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Abstract— We develop a path-following algorithm for re-
design of tracking feedback laws to reduce the control effort.
Our algorithm provides a tradeoff between the control effort
and the dynamic performance along the path, while maintaining
the desired convergence to the path. It is applicable to feedback
linearizable systems with stable zero dynamics. We illustrate
it on a realistic hovercraft model, and compare the resulting
control effort with control efforts of other path-following and
tracking algorithms.

I. INTRODUCTION

Several path-following and maneuvering problems have
recently been formulated to replace the standard reference
tracking problem as more suitable for certain applications
[1], [2], [3], [4]. The primary interest in these applications
is to solve the geometric task, that is, to steer an object
(vehicle, airplane, robot arm, etc.) to reach and follow a
desired geometric path Yp � {yP(θ) ∈ IRm : θ ∈ IR}.
A secondary objective, the dynamic task, is to force the
object moving along the path Yp to satisfy a dynamic
specification. The design of path-following and maneuvering
feedback laws suppresses the time-dependence of the motion
by parameterizing the path Yp with an auxiliary variable θ. A
feedback law for the original control variable u is constructed
to satisfy the geometric task, leaving θ to be designed as a
function of time and system state to fulfill the dynamic task.

In our interpretation of path-following we introduce a
fictitious object, called the leader. The leader moves along
Yp, and its position on Yp at time t is θ(t). Then the
geometric task is to design a feedback law for u which
ensures that the physical object, called the follower, asymp-
totically converges to the leader for any admissible leader’s
motion. The dynamic task is to design a feedback law for θ
which guarantees that leader’s motion satisfies the dynamic
specification. Path-following is more flexible than reference
tracking where leader’s motion θ(t) is predetermined ∀t ≥ 0.

In this paper we use the freedom to design θ(t) to achieve
a reduction of control effort measured by either magnitude
or energy of the control variable. It was observed in several
papers [1], [3], [4] that path-following feedback law usually
results in lower control effort than the corresponding tracking
feedback law, but there are no systematic procedures which
guarantee this reduction.
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Our path-following design implements a gradually chang-
ing tradeoff between the dynamic task and follower’s control
effort. We start with a tracking feedback law which enforces
the desired convergence to a given reference signal. Using
the corresponding path-following feedback law to control
the follower, we maintain follower’s desired convergence
to the path. Then we construct a feedback law for leader’s
motion θ(t) to reduce follower’s control effort. As the leader-
follower distance decreases, leader’s feedback law gives
higher priority to the dynamic task.

The main contribution of this paper is the algorithm
for design of leader’s feedback law. In this algorithm we
compute leader’s feedback law by pointwise minimizing the
sum of two terms. The first term measures follower’s control
effort due to the geometric error between the leader and
the follower, while the second term measures the deviation
of leader’s motion from the given dynamic specification.
Relative weights of these terms trade follower’s control effort
for its dynamic performance along the path. Our algorithm is
applicable to nonlinear systems with uniform vector relative
degree and stable zero dynamics. While the assumption on
uniformity of the vector relative degree can be relaxed by
resorting to dynamic extension [5] and dynamic reduction
[8], the assumption on stability of zero dynamics can not,
since it represents a necessary condition for asymptotic
tracking of an open set of reference signals [9].

We start with a motivating example in Section II. For
systems with uniform vector relative degree we develop our
path-following algorithm in Section III. The modifications
of the algorithm for systems with nonuniform vector relative
degree are presented in Section IV. We apply our path-
following algorithm to a realistic hovercraft model in Section
V and give concluding remarks in Section VI.

Given a function of time f : IRn → IRm, we write
f (i) for its ith time derivative, f (i) � dif(t)

dti . We denote
the identity matrix In ∈ IRn×n, and a diagonal matrix
D ∈ IRkn×km whose diagonal entries are Di ∈ IRn×m,
i = 1, . . . , k, and all other entries are zeros by D �
diag(D1, . . . , Dk). We define matrices Cr � [1 . . . 0 0] ∈
IR1×r, BT

r � [0 . . . 0 1] ∈ IR1×r, Ar �
[

0 Ir−1

0 0

]
∈

IRr×r, and matrices Cr,m � diag(Cr, . . . , Cr), Ar,m �
diag(Ar, . . . , Ar), Br,m � diag(Br, . . . , Br), where the
second index m denotes the number of diagonal entries.

II. MOTIVATING EXAMPLE

To motivate our approach to control effort reduction we
consider an LQ optimal tracking feedback law, and discuss

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThB09.5

0-7803-9568-9/05/$20.00 ©2005 IEEE 7284



the tradeoff between the convergence rate and the control ef-
fort. Then we compare these results with the results obtained
via our path-following algorithm developed in Section III.

Example 1: For the system

ẍ1 = u1, ẍ2 = u2, xi, ui ∈ IR, i = 1, 2, (1)

we design a feedback law to force the output y � x to asymp-
totically track the reference signal yT (t) � [yT 1(t) yT 2(t)]T .
Introducing the error coordinates eT � [x1 − yT 1 ẋ1 −
ẏT 1 x2 − yT 2 ẋ2 − ẏT 2]T into system (1) we get

ėT = A2,2eT + B2,2 (u − ÿT ) . (2)

The tracking feedback law, designed by minimizing J =∫ ∞
0

(
eT
T (t)QeT (t) + ũT (t)Rũ(t)

)
dt, Q = diag(q, 0, q, 0),

where ũ � u − ÿT , R = diag(r, r), q, r > 0, is

u = κg(eT ) + ÿT , κg(eT ) � −R−1BT PeT , (3)

where P = PT > 0 is the solution of the algebraic Riccati
equation AT

2,2P + PA2,2 + Q − PB2,2R
−1BT

2,2P = 0.
We show the closed-loop behavior for two sets of penalties

q = 100, r = 10, and q = 100, r = 300, in Figs.
1a, 1b, respectively. In Fig. 1a, y(t) quickly converges to
yT (t) = R[sin(v0t) cos(v0t)]T , but the control effort, Fig.
1d, is large. By increasing r, Fig. 1b, we reduce the control
effort, but slow down the convergence. This is the familiar
tradeoff provided by the LQ methodology.
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Fig. 1. Output values y(ti), ti = 0.4i, for: (a) feedback law (3), q = 100,
r = 10, (b) feedback law (3), q = 100, r = 300, (c) feedback law (6),
q = 100, r = 10, ω = σ(eP , θ̇, θ), and (d) pointwise norm of control
signals, |u1(t)| + |u2(t)|.

In Fig. 1c we show a noticeable improvement achieved
by exploiting the additional flexibility of path-following.
Substituting yP(θ) = R[sin θ cos θ]T and eP � [x1 −
yP1 ẋ1 − ẏP1 x2 − yP2 ẋ2 − ẏP2]T into (1), we get

ėP = A2,2eP + B2,2 (u − ÿP) , (4)

θ̈ = ω. (5)

A distinguishing feature of path-following is that ÿP =
∂2yP
∂θ2 θ̇2 − ∂yP

∂θ θ̈ gives rise to two new states, [θ θ̇]T , and
θ̈ = ω is an additional control input in augmented system
(4)–(5). Here, subsystem (4) governs the geometric error
between the leader and the follower, while subsystem (5)
represents leader’s dynamics. We let follower’s feedback law

u = κg(eP ) + ÿP , ÿP =
∂2yP
∂θ2

θ̇2 − ∂yP
∂θ

ω, (6)

enforce the geometric task. With so determined κg(eP ) we
design leader’s feedback law ω = σ(eP , θ, θ̇) to reduce the

control effort of feedback law (6) and enforce the dynamic
task limt→∞ θ̇(t) = v0, where v0 is the desired speed.

We say that path-following feedback law (6) corresponds
to tracking feedback law (3) because it is obtained by re-
placing eT with eP and yT with yP . Consequently feedback
laws (3) and (6) achieve the same rate of convergence of
eP (t) and eT (t) to zero, while the freedom to design ω
allows us to further reduce the control effort of feedback law
(6). The price paid for this reduction is slower convergence
of θ̇(t) to v0. Thus, path-following framework enables to
maintain the desired rate of convergence to the geometric
path, while providing the tradeoff between the control effort
and the dynamic performance along the path.

In Fig. 1c we show the typical behavior using (6) with
q = 100, r = 10, and ω = σ(eP , θ, θ̇) designed in Section
III. The resulting output trajectory has two phases. In the
first phase y(t) moves directly toward the path. When it
reaches the path, it gradually accelerates to achieve the
desired velocity. The control effort |u1(t)|+ |u2(t)| of path-
following feedback law (c) is significantly lower than the
control effort of tracking feedback law (a), Fig 1d. �

III. PATH-FOLLOWING REDESIGN OF TRACKING

FEEDBACK LAWS FOR REDUCTION OF CONTROL EFFORT

In this section we develop an algorithm for control effort
reduction of tracking feedback laws for nonlinear systems

ẋ = f(x) + g(x)v, x ∈ IRn, f(0) = 0, (7)

y = h(x), y, v ∈ IRm, h(0) = 0, (8)

with stable zero dynamics and uniform vector relative degree
{r, . . . , r}. For simplicity we assume the knowledge of a
global diffeomorphism T : IRn → IRn[

zT Ξ1T
. . . ΞmT

]T

= T (x), (9)

z ∈ IRn−rm, Ξi ∈ IRr, and a feedback transformation v =
χ(x)u + ψ(x) [5], which transforms system (7)-(8) into

ż = η(z,Ξ), Ξ � [Ξ1T
. . . ΞmT ]T , (10)

Ξ̇i = ArΞi + Brui, Ξi � [ξi
1 . . . ξi

r]
T , (11)

yi = ξi
1, i = 1, . . . , m, (12)

where u � [u1 . . . um]T , y � [y1 . . . ym]T , and η(0, 0) =
0. Subsystem (10) represents the zero dynamics assumed to
be ISS with respect to Ξ as the input, so that boundedness
of z(t) is implied by boundedness of Ξ(t). This allows us
to disregard zero dynamics (10) from further considerations.
Subsystem (11) represents m chains of r integrators, where
states of the ith chain are denoted by Ξi, i = 1, . . . , m.

Our problem for system (10)-(12) is to design a feedback
law for u to enforce the geometric and dynamic tasks
while guaranteeing boundedness of all closed-loop signals.
The geometric task is to ensure that output y converges to
geometric path YP � {yP(θ) = [yP1 . . . yPm]T : θ ∈ IR},
yPi(·) ∈ Cr, i = 1, . . . , m, that is,

lim
t→∞

‖y(t) − yP(θ(t))‖ = 0. (13)

The dynamic task is to ensure that y moves along the
path YP according to a given assignment, such as, time

7285



assignment limt→∞ |θ(t)−vt(t)| = 0, and speed assignment
limt→∞ |θ̇(t) − vs(θ(t), t)| = 0. Throughout this paper,
without loss of generality, we assume that the dynamic task
is given by the speed assignment vs(θ, t) = v0.

The above path-following problem can be recast into the
reference tracking framework by simultaneously enforcing
the dynamic and geometric tasks. This is achieved by con-
structing a feedback law for u to track a fictitious reference
signal yT (t) = [yT 1(t) . . . yT m(t)]T � yP(v0t+ t0), where
t0 is an arbitrary constant. With tracking error coordinates

eT
T � Ξ − YT = [e1 T

T . . . em T
T ], Y T

T � [Y T
T 1 . . . Y T

T m],
ei
T � Ξi − YT i = [ξi

1 − yT i . . . ξ
i (r−1)
1 − y

(r−1)
T i ],

subsystem (11) can be rewritten as ėi
T = Are

i
T + Br(ui −

y
(r)
T i ), i = 1, . . . , m. Therefore, a tracking feedback law

u = κ(eT , y
(r)
T ) � −KgeT + y

(r)
T , (14)

where Kg = diag(K1
g , . . . , Km

g ), and Ki
g is chosen such that

Ar − BrK
i
g is a Hurwitz matrix, solves the geometric and

the dynamic task.
To develop a path-following solution to the above prob-

lem, we introduce the geometric error coordinates eP =
[e1

P . . . em
P ]T � Ξ − YP (θ, Θ̇), ei

P � Ξi − Y i
P , and the

dynamic error coordinates eΘ̇ � Θ̇ − [v0 0 . . . 0]T , where

Ξi � [ξi
1 . . . ξ

i (r−1)
1 ]T , Y i

P � [yPi . . . y
(r−1)
Pi ]T ,

Y T
P � [Y 1 T

P . . . Y m T
P ], Θ̇ � [θ̇ . . . θ(r−1)]T .

(15)

Substituting (15) into system (11)–(12) we obtain

ėi
P = Are

i
P + Br(ui − y

(r)
Pi ), (16)

ėΘ̇ = Ar−1eΘ̇ + Br−1ω, (17)

yei = ei
P1, i = 1, . . . , m. (18)

As in system (4)–(5), y
(r)
P gives rise to r − 1 new states eΘ̇

and θ(r) � ω becomes an additional control input. Then the
geometric task is to render ePe � 0 GAS for geometric error
subsystem (16) by a feedback law for u, while the dynamic
task is to render eΘ̇e � 0 globally attractive for dynamic
error subsystem (17) by a feedback law for ω.

Given a tracking feedback law u = κ(eT , y
(r)
T ), we use its

corresponding path-following feedback law u = κ(eP , y
(r)
P )

to control the follower. Due to this correspondence, the
properties of tracking feedback law (14) with respect to
the reference signal yT , are also the properties of the
corresponding path-following feedback law with respect to
the path yP . Thus, the geometric task is enforced by selecting

u = κ(eP , y
(r)
P ) = −KgeP + y

(r)
P , (19)

since the derivative of the Lyapunov function Vg(eP ) =∑m
i=1 ei T

P Pie
i
P , where Pi = PT

i > 0, i = 1, . . . , m,
solves

(
Ar − BrK

i
g

)T
Pi + Pi(Ar −BrK

i
g) = −I , satisfies

V̇g ≤ −‖eP ‖2 along the solutions of (16) and (19).
We decompose follower’s feedback law (19) into four parts

κ = κg + κd + κss +
∂yP
∂θ

ω. (20)

where κg(eP ) � κ(eP , y
(r)
P ) − κ(0, y

(r)
P ) is the geometric,

κd(eΘ̇, θ, t) � y
(r)
P |ω≡0 − κss(θ, t) is the dynamic, and

κss(θ, t) � y
(r)
P |ω≡0,eΘ̇≡0 is the steady-state part of feedback

law (19). The only remaining degree of freedom in feedback
law (19) is ∂yP

∂θ ω. Relying on this term we design a feedback
law for ω to reduce the control effort of (19). However, the
same feedback law is to solve the dynamic task. When Vg

is large, that is, when the follower is far from the leader, the
dominant part of the control signal comes from κg , and we
design a feedback law for ω to reduce it. When Vg is small,
the feedback law for ω is to enforce the dynamic task.

We obtain the feedback law for ω = σ(eP , eΘ̇, θ) by

σ(eP , eΘ̇, θ) � arg minω Eg(eP , θ, ω) + cEd(eΘ̇, ω),
Eg(eP , θ, ω) � Vg(eP )‖κg(eP ) + ∂yP

∂θ ω‖2,

Ed(eΘ̇, ω) � (ω + KdeΘ̇)2,
(21)

where c > 0 and Kd is chosen such that Ar−1 − Br−1Kd

is a Hurwitz matrix. This leads to

σ = − 1
c + ‖∂yP

∂θ ‖2Vg

(
Vg

∂yP
∂θ

T

κg + cKdeΘ̇

)
. (22)

The term Eg penalizes the geometric part of feedback law
(19) and it contains Vg to increase its importance when
the follower is far from the leader. The term Ed penalizes
the difference between ω and a stabilizing feedback law
for subsystem (17). By adjusting the constant c, feedback
law (22) provides a tradeoff between the importance of
enforcing the dynamic task and reducing the control effort
of feedback law (19). Since limt→∞ eP (t) = 0, we get
that limt→∞ σ(eP (t), eΘ̇(t), θ(t)) = −KdeΘ̇(t), and thus,
feedback law (22) solves the dynamic task. We note that
(22) is well defined for all sufficiently smooth paths yP and
its magnitude is inversely proportional to ‖∂yP

∂θ ‖.
Leader’s initial conditions θ(0) and Θ̇(0) significantly

affect the control effort of feedback law (19), (22). We select
them by minimizing the initial value of Vg

[θ(0) Θ̇(0)]T = arg mins,Ṡ Vg(Ξ(0) − YP (s, Ṡ)). (23)

The function Vg(Ξ(0)−YP (·, ·)) is path dependent and may
have several local minima, but based on follower’s initial
conditions Ξ(0) it is often possible to provide a good initial
estimate for its global minimizer.

This completes our algorithm. It is straightforward to
extend it to uncertain triangular systems

ξ̇i = fi(ξ1, . . . , ξi) + ξi+1, fi(0) = 0,

where y = ξ1, ξi � [ξ1
i . . . ξm

i ]T , and functions fi are
given in terms of their bounds σij , ‖fi(ξ1, . . . , ξi)‖ ≤∑i

j=1 ‖ξj‖σij(ξ1, . . . , ξi), i = 1, . . . , r, u � ξr+1, but we
do not pursue this direction here.

Example 2: We compare the control effort of path-
following feedback law (19), (22) with control efforts of its
corresponding tracking feedback law and the corresponding
path-following feedback law designed in [4].

For system (1), the circular path yP(θ) = R[sin θ cos θ]T ,
and the speed assignment vs(θ, t) = v0, we design three
feedback laws to enforce the geometric task, limt→∞ y(t)−
yP(θ(t)) = 0, and the dynamic task, limt→∞ θ̇(t)− v0 = 0.

Introducing geometric and dynamic error coordinates (15)
into system (1), we solve the geometric task by selecting
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u = κg + κd + κss + ∂yP
∂θ ω, (24)

where κg � −KgeP , κd � ∂2yp

∂θ2 eΘ̇(eΘ̇ + 2v0), κss �
∂2yp

∂θ2 v2
0 , and Kg is chosen such that A2,2 − B2,2Kg is

Hurwitz. We satisfy the dynamic task by defining a feedback
law for ω via (22), where Vg(eP ) = eT

P PeP and P = PT >
0 solves (A2,2 − B2,2Kg)T P + P (A2,2 − B2,2Kg) = −I .

The corresponding tracking feedback law is given by (24),
ω = 0 and Θ̇(0) = v0. To design the feedback law using the
algorithm in [4], we redefine the geometric error coordinates

ẽP � Ξ − ỸP (θ, v0),
ỸP (θ, v0) = [yP1

∂yP1
∂θ v0 yP2

∂yP2
∂θ v0]T .

(25)

The coordinates eP in (15) and ẽP in (25) differ in Ỹp(θ, v0).
Namely, whenever θ̇ appears in (15), it is replaced by v0

in (25). Consequently the highest derivative of θ appearing
in (25) is θ̇ = ω, and it is treated as the control input.
In coordinates (25) the dynamic and geometric tasks are
coupled, forcing the simultaneous design of feedback laws
for u and ω. It can be shown that the derivative of Vg(ẽP ) =
ẽT
P P ẽP along the solutions of (1) and the feedback law

u = −Kg ẽP + ∂2yP
∂θ2 v2

0 , ω = v0 + gT (θ, v0)P ẽP , (26)

where g =
[

∂yP1
∂θ v0

∂2yP1
∂θ2

∂yP2
∂θ v0

∂2yP2
∂θ2

]T

, satisfies

V̇g ≤ −‖ẽP ‖2. This implies limt→∞ ẽP (t) = 0 and
limt→∞ θ̇(t) = v0, hence, feedback law (26) solves the
geometric and the dynamic task for system (1).

All feedback laws in this example use the same gains Kg

and differ only in the methodology used to control leader’s
motion θ(t). To compare the control efforts it is important to
choose leader’s initial conditions appropriately. For feedback
law (24), leader’s initial conditions θ(0), Θ̇(0) are two-
dimensional and we compute them using (23). Leader’s
initial condition in the tracking feedback law and feedback
law (26) is only θ(0), which we set to the value computed in
(23). We measure the control effort of a feedback law from
an initial condition X(0) = [x1(0) ẋ1(0) x2(0) ẋ2(0)]T by

CE(X(0)) =
∫ Tε

0
u2(t)dt, (27)

where Tε = mint{t ≥ 0 : ∀τ ≥ t, ‖eP (τ)‖+‖eΘ̇(τ)‖ ≤ ε},
and ε > 0 is a small number. In other words, the control
effort from an initial condition X(0) is L2 norm of the
control signal u(t) needed to transfer the state X(0) to
the ε-neighborhood of the desired trajectory. In Fig. 2 we
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Fig. 2. Dependence of CE on x1(0) and x2(0) for: (a) feedback law
(24), (22), (b) corresponding tracking feedback law, (c) feedback law (26).

show follower’s control effort for the three feedback laws
considered in this example, where Kg is computed in (3) for

q = 100, r = 10, Kd = 2 and c = 100. We project the
function CE(X(0)) for ε = 0.1 on the plane ẋ1(0) = 0,
ẋ2(0) = 0, that is, we plot the dependence of the follower’s
control effort on its initial position, assuming that its initial
velocity is zero. As observed in Fig. 2, the control effort
of feedback law (24), (22), CEa(X(0)), is significantly
smaller for all initial conditions than the control efforts of
its corresponding tracking feedback law, CEb(X(0)), and
feedback law (26), CEc(X(0)). �

IV. NONUNIFORM VECTOR RELATIVE DEGREE

Now we modify our path-following algorithm to make
it applicable to systems (7) which have nonuniform vector
relative degree {r1, . . . , rm}. Following the algorithm for
systems with uniform vector relative degree, we obtain

ėi
P = Ari

ei
P + Bri

(ui − y
(ri)
Pi ), i = 1, . . . , m, (28)

ėΘ̇ = Ar∗−1eΘ̇ + Br∗−1ω, (29)

ye = [e1
P1 . . . em

P1]
T , (30)

where ω � θ(r∗), and r∗ � maxi ri is the largest relative
degree of an output component ei

P1
in (30), that is, the

size of the longest integrator chain in (28). Note that ω =
θ(r∗) appears only in chains Lr∗ , where Lj denotes all
integrator chains in (28) with length j, Lj � {i : ri = j},
which represents the principal obstacle for applying the
path-following algorithm from Section III to systems with
nonuniform vector relative degree. Ignoring this obstacle and
using (22) to define feedback law for ω results in reducing
control effort of only feedback laws for ui, i ∈ Lr∗ , and
may lead to undesirable closed-loop trajectories.

An option is to use dynamic extension [5], and add r∗−ri

integrators to chains i �∈ Lr∗ . In other words, instead of
solving the geometric task using static feedback laws for ui,
i �∈ Lr∗ , the dynamic feedback laws of the form

u
(r∗−ri)
i = κi(ei

P , Ui, θ, eΘ̇), (31)

where Ui � [ui . . . u
(r∗−ri−1)
i ]T , are used. The ex-

tended system (28), (31) has uniform vector relative degree
{r∗, . . . , r∗} with respect to (30), and formula (22) is appli-
cable. However, the resulting feedback law for ω reduces the
control effort of u

(r∗−ri)
i instead of ui, i = 1, . . . , m.

The alternative is to use dynamic reduction [8]. We split
all chains of subsystem (28) into the upper part, with r• �
mini ri integrators, and lower part, with ri − r• integrators,
which gives rise to the following cascade system

˙̃Ξi = Ar•Ξ̃i + Br• ũi, Ξ̃i � [ξi
1 . . . ξi

r• ]T , (32)
˙̃U i = Ari−r•Ũi + Bri−r•ui, (33)

ėΘ̇ = Ar∗−1eΘ̇ + Br∗−1ω, (34)

where ũi � ξi
r•+1, Ũi � [ũi . . . ũ

(ri−r•)
i ]T , i = 1, . . . , m,

ũ � [ũ1 . . . ũm]T . The upper part of the cascade, subsystem
(32), has uniform vector relative degree {r•, . . . , r•} with
respect to (30), while the bottom part, subsystem (33),
consists of integrator chains with variable length. Applying
the algorithm from Section III to (32), we construct virtual
feedback laws for ũ and θ(r•)

ũv = κv(ẽP , θ, ẽΘ̇), ωv = σv(ẽP , θ, ẽΘ̇), (35)
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where ẽP and ẽΘ̇ are defined by replacing r with r• in (15).
This feedback law is not implementable since ũ, θ(r•) are
state variables of system (32)–(34), but we use backstepping
to construct high-gain feedback laws for u and θ(r∗) = ω

u = κ(ẽP , Ũ , θ, eΘ̇), ω = σ(ẽP , Ũ , θ, eΘ̇), (36)

where Ũ � [Ũ1 . . . Ũm]T , to enforce fast convergence of
ũ(t) to ũv(t), and θ(r•)(t) to ωv(t). By an appropriate
choice of initial conditions [θ(r•)(0) . . . θ(r∗−1)(0)]T , it is
possible to guarantee that θ(r•)(t) ≡ ωv(t). We note that the
feedback law for ω in (36) is designed to reduce the control
effort of the virtual control ũv(t), and its effectiveness in
reducing the control effort of feedback law (36) depends on
the convergence rate of ũ(t) to ũv(t).

V. CONTROL EFFORT REDUCTION OF TRACKING

FEEDBACK LAWS FOR HOVERCRAFT

We illustrate our algorithm on a hovercraft model

ẋ = u cos ψ − v sin ψ, mu̇ − mvr + dνu = f1,
ẏ = u sin ψ + v cos ψ, mv̇ + mur + dνv = 0,

ψ̇ = r, Jṙ + drr = f2,
(37)

where x and y are the Cartesian coordinates of hovercraft’s
center of mass, u and v are surge and sway components of
its velocity, ψ defines its orientation, and r is its angular
velocity. Hovercraft’s mass is denoted by m, its moment
of inertia by J , f1 is the pushing force, and f2 is the
steering torque. Friction is modelled by dνu, dνv and drr,
where dν , dr > 0. Hovercraft (37) exhibits a nonholonomic
constraint because its sway velocity v can not be influenced
instantaneously. When the output of interest is the position
p � [x y]T , hovercraft (37) does not have well-defined
relative degree in any neighborhood of the origin, 0 ∈ IR6.
Tracking problems for hovercraft are challenging, because
most of the standard nonlinear tools, such as backstepping
and feedback linearization, are not directly applicable. For
more details on hovercraft and other underactuated vehicles
see [6], [7] and references therein.

Given a path yP : IR → IRm, a desired velocity v0

along it, and two arbitrary constants c1, c2 > 0, our problem
for hovercraft (37) is to design feedback laws for f1 and
f2 which guarantee boundedness of all closed-loop trajec-
tories and enforce the geometric task, lim supt→∞ ‖p(t) −
yP(θ(t))‖ ≤ c1, and to design a feedback law for the
leader which enforces the dynamic task, lim supt→∞ |θ̇(t)−
v0| ≤ c2. The relaxation of the geometric and dynamic
tasks into their practical counterparts is a consequence of
the nonholonomic constraint of the hovercraft.

Due to the space limitation, we omit the derivation of
feedback laws for f1 and f2, and only give their final
expressions obtained by using the backstepping procedure
from [6], [7]. To define these feedback laws we introduce
several quantities: eP1 � RT (ψ)(p − yP), eP2 � [u v]T −
RT (ψ)ẏP + k1

m eP1, ẽP2 � eP2 + [ 1
m 0]T , α � [α1 α2]T =

Dνδ − h − 1
meP1 − k2

m ẽP2, h = (k1
m Dν − k2

1
m )eP1 +

k1eP2 − DνRT (ψ)ẏP − mRT (ψ)ÿP , eP3 � r − α2, Dν =
diag(dν , dν), n1 = [1 0]T , n2 = [0 1]T , and

R(ψ) �
[

cos ψ − sin ψ
sin ψ cos ψ

]
, S(r) �

[
0 −r
r 0

]
.

Using the Lyapunov function V = 1
2 (‖eP1‖2+‖ẽP2‖2+e2

P3)
it can be shown [6], [7] that the feedback law

f1 = α1, f2 = drα2 + Jα̇2 − mnT
2 ẽP2 − k3eP3, (38)

ensures boundedness of all closed-loop signals and guaran-
tees that ‖p(t) − yP(θ(t))‖ ≤ p0e

−λt + ε, where p0 > 0
depends on initial conditions, and λ, ε > 0. Furthermore, by
selecting appropriate values for parameters k1, k2, and k3,
any values of λ and ε can be obtained. Thus, feedback law
(38) solves the geometric task for any θ(t).

Since the control input f1 is separated by two integrators
from the output p, the feedback law for f1 in (38) is obtained
via two steps of backstepping and the highest derivative of
θ appearing in it is θ̈. Similarly, the highest derivative of θ
in the feedback law for f2 in (38) is θ(3). Thus, θ(3) � ω
becomes a control input which is to ensure the dynamic task
and reduce the control effort. Defining the dynamic error by
eΘ̇ � [θ̇−v0 θ̈]T , the dynamic task is enforced by rendering
eΘ̇e

� [0 0]T globally practically attractive for

ėΘ̇ = A2eΘ̇ + B2ω. (39)

We first solve the dynamic task by designing a feedback law
for ω via dynamic reduction. Since hovercraft’s moment of
inertia J is typically small, we decompose system (37) into
a fast and a slow subsystem. The fast subsystem governs
angular velocity r and it is controlled by steering torque f2.
The slow subsystem consists of the remaining equations in
(37), its relative degree is {2, 2} (from p to [f1 r]T ), and its
virtual feedback law is α = [α1 α2]T . If J is not small, this
time-scale separation is to be induced via the feedback law
for f2 by increasing the constant k3. Treating θ̈ � ωv as a
virtual control input into the slow subsystem, we define a
feedback law for it via (21), which results in

ωv = − 1

c+V2‖ ∂yP
∂θ ‖2

(
V2

∂yP
∂θ

T
R(ψ)αg + ckd1eθ̇

)
, (40)

where kd1 > 0, V2 = 1
2‖eP1‖2 + 1

2‖ẽP2‖2, and αg = ( 1
m +

k1
m Dν − k2

1
m )eP1 + (k1 + k2

m )ẽP2 is the geometric part of
α. Applying backstepping on ωv , we obtain implementable
feedback law for θ(3) = ω

ω =
dωv

dt
− k�(θ̈ − ωv), k� > 0, (41)

which enforces the dynamic task for (39). Taking θ̈(0) =
ωv(0) we get θ̈(t) ≡ ωv(t), while θ(0) and θ̇(0) are
computed from (23), where Vg = V2.

For the dynamic extension approach, we first add an
integrator to system (37). Namely, we design a feedback law
for ḟ1 instead of f1, which makes both control inputs, ḟ1 and
f2, separated by three integrators from the output p. Using
the Lyapunov function Ṽ � V2+ 1

2 ẽT
P3J̃ ẽP3, J̃ � diag(1, J),

ẽP3 � [f1 − α1 eP3]T it can be shown that feedback law

ḟ1 = α̇1 − mnT
1 ẽP2 − k3(f1 − α1), (42)

coupled with the feedback law for f2 in (38) solves the ge-
ometric task for hovercraft (37). Now we solve the dynamic
task by applying formula (21), which results in

ω = − Ṽ ∂yP
∂θ

T
R(ψ)J̃ κ̃g + cKdeΘ̇

c + Ṽ ∂yP
∂θ

T
R(ψ)J̃2RT (ψ)∂yP

∂θ

, (43)
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where κ̃g � J2J̃−1κg is the scaled geometric part of
feedback law (38), (42), κg � α̇g−mẽP2+drdiag(0, 1)αg−
k3ẽP3. Since J is typically small, without this scaling the
geometric part of ḟ1 is drastically more penalized than the
geometric part of f2, resulting in large ω and leader’s fast
motion along the path. The initial condition for feedback law
(42) is set to f1(0) = α1(0), while leader’s initial conditions,
[θ(0) θ̇(0) θ̈(0)]T , are computed via (23), where Vg = Ṽ .

In Figs. 3 and 4 we compare the typical behavior of the
hovercraft system for: (a) tracking feedback law, (b) path-
following feedback law developed in [4], (c) path-following
feedback law (38), (41) obtained via dynamic reduction, (d)
path-following feedback law (38), (42), (43) obtained via
dynamic extension. The derivation of feedback law (b) is
omitted, while the tracking feedback law which corresponds
to (a) is given by (38), ω = 0, θ̇(0) = v0 and θ̈(0) = 0.

We set the parameters to values for the actual hovercraft
vehicle from Caltech’s experimental testbed: m = 5.15 kg,
J = 0.047 kgm2, dν = 4.5kg/s, and dr = 0.41 kgm/s, and
adopt feedback parameters: k1 = 4, k2 = 1.5, k3 = 0.6,
from the tracking feedback law which was experimentally
validated in [6]. The additional parameters for feedback laws
(c), (d) are respectively: c = 100, kd1 = 1, k� = 10, and
c = 100, Kd = [44]. We consider a circular path with
radius R = 10m, and let the desired velocity along it be
v0 = 1m/s. Hovercraft’s initial conditions are: X�(0) =
[p(0)T ψ(0)u(0)v(0) r(0)]T = [25 − 25 0 0 0 0]T . Leader’s
initial condition θ(0) for feedback laws (a), (b) is set to the
value of θ(0) computed for feedback law (c).

In Fig. 3 we show the typical behavior and the control
effort for feedback laws (a), (b). Since leader’s motion
yT (t) = yP(v0t + θ(0)) is predetermined for tracking
feedback law (a) in Fig. 3i, the follower is forced to use large
control effort to catch up with the leader. The peak value of
the pushing force f1(t), which represents the dominant part
of the control effort, is maxt |f1(t)| = 172. A significant
reduction of control effort is achieved with path-following
feedback law (b), Fig. 3ii, but the peak value of f1(t) is still
large, maxt |f1(t)| = 170.
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Fig. 3. Hovercraft’s and leaders’s positions, p(ti) and yP (θ(ti)), at ti =
0.6i, and pointwise norm of the control signals, f2

1 (t)+f2
2 (t) for: tracking

feedback law (a), path-following feedback law (b).

In Fig. 4 we show the typical behavior and the control
effort for feedback laws (c) and (d) developed in this paper.
The motion of the leader yP(θ(t)) has two phases. Initially
the leader disregards the dynamic task, and waits at a
”convenient place” for the follower to converge to it. Thus the
follower does not waste the control effort to unnecessarily
chase the leader. In the second phase the leader gradually
accelerates to the desired speed. The tradeoff between the
dynamic task and the control effort reduction is particularly

revealing in Fig. 4i. The peak values of f1(t) for feedback
laws (c), (d) are maxt |f1(t)| = 96, maxt |f1(t)| = 99,
respectively. The control effort from an initial condition
X(0) is measured by CE(X(0)) =

∫ Tε

0
f2
1 (t) + f2

2 (t)dt,
where Tε � mint{t ≥ 0 : ∀τ ≥ t, ‖eP1(τ)‖ + ‖ẽP2(τ)‖ +
‖ẽP3(τ)‖ + ‖eΘ̇(τ)‖ ≤ ε}, and ε = 0.2. For simulations
shown in Fig. 3 and 4, we get: CEa(X�(0)) = 1.9 × 104,
CEb(X�(0)) = 3.5 × 104, CEc(X�(0)) = 6.6 × 104,
CEd(X�(0)) = 3.8 × 104. The same ordering of control
efforts, CEa < CEb < CEd < CEc, holds for all initial
conditions for which we performed simulations.
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Fig. 4. Hovercraft’s and leaders’s positions, p(ti) and yP (θ(ti)), at
ti = 0.6i, and pointwise norm of the control signals, f2

1 (t) + f2
2 (t) for

path-following feedback laws obtained via: dynamic reduction (c), dynamic
extension (d).

VI. CONCLUSION

In this paper we introduce a leader-follower methodology
for design of path-following feedback laws. We first con-
struct a feedback law for the follower to ensure its desired
convergence rate to the leader for any leader’s motion. This
leaves leader’s motion as an additional degree of freedom
which we exploit to reduce follower’s control effort. The
price paid for this reduction is a delay in enforcing the
dynamic task. We demonstrate the effectiveness of the de-
veloped path-following algorithm on a hovercraft model.

Although our algorithm does not explicitly account for
input saturation, the resulting path-following feedback laws
require less control effort and are likely to perform better
in such situations than the corresponding tracking feedback
laws. An explicit consideration of the input saturation is a
focus of the current research.

REFERENCES

[1] J. Hauser and R. Hindman, ”Maneuver regulation from trajectory
tracking: Feedback linearizable systems”, Proc. of IFAC Symp. on
Nonlinear Control Systems Design, Lake Tahoe, CA, USA, 1995.

[2] P. Encarnacão, A.M. Pascoal, ”3D Path-following for Autonomous
Underwater Vehicle”, in Proc. of 39th IEEE CDC, Sydney, Australia,
December 2000.

[3] S.A. Al-Hiddabi and N.H. McClamroch, “Tracking and Maneuver
Regulation for Nonlinear Nonminimum Phase Systems: Application
to Flight Control”, IEEE Tran. on Control System Technology, vol.
10, 2002, pp 780-792.

[4] R. Skjetne, T.I. Fossen and P.V. Kokotović, ”Robust Output Maneu-
vering for a Class of Nonlinear Systems”, Automatica, vol. 40, pp.
373-383, 2004.

[5] A. Isidori, ”Nonlinear Control Systems”, Springer, New York, 1997.
[6] A.P. Aguiar, L. Cremean and J.P. Hespanha, ”Position Tracking

for a Nonlinear Underactuated Hovercraft: Controller Design and
Experimental Designs”, in Proc. of 42nd IEEE CDC, Maui, Hawaii,
December 2003.

[7] A.P. Aguiar and J.P. Hespanha, ”Position Tracking of Underactuated
Vehicles”, in Proc. of ACC, Denver, Colorado, June 2003.
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