did in (5), with {xj}, {fj},
and {gj} are constructed by a sampling scheme described
in Section III. A new sampled set of points {x̄j} is defined
by replacing the partition {tj} by {t̄j} and “tracking” the
given sampled data. This is done as follows. Let f̄0 = f0

and ḡ0 = g0 and define

x̄1 = x̄0 + (t̄1 − t̄0)f̄0 +
(
ḡ0)

(
φ(s1) − φ(s0)

)
Having chosen the data at stage j, inductively let f̄j ∈ F (x̄j)
and ḡj ∈ G(x̄j) be the projections of fj and gj onto F (x̄j)
and G(x̄j), respectively. Define the next node by

x̄j+1 = x̄j + (t̄j+1 − t̄j)f̄j +
(
ḡj)

(
φ(sj+1) − φ(sj)

)
.

The linear growth assumptions on F and G guarantee that
all of the sampled data remains in a bounded set, and let c1

be as in (6) but which also bounds the newly sampled data.
With L a Lipschitz constant for both F and G on c1IB, one
has

|f̄j − fj | ≤ L|x̄j − xj |, and ‖ḡj − gj‖ ≤ L|x̄j − xj |. (20)

The estimate between the nodes xj and x̄j is calculated by∣∣x̄j+1 − xj+1

∣∣ ≤ ∣∣x̄j − xj | + |tj+1 − tj − t̄j+1 + t̄j| |fj|
+ |t̄j+1 − t̄j | |f̄j − fj|
+ ‖ḡj − gj‖ |φ(sj+1) − φ(sj)|

≤ |x̄j − xj | + 2h2c1 + 2hL|x̄j − xj |
= 2h2c1 + (1 + 2hL)|x̄j − xj |,

where (18), (20), and that φ(·) is Lipschitz of rank 1
were invoked to deduce the second inequality. Gronwall’s
inequality implies

|x̄j − xj | ≤ 2hc1
e2LS−1

2L

for each j = 0, 1, . . . , N , and in particular implies that

distH(ΩN , Ω̄N ) → 0, as N → ∞ (21)

where Ω̄N is the newly sampled graph: Ω̄N := {(t̄j , x̄j)|j =
1, ..., N}. Next, let x̄N (·) be the piecewise linear arc inter-
polating the points in Ω̄N (·), which implies

˙̄xN (t) = f̄j + ḡj u̇
N(t) ∈ F (x̄j) + G(x̄j)u̇N (t) (22)

whenever t ∈ (t̄j , t̄j+1). Let ΓN (·) : [0, T ] × IRn ⇒ IRn

be given by ΓN (t, x) := F (x) + G(x)u̇N (t), which is
the multifunction appearing in (15). It has convex compact
values, is measurably Lipschitz (see [6]), and has linear

growth in x. We will find a trajectory xN (·) of ΓN that
is close to x̄N (·). Following the notation in [6], we have

ρΓ

(
x̄N (·)

)
:=

∑N−1
j=0

∫ tj+1

tj
dist

(
˙̄xN (t), ΓN

(
t, x̄N (t)

))
dt

≤
∑N−1

j=0

∫ tj+1

tj
distH

(
ΓN

(
t, x̄j

)
, ΓN

(
t, x̄N (t)

))
dt

≤ L
∑N−1

j=0

∫ tj+1

tj

(
1 + |u̇N (t)|

)∣∣x̄N (t) − x̄j

∣∣ dt,
(23)

where (22) was used in the first inequality, and the Lipschitz
property of F and G in the second. For t ∈ [t̄j , t̄j+1], one
has∣∣ ˙̄xN (t) − x̄j | ≤ t−t̄j

t̄j+1−t̄j

∣∣x̄j+1 − x̄j

∣∣
≤ t−t̄j

t̄j+1−t̄j

[
(t̄j+1− t̄j)|f̄j |+‖ḡj‖ |φ(sj+1)−φ(sj)|

≤ c1

[
1 + h

t̄j+1−t̄j

]
(t − t̄j) and

|u̇N(t)| =
∣∣∣φ(sj+1)−φ(sj)

t̄j+1−t̄j

∣∣∣ ≤ h
t̄j+1−t̄j

.

We thus have∫ tj+1

tj

(
1 + |u̇N(t)|

)∣∣x̄N (t) − x̄j

∣∣ dt

≤ [1 + h
t̄j+1−t̄j

]c1[1 + h
t̄j+1−t̄j

]
∫ tj+1

tj
(t − t̄j) dt

= c1[1 + h
t̄j+1−t̄j

]2 (t̄j+1−t̄j)
2

2 ≤ c6h
2

for some constant c6. Combining with (23), this estimate
yields that ρΓ

(
x̄N (·)

)
≤ LSc6h, and so by Filippov’s

Theorem (see [6, Theorem 3.1.6. page 115]), for each N
there exists a trajectory xN (·) of ΓN such that xN (0) = x0

and for which

distH
(
gr xN (·), gr x̄N (·)

)
→ 0 (24)

as N → ∞. Finally, we have by the triangular inequality
distH

(
gr xN (·), gr Xµ

)
≤ distH

(
gr xN (·), gr x̄N (·)

)
+

+ distH
(
gr x̄N (·), Ω̄N

)
+ distH

(
Ω̄N , ΩN

)
+ distH

(
ΩN , gr Xµ

)
which approaches 0 as N → ∞ by (24), (21), and Theorem
1.

V. CONSTRUCTING MEASURE VIA SAMPLING

One of the drawbacks of the sampling method given in
Section III is that the measure µ must be specified in order
to sample. This problem arises particularly when a measure µ
has to be chosen so that a certain state constraint is satisfied.
For example, invariance requirement when trajectory stays
within a closed set. In this section, measure µ featured in
(1) will not be specified directly, it will rather be constructed
along with trajectory using another discretization scheme,
given only a positive number S, multifunctions F (·) and
G(·) satisfying the standing hypotheses, and a closed cone
K ⊂ IRm. At the end of this section we will see an example
on how the new sampling technique is used for the invariance
result. Due to the limited number of pages assigned to the
paper, we offer only sketches of the proofs in this section.
Details will be published elsewhere.

Let N > 0 be an integer and let h := S
N be the step size.

Let s0 = and for each j = 1, ..., N , let sj = jh. Let us now
define the sampled points {yj}N

j=1:

λ0 ∈ [0, 1] k0 ∈ K1 f0 ∈ F (x0) g0 ∈ G(x0)
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x1 := x0 + λ0hf0 + (1 − λ0)hg0k0

λ1 ∈ [0, 1] k1 ∈ K1 f1 ∈ F (x1) g1 ∈ G(x1)
...

...
...

...
xj+1 := xj + λjhfj + (1 − λj)hgjkj

λj+1 ∈ [0, 1] kj+1 ∈ K1 fj+1 ∈ F (xj+1) gj+1 ∈ G(xj+1)
...

...
...

...
xN := xN−1 + λN−1hfN−1 + (1 − λN−1)hgN−1kN−1

Here, K1 = K ∩ S1, where S1 is a unit sphere in IRm.
Let polygonal arc yN(·) be a linear interpolation of points

{sj, xj}. Let us reuse notation of ΩN , and let it this time be

ΩN :=
{
(sj , xj) : j = 0, . . . , N

}
.

The following theorem holds.
Theorem 3: Suppose that S > 0 is given. For every

sequence {ΩN}N of graphs of sampled trajectories, there
is a measure µ ∈ B([0, T ], normalized graph completion
(φ0, φ)(·), solution Xµ of (1) and a subsequence {ΩNk}k of
{ΩN}N such that distH

(
ΩNk , gr y(·)

)
→ 0 as k → ∞.

Proof: Define λN (·) and kN (·) on [0, S] so that
λN (s) := λj and kN(s) := kj on [sj , sj+1]. Let λ(·)
be any uniform limit of {λN (·)}N and let k(·) be any
uniform limit of {kN(·)}N . These limits exist because se-
quences {λN (·)}N and {|kN (·)|}N are uniformly bounded
by 1. We proceed by utilizing the compactness of trajectory
result in a similar way as it was done in the proof of
Theorem 1. There exists a bound c1 independent of N for
sequences {|xj |}, {|fj |} and {‖gj‖} like in equation (6).
Multifunction M : [0, S] × IRn ⇒ IRn is here defined as
M(s, y) := F (y)λ(s) +

(
1− λ(s)

)
G(y)k(s), number δN is

taken to be the same value as in the proof of Theorem 1 and
number rN is defined as rN := c1 maxs∈[0,S]

{∣∣λN (s) −
λ(s)

∣∣, ∣∣(1 − λN (s)
)
kN (s) −

(
1 − λ(s)

)
k(s)

∣∣}. On each
interval [sj , sj+1], arc vN (s) ∈ M(s, xj) was taken to be
vN (s) := λ(s)fj +

(
1 − λ(s)

)
gjk(s). Now, one shows that

inf{|ẏN(s) − v| : v ∈ M(s, yN (s) + δNIB)} ≤ rN ,
on [0, S], which assures existence of a trajectory y(·) of
M and a subsequence {yNk

(·)}Nk
of {yN (·)}N so that

{yNk

(·)}Nk
converges uniformly to y(·) on [0, S]. Since

ẏ(s) ∈ M(s, y(s)), there are selections f(s) ∈ F (y(s))
and g(s) ∈ G(y(s)) so that ẏ(s) = f(s)λ(s) + (1 −
λ(s))g(s)k(s). The pair (φ0, φ) : [0, S] 
→ [0, T ] × IRm,
where T := φ0(S),

φ0(s) :=
∫ s

0
λ(s′)ds′, φ(s) :=

∫ s

0
(1 − λ(s′))k(s′)ds′

generates functions η : [0, T ] → [0, S] and u : [0, T ] → IRm:

η(t) := φ−1
0 (t+), u(t) := φ(η(t)).

Evidently, the pair (φ0, φ)(·) is a normalized graph com-
pletion to the measure µ ∈ BK [0, φ0(S)] generated by
distribution u(·).

We define other components of a solution Xµ to (1), as
follows. Let x(·) : [0, T ] → IRn be given by x(t) = y

(
η(t)

)
,

and define the functions yi(·) (for each i ∈ I) as the
restriction of y(·) to Ii. Similar procedure as in Theorem 2

shows that there is a subsequence {ΩNk}k of {ΩN}N such
that distH

(
ΩNk , gr y(·)

)
→ 0 as k → ∞.

Example 5.1: In this example we briefly describe how the
sampling method described in this section can be used in
construction of measure µ which forces trajectory to remain
in a closed set. Suppose that C is a closed set and assume
that the system (1) is such that for each x ∈ C and ζ ∈
NP

C (x)(:= proximal normal cone to set C at x, [4]) there
exist λ ∈ [0, 1] and k ∈ K1, f ∈ F (x) and g ∈ G(x)
so that 〈λf + (1 − λ)gk, ζ〉 ≤ 0. Then one can show that
y(s) ∈ C for all s ∈ [0, S], where y(·) is as in Definition
2.1. Indeed, for all N , one constructs {xj} in the sampling
method described in this section, by choosing {λj},{kj},
{fj} and {gj} so that

〈λjhfj + (1 − λj)hgjkj , xj − c(xj)〉 ≤ 0

for a c(xj) ∈ projC(xj). One follows the proof of non-
impulsive weak invariance characterization [5, Theorem 2.1.]
to see that dC(xj)2 ≤ 4c2

1h for all j = 1...N . In other words,
the nodes {xj} converge to the points in C as N → ∞, and
so does their uniform limit y(·). Given a closed set C, we
say that the impulsive system (1) is weakly invariant in C, if
for every x0 ∈ C and S > 0, there exists a time 0 ≤ T ≤ S,
a measure µ ∈ BK [0, T ], and a solution Xµ of (1) so that
y(s) ∈ C for all s ∈ [0, S],
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