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Abstract— Recent papers (Bacic et al., 2003, Pluymers et al.,
2005) have shown that interpolation between different fixed
linear control laws can lead to control algorithms with large
feasible regions and low on-line computational complexity. The
feasible region was shown to be equal to the convex hull of
the feasible regions of the different linear control laws between
which the interpolation takes place. This paper extends the
results of (Pluymers et al., 2005) and shows that the feasible
region can be significantly enlarged beyond the convex hull by
taking the interaction between the different control laws into
account in the calculation of the feasible region. This paper
deals with linear systems with polytopic uncertainty description
and makes use of polyhedral invariant sets. Rigorous proofs of
the results are provided.

I. INTRODUCTION

Model Predictive control (MPC) is an invaluable technique
for handling constraints [4], [13], however this can come
at the cost of a significant online computational cost. Nev-
ertheless, it is widely accepted that quadratic programming
(QP) optimisations are reasonable and hence MPC is heavily
used in the process industry. Unfortunately, MPC algorithms
leading to a QP optimisation, generally deal with the certain
case and it is necessary to assume that either, the inherent
robustness of the approach or some form of backoff, will
cater for any uncertainty.

Hence, there is much interest ([6]) in how to extend MPC to
cater explicitly for parameter uncertainty. This paper focuses
on uncertainty modelled as a linear parameter varying (LPV)
system. The predominant number of articles in the literature
use ellipsoidal invariance as a key tool in establishing the
stablity of LPV systems. This is because one can use linear
matrix inequalities (LMI) to set up conditions for feasibility,
stability and convergence and LMIs give rise to convex
optimisations. The flip side however is that the optimisations
can be significantly more demanding than a QP and feasible
regions are restricted to ellipsoids.

Some authors used ellipsoidal invariance for establishing

stability, but posed a simpler variant of MPC to allow
for easier optimisations. For instance [7] added degrees of
freedom (d.o.f.) through an autonomous model and required
only a line search, whereas [1] used General Interpolation
(GIMPC) between fixed linear feeback laws. It is the latter of
these on which the current paper is based. GIMPC extended
feasibility to the convex hull of the invariant ellipsoids allied
to several underlying control laws. Crucially, the technique
is limited to feasible regions defined via ellipsoids whereas
the maximal admissible set (MAS, [5]) is usually polyhedral
and often significantly larger [11] than the largest invariant
ellipsoid. Hence the paper [1] invited two obvious questions:

1) For the nominal case, can we pose a general interpola-
tion based on polyhedrals rather than ellipsoids and if
so how does it compare by way of computational load
and feasible region. This topic is discussed in [11] for
the nominal case.

2) Can we take the general interpolation based on poly-
hedrals and apply it to the LPV case? This topic was
tackled in [9] and is further extended in the current
paper.

Section II will give a quick review of polyhedron based
GIMPC for the nominal case and discusses how MAS might
be computed for the LPV case [8]. Section III, proposes
an extension of [1] to utilise polyhedral, and hence larger
volume sets within a GIMPC algorithm [9]. Section IV
creates a polyhedral GIMPC algorithm with substantially
larger robust feasible regions by taking into account the
interaction between the different control laws. Proofs of the
properties are included. The paper finishes with examples
and conclusions.
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II. BACKGROUND

A. Model and objective

This paper considers LPV systems of the form

xk+1 = A(k)xk + B(k)uk,

(A(k), B(k)) ∈ Co{(A1, B1), ..., (Am, Bm)}.
(1)

The system is subject to constraints (more general linear
constraints can also be considered):

u(k) ∈ U ≡ {u : u ≤ u ≤ u}, k = 0, . . . ,∞, (2a)

x(k) ∈ X ≡ {x : x ≤ x ≤ x}, k = 0, . . . ,∞. (2b)

x(k) ∈ R
nx and u(k) ∈ R

nu denote state and input
vectors at discrete time k; nx and nu are the state and input
dimensions respectively.

Assume that one can choose from r different feedbacks
Kj, j = 1, ..., r (one of these might be the unconstrained
optimal, say K1) with which there are associated closed-loop
state matrices:

u = −Kjx, Φij = Ai − BiKj , j = 1, ..., r, i = 1, ..., m.

(3)
An underlying objective is, at every sample, to choose
a predicted control trajectory (of which only the first is
implemented) which minimises the following objective and
subject to constraints (2):

J =
∞∑

k=0

(x(k)TQx(k) + u(k)TRu(k)), (4)

with Q = QT ∈ R
nx×nx and R = RT ∈ R

nu×nu positive
definite state and input cost weighting matrices. For the
nominal case and optimal control u = −Kx, one can express
(4) as J(x) = xT V0x (for a suitable V0 = V T

0 > 0).

One requirement of interpolation methods is that there is a
quadratic stabilisability condition, that is for any feedback
K , there exists a Lyapunov function that applies irrespective
of the variation in the process allowed in (1). Hence there
must exist Vj , ∀j such that:

Vj − ΦijVjΦij ≤ 0, ∀i; (5)

These Vj will not match V0 in general.

B. Polyhedral Invariant Sets for LPV systems

Under mild conditions, the maximum volume feasible region
MAS [5] for a stable linear system with linear constraints is
polyhedral. Recently [8] it has been shown that as long as an
LPV system is quadratically stabilisable, the same statement
holds. For convenience, we give a truncated description of
the algorithm to find this set.

1) Assume that an outer approximation to the MAS is
given by (2) at k = 0 only. Then letting u(0) =
−K1x(0), this reduces to So = {x : Mox ≤ do}
where definitions of Mo, do are obvious.

2) Set up an iteration on sets Sk initialised with So, such
that we find the set Sk−1 of previous states x(−1) such
that x ∈ Sk; therefore

Sk−1 = {x(0) : x(−1) ∈ Sk, Φix(−1) ∈ Sk, ∀i} (6)

3) Iterate until Sk−1 ≡ Sk and then Sk is the MAS for
the LPV system.

Redundant constraints should be removed regularly or the
total number of constraints will explode combinatorially. Let
the MAS, be given as S = {x : Mx ≤ d}.

Remark 1: A MAS is invariant, so x(k) ∈ S ⇒ x(k+i) ∈
S, ∀i > 0, irrespective of the variation of A(k), B(k).
Moreover, the trajectories satisfy (2) and, from quadratic
stabilisability (5), converge to the origin.

C. General Interpolation (GIMPC): the nominal case [11]

Given a system (1), constraints (2), a set of asymptotically
stabilizing feedback controllers (3) and corresponding MAS
(S [j], j = 1, ..., r), consider the following decomposition:

x(0) =

r∑
j=1

xj , with

{ ∑r

j=1 λj = 1, λj ≥ 0,

xj ∈ λjS
[j] (7)

This decomposition can be performed iff x ∈ S ,

S � Co{S1, . . . ,Sr} (8)

Furthermore given (7) holds [1], the following control law
ensures that x remains in S:

u(k) = −

r∑
j=1

Kjxj , (9)

More generally, define the input and state predictions as:

u(k) = −
r∑

j=1

KjΦ
k
j xj ; x(k) =

r∑
j=1

Φk
j xj . (10)

where Φj = A − BKj . For a nominal model, Lyapunov
theory can be used to compute the cost (4) as

J = x̃TP x̃ =

∞∑
k=0

x(k+1)TQx(k+1)+u(k)TRu(k) (11)

x̃ = [xT
1 . . . xT

n ]T; P ≥ ΓT
u RΓu + ΨT ΓT

x QΓxΨ + ΨTPΨ
Ψ = [ΦT

1 . . . ΦT
r ]T, Γx = [I . . . I], Γu = [K1 . . . Kr]

Algorithm 1 (GIMPC for the nominal case): Take a sys-
tem (1), constraints (2), cost weighting matrices Q, R, con-
trollers Kj and invariant sets S [j] and compute a suitable P

from (11). Then, at each time instant, given the current state
x(0), solve the following QP optimisation:

min
xj,λj

x̃TP x̃, subject to (7), (12)

and implement the input u = −
∑n

j=1 Kjxj .

Algorithm 1 guarantees recursive feasibility, constraint sat-
isfaction and asymptotic stability. This algorithm can deploy
either ellipsoids or polyhedrals for invariant sets S[j]; the
latter case comprises algorithm 2.1 from [11].
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D. Weaknesses of GIMPC [1] and contributions of this
paper

1) Feasibility is restricted to S (8).
2) Polyhedral algorithm is currently only applicable to the

nominal case.
3) Algorithm for LPV case uses ellipsoids and hence has

restricted feasibility.

This paper proposes an algorithm overcoming all three weak-
nesses. First we show how to extend the use of polyhedral
MAS to the LPV case within the context of GIMPC (along
the same lines as [9]) and secondly how to improve constraint
handling to improve feasibility beyond the convex hull of (8).

III. POLYHEDRON BASED GIMPC FOR THE UNCERTAIN

CASE

This brief section extends the GIMPC algorithm to make use
of polyhedral sets in the uncertain case. In summary, take the
cost function given in [1] but replace the ellipsoidal invariant
sets with those defined in [8].

Definition 1 (Cost function for LPV case): Take the cost
function defined in (11,11) for the nominal case. Replace Ψ
by Ψi = [Φi1 · · · Φir], i = 1, ..., m and compute a P that
is the least upper bound for each of these Ψi.

Definition 2 (Invariant sets): Take the algorithm sum-
marised in section II-B and, independently for each Ki, find
the robust MAS S [i] = {x : Mix ≤ di}.

Algorithm 2: [Polyhedral GIMPC for the LPV case]

1) Define the sets S [j], j = 1, ..., r for the r different
feedbacks Kj, j = 1, ..., r corresponding to the LPV
system/constraints (1,2).

2) Define an appropriate least upper bound J = x̃TP x̃

for LPV system made up from (3).
3) Use sets S [j] and cost J in the algorithm 1.

Theorem 1: Algorithm 2 has a guarantee of recursive fea-
sibility and a gaurantee of convergence when a applied to
system (1) [1].

Proof: Decomposition (7) ensures that feasibility now im-
plies feasibility at the next step and for the entire implied
prediction . Also, by definition, for any valid choice of
λj , xj , J is Lyapunov and hence one can be sure that the
state converges to the origin. �	

IV. INCREASING FEASIBLE REGIONS FOR POLYHEDRAL

GIMPC IN THE UNCERTAIN CASE

In this section we propose how to extend the feasible
region of GIMPC to a region larger than the convex hull
of the feasible regions of the different. We will call the
new algorithm GIMPC2. GIMPC2 contains as a subset all
solutions available to GIMPC and yet achieves this with
fewer d.o.f. and while giving larger feasible regions.

A. Extension of GIMPC to GIMPC2

First, we briefly discuss some insights regarding the con-
straint handling philosophies of GIMPC and GIMPC2, and
hence show how one might extend GIMPC in order to
remove conservative constraint handling.

Let the MAS for system (1) under feedback Ki be:

S [j] = {x : Mjx ≤ dj} (13)

1) Constraints for GIMPC: The GIMPC constraints of (7)
can also be posed as:⎡
⎢⎣

M1 · · · 0
...

. . .
...

0 · · · Mr

⎤
⎥⎦

⎡
⎢⎣

x1

...
xr

⎤
⎥⎦ ≤

⎡
⎢⎣

d1 · · · 0
...

. . .
...

0 · · · dr

⎤
⎥⎦

⎡
⎢⎣

λ1

...
λr

⎤
⎥⎦

(14)
with

∑
j λj = 1, λj ≥ 0,

∑
j xj = x. It is easy to see that

this does implicit constraint handling in that it adds worst
case maxima and minima associated to each component xj

without any regard to whether these peaks occur at the
same sampling instant. As a consequence, this approach is
conservative and one could easily find scenarios where the
closed-loop trajectories never come near to a constraint.

2) Constraints for GIMPC2: GIMPC2 relies on the MAS
of (13) having a particular structure (GIMPC does not).
Specifically, let the inequalities defined by the kth row of
Mj , dj correspond to a particular constraint (for instance
the j-step ahead prediction of the input being on an upper
constraint). Then, the kth row of Ml, dl, ∀l 
= i must
also correspond to the same constraint. As a consequence,
Mj , dj , ∀j must have the same total number of rows.

GIMPC2 then does explicit constraint handling in that it adds
the predictions associated to each component xi and checks
the total prediction against constraints. This operation can be
summarised in the constraints:

[
M1 · · · Mr

]
⎡
⎢⎣

x1

...
xr

⎤
⎥⎦ ≤

[
d1 · · · dr

]
⎡
⎢⎣

λ1

...
λr

⎤
⎥⎦

(15)
with

∑
j λj = 1,

∑
j xj = x. These are clearly simpler than

(14) and moreover can be made simpler still if one realises
that the λj variables are now superflous. First normalise the
inequalities in (13) so that d1 = d2 = ... = dr = d, then
given the condition

∑
j λj = 1, the right hand side of (15)

reduces to just d, i.e.:

[
M1 · · · Mr

]
⎡
⎢⎣

x1

...
xr

⎤
⎥⎦ ≤ d;

∑
j

xj = x (16)

Remark 2: The reader will also note that, unlike GIMPC,
there is no need for the condition λj ≥ 0. Values for λi

could be implied but are not needed.

Remark 3: Even though the different Mi define invariant
sets for the individual Φi, it is not guaranteed that (16)
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defines an invariant set for the total system with state vector
[xT

1 . . . xT
r ]. However, in order to obtain a recursively

feasible algorithm, invariance of the constraint set is required.
Therefore, in the next section, the constraints are calculated
as the invariant set of one of two possible augmented
systems.

B. Comparison of GIMPC2 over GIMPC

This section gives a brief review, including the pros and cons,
of these two approaches.

• GIMPC was originally developed for ellipsoidal sets
and used implicit constraint handling (7), hence giving
reduced feasibility regions. This weakness carried over
to the polyhedral implementation.

• GIMPC2 introduces explicit constraint handling to the
interpolation and hence has larger feasible regions,
despite using the same underlying sets S [j].

• GIMPC2 requires fewer d.o.f. than GIMPC because it
does not require the λi variables.

• In GIMPC Mj , dj can be reduced to minimal form.
GIMPC2 must include every constraint required to de-
fine the MAS for any of the Kj ; hence the set definitions
(13) may require more rows.

• GIMPC extends easily to the LPV case. This is not
the case for GIMPC2, because of the need to impose
mutually consistent structures for S [j]. Algorithms to do
this are developed next.

C. Constraint calculation for GIMPC2

GIMPC2 uses fewer variables and has wider feasibility than
GIMPC, however the constraints have to be formulated such
that invariance for the total system is obtained (enabling
a recursive feasibility proof), while still using exact con-
straint handling. For this reason the constraints cannot be
constructed based on the MAS for the different controllers,
but have to be constructed as the MAS for an augmented
system.

1) Method 1: We first construct an augmented system (i.e.,
a system with increased dimensionality) and then use the
standard algorithm of [8] to deal with the constructed LPV
model (1).

Given control law (9) and state decomposition:

x =
∑

xi ⇒ xr = x − x1 − x2 − ... − xr−1 (17)

define an augmented state

X =

⎡
⎢⎢⎢⎣

x

x1

...
xr−1

⎤
⎥⎥⎥⎦ (18)

and hence an augmented LPV controlled system as X(k +

1) = Ψ(k)X(k), Ψ(k) ∈ Co{Ψ1, ...,Ψm}

Ψi =

⎡
⎢⎢⎢⎣

Ai − BiKr Bi(Kr − K1) · · · Bi(Kr − Kr−1)
0 Ai − BiK1 · · · 0
...

...
. . .

...
0 0 · · · Ai − BiKr−1

⎤
⎥⎥⎥⎦

(19)
Constraints (2) should be written in terms of X and then,
using the algorithm of section II-B on the augmented system,
the MAS will be of the form

Sa = {X : MaX ≤ da} (20)

The projection to x−space can be defined as

Sax = {x : ∃X s.t. MaX ≤ da} (21)

or rearranged into the form of (15).

2) Method 2: Alternatively one can construct a different
state vector as

X =

⎡
⎢⎣

x1

...
xr

⎤
⎥⎦ , (22)

and a corresponding augmented controlled LPV system as

Ψi =

⎡
⎢⎢⎢⎣

Ai − BiK1 0 · · · 0
0 Ai − BiK2 · · · 0
...

...
. . .

...
0 0 · · · Ai − BiKr

⎤
⎥⎥⎥⎦ .

(23)

The MAS for this set can then again be used as a constraint
set in the GIMPC2 algorithm. We note that it is important to
set up the constraints to ensure that the relation x =

∑
i xi

is implied in all the inequalities.

D. Feasibility and stability

It can be easily shown that 14 (after elimination of the λi)
is an invariant set for the augmented LPV system (23) and
hence a subset of the MAS of this system. Therefore the
feasibility region of GIMPC is also a subset of the feasibility
region of GIMPC2.

1) GIMPC2 has recursive feasibility: The feasible region Sa

is constructed on the basis of invariance, that is, all possible
future predictions for X remain within the region Sa. It
then follows automatically that X ∈ Sa ⇒ ∃(xi, i =
1, ..., r) s.t. x ∈ Sax.

2) Convergence: All that remains therefore is to establish
the convergence of the GIMPC2 algorithm with constraints
(20) when applied to system (1). For this, the reader is
referred back to Theorem 1. One can establish gauranteed
convergence if the optimisation cost J is replaced by an
appropriate upper bound x̃P x̃ such that for system (1) and
control laws Ki, one can be sure that there exist x̃ such that
J is monotonically decreasing and therefore Lyapunov. A
suitable upper bound is given in [1].

305



V. EXAMPLES

Examples are used to demonstrated the potentially large
increase in feasibility obtained by using GIMPC2 in place of
GIMPC. Also, some closed-loop simulations will illustrate
the efficacy of the algorithm for controlling the uncertain
system. Finally, for completeness, some discussion is given
to the relative complexity of the computations.

A. Feasibility regions

Consider the LPV system and constraints:

A1 =

[
1 0.1
0 1

]
; B1 =

[
0
1

]
;

A2 =

[
1 0.2
0 1

]
; B2 =

[
0

1.5

]
;

(24)

u = 1, u = −1, (25)

x = [10, 10]T x = [−10, − 10]T. (26)

Two robustly stablising control laws are

K1 = [−0.3 − 0.1]; K2 = [−0.5 − 0.3] (27)

Figure 1 plots the associated MAS (S1, S2) (ellipsoidal in
dashed line and polytopic in solid line). The convex hull
(8) (Feasible region for GIMPC) and the feasible region for
GIMPC2 Sax are shown in figure 2. Finally, figure 3 overlays
the feasible regions for a robust1 optimal control law with
1-5 d.o.f. (denoted as nc). Several things are clear:

• We have successfully combined robust polyhedral MAS
and hence allowed explicit constraint handling for the
LPV case.

• GIMPC2 has a larger feasible region than GIMPC.
• With just 2 d.o.f (in this example), GIMPC has far better

feasibility than conventional robust MPC algorithms
[14] using similar numbers of d.o.f.
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Fig. 1. Invariant ellipsoids and polyhedrals for linear feedbacks.

1A robust version of this using robust polyhedral invariant sets is
discussed in [14].
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Fig. 2. Invariant polyhedrals, the convex hull and Sax.
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Fig. 3. Invariant polyhedrals for robust MPC and Sax.

B. Closed-loop simulations

Next, we demonstrate that GIMPC2 gives convergent behav-
iour from all points within Sax. Figure 4 shows the state
trajectories for several initial points on the boundary. For
each trajectory, A(k), B(k) are deterministic, but sampled
randomly within the limits of (1), yet all the trajectories
remain within Sax and moreover converge to the origin;
earlier papers have shown that a failure to use robust invariant
sets will often lead to divergent behaviour [14]. It is also
worth noting that these trajectories show a distinctive time
varying nature especially when the state nears S1 (marked in
figure). So despite deploying so few d.o.f., the control law
has embedded a large degree of flexibility.

C. Computational issues

Two comparisons are in order: (i) the number of variables
required in the QP optimisation and (ii) the dimensions of
the inequalities in the QP optimisation. One could also make
this comment in relation to algorithms which use ellipsoidal
invariant sets but the optimisations there are more demanding
[1]. It is evident that for this example:

• GIMPC2 use less d.o.f. then both GIMPC and RMPC,
despite having a larger feasible region.
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• GIMPC2 and RMPC both require substantial more
inequalities than GIMPC.

−15 −10 −5 0 5 10 15
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x 2

Fig. 4. Closed-loop trajectories for GIMPC2.

GIMPC GIMPC2 Robust MPC
(r − 1)(nx + 1) = 3 (r − 1)nx = 2 nc

Table 1: Number of variables in optimisation

M1 M2 other Total
Rows (GIMPC) 30 12 2 44
Rows (GIMPC2) 412 412 0 412
Rows (Robust MPC nc = 5) 448

Table 2: Number of inequalities in optimisation

VI. CONCLUSIONS

This paper shows that GIMPC using polyhedral invariant sets
for LPV systems can exhibit conservative constraint handling
and proposes a new algorithm that is able to significantly
extend the feasible region beyond the convex hull of the
feasible regions of the different control laws. Necessary
conditions are discussed and suitable modifications to the
robust MAS algorithm of [8] are proposed and implemented.

A numerical example demonstrates the efficacy of the new
interpolation. Simulation studies demonstrate the low com-
putational load and yet large feasible regions of the proposed
interpolation algorithm. The main drawback is the large
number of inequalities; current work is considering ways of
reducing this.
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