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Abstract

While efficiency of mechanisms for control of commu-

nication networks has been extensively investigated, little

attention has been paid to the critical metric of revenue

generation. In this paper, we pursue such an investiga-

tion within a class of allocation schemes with the mini-

mal signaling and computation costs necessary in com-

munication network domains. We show that, within this

space, linear cost rules for proportional allocation mech-

anisms are optimal for symmetric agent populations and

reserving a portion of the resource can increase revenue

even though less of the resource is being sold. While non-

linear cost functions can be better for asymmetric popu-

lations, intelligent agents can undermine this via signal

splitting. We show how a resource can counter this phe-

nomenon by declaring a linear cost.

Most current approaches to control of communi-
cation networks incorporate economic models to deal
with the decentralization necessitated by the domain.
Ideas such as “smart markets” where packets bid for
service [3] and proportionally fair pricing [2] promoted
market-based control to induce efficient use of net-
work resources. While the success of various schemes
at achieving efficiency has been studied extensively
[1,5,7,8], little attention has been paid to revenue gen-
eration as a performance metric. Clearly, for many net-
work resource owners, revenue generation is a critical
motivation as illustrated by the emergence of band-
width auctions and exchanges.

In this paper, we investigate various aspects of rev-
enue generation through analysis of a class of mecha-
nisms with minimal signaling and computational costs
for the resource, which is vital in communication net-
work settings and obtain several key results. We show
that for symmetric populations of buyers (e.g. band-
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width set aside for one type of traffic - voice, video
or data), we show that mechanisms with linear costs
and proportional allocations are optimal. We see that
it does not take many buyers for treating a network
resource as a divisible good to yield greater revenue
than by treating it as an indivisible good. Under cer-
tain conditions, service providers can obtain greater
revenue by reserving a portion of the resource and sell-
ing less than the entire available capacity. We show
that while strictly convex cost functions can outper-
form linear cost functions in settings with asymmetric
buyers, intelligent agents (buyers or their proxies) can
undermine such schemes by submitting multiple sig-
nals that gain the same allocation at a reduced cost.
Finally, we illustrate how a resource can alleviate some
of the revenue loss by declaring a linear cost function,
which shifts up agents’ demand functions.

1. Models and Equilibrium

The problem set-up described in this section fol-
lows that of [5], which we provide here also in de-
tail so that the paper would be self-contained. Trans-
parent mechanisms (or auctions) are characterized by
an allocation rule x(s) and a cost rule c(s), where
s = [s1 · · · sN ] represents the signals from a popula-
tion of N agents and xi(s) and ci(s) are respectively
the allocation and cost to the ith agent. We work in
the one-dimensional signaling space where si ∈ IR+.
One subset of this space of auctions is the collection of
those that can be characterized by the following alloca-

tion rule: xi(s) = wi(s)/
(∑N

j=1 wj(s) + ε
)

where ε is

a parameter controlled by the resource (the resource’s
signal). Signals are translated to weights, denoted by
the functions {wi(·)}N

i=1, which determine the propor-
tions of the allocation. Allocation rules of this form fit
nicely with Generalized Processor Sharing models for
flow control in networks [6]. We restrict our analysis to
the case for which wi(s) = w(si) and ci(s) = c(si) as
it incorporates the notion of fairness where each agent
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is given the same weight and pays the same cost as
any other agent who makes the same signal. We as-
sume that the weights and costs are strictly increasing
functions of their arguments and a signal of zero will
yield a weight and cost of zero as well. We consider
this class of rules to be a reasonable and tractable ini-
tial expansion around the prevalent proportionally fair
auction [2], which is the “point” in mechanism space
characterized by w(si) = si and c(si) = si. It can
be shown that we do not need to express both w(si)
and c(si). By making the substitutions ti = c(si) and
w̃(ti) := w(c−1(ti)) (c is invertible if it is monotonically
increasing), we can express this class of mechanisms

with the rules xi(t) = w̃(ti)/
(∑N

j=1 w̃(tj) + ε
)

and

ci(t) = ti. With similar substitutions, we can equiv-
alently express this class with the rules

xi(s) =
si∑N

j=1 sj + ε
ci(s) = c(si). (1)

We choose to work with the characterization described
in (1) where c(si) ∈ C2 is a twice differentiable increas-
ing function of si. These mechanisms have the minimal
signaling and computational costs for allocation deter-
mination that we desire in many communication net-
work contexts.

Agents are typically modeled with quasilinear util-
ity functions: Ui(s) = vi(xi(s)) − ci(s) where vi

is a twice differentiable concave increasing func-
tion (v′i(·) > 0, v′′i (·) ≤ 0). Let s−i =

∑
j �=i sj

be the bids of all except the ith agent. We have
the derivatives U ′

i(s) = v′i(xi(s))x
′
i(s) − c′(si) and

U ′′
i (s) = v′′i (xi(s))[x

′
i(s)]

2 + v′i(xi(s))x
′′
i (s) − c′′(si)

where x′
i(s) = (s−i + ε) / (si + s−i + ε)

2
> 0, and

x′′
i (s) = −2(s−i + ε)/(si + s−i + ε)3 < 0. If c′′i (si) ≥ 0,

then we have U ′′
i (s) < 0. The strict concavity of the ith

agent’s utility implies that it will have a unique optimal
response to each opponent state s−i + ε. For the opti-
mal response to be nonzero, we need the marginal util-
ity when bidding zero to be positive. This occurs when
v′i(0)/(s−i + ε) − c′i(0) > 0 ⇒ v′i(0)/c′i(0) > s−i + ε.
The ith agent’s response can then be determined from

v′i

(
si

si + s−i + ε

)
s−i + ε

(si + s−i + ε)2
− c′(si) = 0 (2)

which yields the unique optimal si when facing s−i + ε.
Let us define p :=

∑
j sj+ε. Then, p serves as a mea-

sure of demand for the resource and allows us to char-
acterize agents’ optimal responses with respect to a pa-
rameter which is identical for all agents at equilibrium.
Let us call this characterization a demand function,
d(p), which captures an agent’s allocation as a func-
tion of p when it uses the strategy obtained from (2).

Thus, the demand function captures that si = d(p)p is
the optimal response to s−i + ε = d(p)(1 − p).

Proposition 1 If the cost function is concave, then

there exists a valuation function for which the optimal

response is not unique.

Proof. By making the substitutions p =
∑

j sj + ε
and xi = si/(

∑
j sj + ε) into (2), we can express the

first-order necessary condition for the optimal response
as v′(x) = pc′(px)/(1 − x) =: f(x|p). The derivative of
the RHS of the previous equation, f(x|p), as a function
of allocation x is

[
(1 − x)p2c′′(px) + pc′(px)

]
/(1−x)2.

The sign of f ′(x|p) is determined by the quantity
c′′(px) + c′(px)/(p(1 − x)). If c′′(s) < 0, then c′′(s) <
−δ, ∀s ∈ [s1, s2], for some δ > 0 sufficiently small and
some s1, s2 > 0. Then, c′′(px) + c′(px)/(p(1 − x)) <
−δ+c′(ŝ)/(p−s2) < 0 for p sufficiently large, where ŝ =
argmaxs∈[s1,s2] c

′(s). Specifically, if p > c′(ŝ)/δ + s2,
we know that f(x|p) is decreasing in x on [s1/p, s2/p].
Clearly, there are many functions v with v′′(·) < 0,
where v′(x) will intersect f(x|p) more than once, which
implies that there is more than one extremal point. By
choosing a pair of points on f(x|p) where x1 < x2 but
f(x1|p) > f(x2|p) and letting v′(x) be the line that in-
tersects these two points, yields at least two solutions.
�

Thus, we restrict our analysis to allocation mecha-
nisms described by (1) where the cost function c(si) is
convex. We denote this class of mechanisms by C. The
intuition behind convex cost functions is that agents
who receive larger allocations (due to greater signals)
pay a higher cost per unit resource obtained. Such
mechanisms are classified as discriminatory price auc-
tions. Mechanisms in C with linear cost functions such
as the proportionally fair auction are uniformprice auc-
tions. For games played by agents attempting to gain
access to a resource allocated through a mechanism
from C, it is important to know whether we can ob-
tain a unique operating point, i.e., a unique Nash equi-
librium.

Proposition 2 For every mechanism in C, there is a

unique Nash equilibrium.

Proof. Making the substitutions p =
∑

j sj + ε and
xi = si/(

∑
j sj + ε) into (2), we can express the first

order necessary condition for the optimal response as

v′i(xi)(1 − xi) = pc′i(pxi) . (3)

Every pair (p, xi) that satisfies the previous equation
represents an optimal state for the ith agent. We can in-
terpret these states as demand functions (where xi is
a function of p). By treating the previous equation as
an identity, we obtain [v′′i (xi)(1 − xi) − v′i(xi)]

∂xi

∂p =
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c′i(pxi) + pc′′i (pxi)
[
xi + p∂xi

∂p

]
which implies ∂xi

∂p =

c′
i
(pxi)+pxic

′′

i
(pxi)

v′′

i
(xi)(1−xi)−v′

i
(xi)−p2c′′

i
(pxi)

. Because c′′(si) ≥ 0 for all

mechanisms in C, and the valuations are increasing con-
cave functions, we have that ∂xi/∂p < 0. This implies
that the demand functions {di(p)}N

i=1 which charac-
terize the optimal responses of agents are decreasing,
where di(p) := xi(p) is obtained from the unique value
of xi which solves (3) for a particular p. We note that
di(0) = 1 ∀i. Following the reasoning in [4], since all
agents are characterized by decreasing demand func-
tions, the total demand will be a decreasing function.
The Nash equilibrium point is defined by total de-
mand being one, which occurs at only one value of p∗.
Thus, there is a unique Nash equilibrium with signals
s∗i = di(p

∗)p∗.�
Given that we have a class of auctions that yield

the desirable property of a unique Nash equilibrium, a
natural question is how we go about choosing a mech-
anism within C. We had considered this question in [5]
with social welfare maximization taken as a metric. In
this paper, we consider the same, in the next two sec-
tions, but now with revenue generation as a metric.

2. Revenue for Symmetric Populations

Here, we investigate revenue generation for mecha-
nisms from the class C for a population of symmetric
agents, such as in situations where bandwidth is dedi-
cated for one type of traffic. We first consider mecha-
nisms where, in the allocation rule x(s), we have ε = 0.

Proposition 3 For a resource allocated with a mech-

anism from the class C having an allocation rule with

ε = 0, the optimal revenue generated from a population

of N symmetric agents is v′(1/N)(N − 1)/N . Further-

more, this is achieved by using any linear cost function,

c(si) = βsi, β ∈ IR+.

Proof. Since we have a symmetric agent pop-
ulation with the entire resource allocated to all
the agents, we know that at equilibrium, each
agent will be allocated x∗ = 1/N . Incorporat-
ing this into (3), which characterizes the optimal re-
sponse, we have v′

(
1
N

) (
N−1

N

)
= pc′

(
p
N

)
which

can be rewritten as c′
(

p
N

)
= v′

(
1
N

) (
N−1
N2

)(
N
p

)
.

At equilibrium, we have p/N = s∗, which yields
c′(s∗) = k

s∗
where k = v′

(
1
N

) (
N−1
N2

)
. The equi-

librium signal s∗ is the value at which the func-
tions c′(s) and k/s intersect and consequently de-
pends on the choice of the cost function. The cost

paid by each agent is c(s∗) =
∫ s∗

0 c′(s) ds ≤ s∗c′(s∗)
for all cost functions in C, as c′(s) must be an in-
creasing function of s. The amount paid by the agent

is maximized by having c′(s) = c′(s∗), which im-
plies a linear cost function. Thus, any cost function
that has constant derivative will yield maximum rev-
enue generation. We note that each agent pays
s∗c′(s∗) = k = v′

(
1
N

) (
N−1
N2

)
which is indepen-

dent of s∗. For a population of N agents, the total rev-
enue generated will be Ns∗c′(s∗) = v′

(
1
N

) (
N−1

N

)
. �

As the number of agents becomes large, the revenue
will approach v′(0) ≥ v(1), where v(1) is the revenue
generated by a second price auction for the good as a
single unit. Thus, for every type of agent (character-
ized by its valuation function) there is a threshold N∗

above which the resource owner has an incentive to sell
his good as a divisible commodity. The threshold value
will be N∗ = min{N ∈ Z

+ : v′
(

1
N

) (
N−1

N

) ≥ v(1)} for
a symmetric agent population with valuation v(x).

We now consider the more general case where ε ≥ 0
in the allocation rule x(s), where ε represents a con-
stant bid made by the resource owner. One might think
that by choosing ε > 0, one would be diminishing one’s
ability to generate revenue as the quantity of resource
being allocated to agents is reduced. However, we see
that this is not the case as the optimal allocations for
revenue generation may involve allocating less than the
entire resource and may be independent of the number
of agents participating.

Proposition 4 For a symmetric agent popula-

tion of size N with valuations v(x), the opti-

mal revenue is maxx∈[0,1] Nxv′(x)(1 − x). Let

x∗ = argmaxx∈[0,1] Nxv′(x)(1 − x). If x∗ = 1/N ,

we obtain maximum revenue with any linear cost

function. Otherwise, the optimal cost function is

c(s) = v′(x∗)(1 − x∗)2s/ε, where ε > 0 is arbi-

trary but must be identical in the allocation rule x(s).

Proof. If we choose any ε > 0, equilibrium al-
location for a set of symmetric agents will be

x∗ = 1
N

(
1 − ε

p

)
. Incorporating this into (3), we

have v′
(

1
N

(
1 − ε

p

))(
1 − 1

N

(
1 − ε

p

))
= pc′

(
p−ε
N

)
which characterizes the relation between
the cost function and valuation at equilib-
rium. Letting p = Ns + ε, we have c′(s) =

v′
(

1
N

(
1 − ε

Ns+ε

)) (
1 − 1

N

(
1 − ε

Ns+ε

))(
1

Ns+ε

)
.

The equilibrium bid s∗ will be the unique so-
lution to the previous equation. As in Proposi-
tion 3, the cost paid by each agent is maximized
over the mechanisms in C by having c′(s) be con-
stant, i.e., c′(s) = c′(s∗) where s∗ is the equilibrium
bid. However, in this case, the value of the equilib-
rium bid is not irrelevant to profit. We now maxi-
mize revenue over s∗ to find the slope of the opti-
mal cost function. With a linear cost c(s) = c′(s∗)s
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and N agents, the revenue generated at equilib-
rium will be Nc′(s∗)s∗

= Ns∗

Ns∗+ε

[
1 − 1

N

(
1 − ε

Ns∗+ε

)]
γ

=
[
1 − ε

Ns∗+ε

] [
1 − 1

N

(
1 − ε

Ns∗+ε

)]
γ

= N r(s∗)
N

(
1 − r(s∗)

N

)
v′

(
r(s∗)

N

)
= Nx∗ (1 − x∗) v′ (x∗)

=: R(x∗) where γ = v′
(

1
N

(
1 − ε

Ns∗+ε

))
,

r(s∗) = 1−ε/(Ns∗+ε) is the fraction of the resource al-

located to the agents and x∗ = r(s∗)
N = s∗

Ns∗+ε is the
equilibrium allocation. We see that the optimal rev-
enue is a function of equilibrium allocation. Candidate
solutions are obtained by taking the partial deriva-
tive of the revenue with respect to allocation and solv-
ing f(x∗) := (1 − 2x∗)v′(x∗) + x∗(1 − x∗)v′′(x∗) = 0.
We know f(0) = v′(0) > 0 and f(x∗) < 0, ∀x∗ > 1/2.
Thus, the revenue has a maximum at x∗ ∈ (0, 1/2).
We note that the candidate solutions for optimal al-
locations are independent of the number of agents.
However, the number of agents has implications on fea-
sibility as only allocations x∗ ∈ [0, 1/N ] are achievable.
Thus, we maximize R(x∗) over [0, 1/N ]. If the maxi-
mum is achieved at x∗ = 1/N , we must set ε = 0 and
from Proposition 3, we know that any linear cost func-
tion may be applied. However, if x∗ ∈ (0, 1/N), we need
the equilibrium bid to be s∗ = εx∗/(1 − Nx∗). Sub-
stituting this into the expression for c′(s), we get

c′(s∗) = v′(x∗)(1 − x∗)
(

1
Ns∗+ε

)
= v′(x∗)(1−x∗)2

ε . If

the revenue is maximized with x∗ < 1/N , we ob-
tain it by choosing an arbitrary ε > 0 with a linear

cost function c(s) =
(

v′(x∗)(1−x∗)2

ε

)
s. �

What does the previous result mean intuitively?
It states that to maximize revenue, the resource at-
tempts to choose ε and the cost function to assign ev-
ery agent a particular equilibrium allocation x∗, which
is independent of the number of agents requesting ser-
vice from the resource. Since all the agents are sym-
metric, a resource can choose its allocation mechanism
based on how to extract the maximum payment out
of a single agent. The cost paid by a single agent is
c(s∗) = c(x∗p), where s∗ is the equilibrium bid and
p is the sum of all equilibrium bids (including that of
the resource). Proposition 4 as well as Proposition 3
state that the revenue is maximized when the cost func-
tion is linear. We can express the payment of a single
agent as c(s∗) = s∗c′(s∗) = x∗pc′(px∗). One might sup-
pose that since p is affected by all agents, the number
of agents would have an effect on the revenue gener-
ated from a single agent. However, incorporating the
optimality condition in (3), we can express the cost
as c(s∗) = x∗(1 − x∗)v′(x∗), which is independent of
p. Thus, optimal revenue generation seems indepen-

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

α

R
ev

en
ue

N=2

N=4

N=6

N=8

N=10

Figure 1. Revenue for Agent Population Sizes
N ∈ {2, 4, 6, 8, 10} Where v(x) = 1 − e−αx when
ε = 0, x = 1/N (Dotted) and ε ≥ 0, x =
min{x∗(α), 1/N} (Solid)

dent of the size of the agent population. The num-
ber of agents does affect the feasibility of this optimal
allocation, as only x∗ ∈ [0, 1/N ] can be enforced by
any mechanism. Thus, a revenue maximizing resource
owner would attempt to allocate x∗ to all agents ex-
cept in the cases where the number of agents makes
it infeasible, in which case the owner must apply some
constraints to the optimization. For valuation functions
that yield a single extremal point in maximizing single-
agent cost, the infeasibility of x∗ would lead to an al-
location of 1/N .

Example 1 We obtain the optimal allocations and rev-

enue for a symmetric population of N agents with v(x) =
1 − e−αx.

The optimal allocation is obtained by solving ∂
∂xx(1 −

x)v′(x) = (1 − 2x)v′(x) + x(1 − x)v′′(x) = 0 ⇒
(1−2x)αe−αx−x(1−x)α2e−αx = 0 ⇒ (1−2x)−αx(1−
x) = 0 ⇒ 1−2x−αx+αx2 = 0 ⇒ αx2−(2+α)x+1 =

0 ⇒ x =
2+α±

√
(2+α)2−4α

2α . Simplifying the de-

terminant,
√

(2 + α)2 − 4α =
√

4 + 4α + α2 − 4α =√
4 + α2 and substituting into x, we have 1

α + 1
2 +√

1
α2 + 1

4 > 1 ⇒ x∗ = 2+α−√
4+α2

2α . The revenue

gain of enforcing x = min{x∗, 1/N} versus x = 1/N is
shown in Figure 1. �

3. Revenue for Asymmetric Populations

From our analysis so far, we can state that linear
cost functions seem to yield the highest revenues. How-
ever, we were only considering symmetric agent popula-
tions. Does this hold if we extend to asymmetric agent
populations? The following example with two asym-
metric agents shows that it does not.
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Game of Example 2 for c(s) = ks (Dotted) and
c(s) = s3/3 (Solid)

Example 2 Comparison of revenue when using mecha-

nisms with the cost functions c(s) = ks vs. c(s) = s3/3
for a two-agent game where v′1(x) = α4(1 − x), v′2(x) =
1 − x, and ε = 0 in x(s).

Because ε = 0, we have x1 + x2 = 1. We first investi-
gate the case where c(s) = ks. From (3), we know that
at equilibrium we have v′1(x1)(1 − x1) = pc′(px1) ⇒
α4(1 − x1)

2 = pk, v′1(x2)(1 − x2) = pc′(px2) ⇒ (1 −
x2)

2 = pk ⇒ x2
1 = pk. Equating pk from above, we

have pk = α4(1 − x1)
2 = x2

1 ⇒ x1 = α2

1+α2 ⇒
pk =

(
α2

1+α2

)2

. The revenue generated for any linear

cost function c(s) = ks for the two agents in this exam-

ple is k(s1 + s2) = k(px1 + px2) = pk =
(

α2

1+α2

)2

. We

now consider the case where c(s) = s3/3, which is also
a mechanism in C. From (3), we know at equilibrium,
we have v′1(x1)(1− x1) = pc′(px1) ⇒ α4(1− x1)

2 =
p3x2

1, v
′
1(x2)(1−x2) = pc′(px2) ⇒ (1−x2)

2 = p3x2
2 ⇒

x2
1 = p3(1 − x1)

2. Equating p3 from above, we have

p3 = α4(1−x1)
2

x2

1

=
x2

1

(1−x1)2
⇒ x1 = α

1+α ⇒ p3 = α2.

The revenue generated when using c(s) = s3/3 for the

two agents in this example is
s3

1

3 +
s3

2

3 = (px1)
3

3 + (px2)
3

3 =

p3

3

(
x3

1 + x3
2

)
= α2

3

[(
α

1+α

)3

+
(

1
1+α

)3
]

. A compari-

son of revenue generated by each mechanism as a func-
tion of α is plotted in Figure 2. We see that for α > 2.5,
the cost function c(s) = s3/3 outperforms linear cost
functions. �

The previous example illustrates that there exist sce-
narios where strictly convex cost functions can gen-
erate more revenue than linear cost functions. How-
ever, we can show that strictly convex cost functions
can be undermined by intelligent agents who split their
signals. Assume that an agent (denoted by the index
i) participates in auction for a resource allocated by

a mechanism in C with a cost function c(s) where
c′′(·) > 0. At equilibrium, the agent obtains an allo-
cation x∗

i = s∗i /(s∗i + s∗−i + ε) for a cost c(s∗i ). Now
suppose that the ith agent sends two signals of mag-
nitude s∗i /2. This will be transparent to the other
agents and to the allocation rule, leaving the agent with
the same equilibrium allocation x∗

i . The ith agent’s
cost is now 2c(s∗i /2). Because of the strict convexity
of c(s), we know c′(s1) < c′(s2), ∀s1 < s2, which

implies 2c(s∗i /2) =
∫ s∗

i
/2

0 c′(s) ds +
∫ s∗

i
/2

0 c′(s) ds <∫ s∗

i
/2

0
c′(s) ds +

∫ s∗

i

s∗

i
/2

c′(s) ds = c(s∗i ). By sending

two signals at half the equilibrium value, the agent
maintains the same allocation but reduces its cost
which leads to a greater utility. By similar reason-
ing, if the ith agent submits N bids of s∗i /N , its util-
ity will increase as N increases. Taking the limit as
N gets arbitrarily large, the ith agent’s cost becomes
limN→∞ Nc(s∗i /N) ≈ N (c′(0)(s∗i /N)) = c′(0)s∗i which
is linear with respect to signal. Intelligent agents using
signal splitting will pay linear costs even though the
declared cost used to compute and arrive at the origi-
nal equilibrium signal was strictly convex. If c′(0) = 0,
agents can essentially obtain service without paying
anything. To address this phenomenon, an alternative
for the resource to obtain more revenue is to alter the
equilibrium bid value through mechanism design. We
show that this can be achieved by declaring the lin-
ear cost function that the agents are ultimately pay-
ing.

Proposition 5 Given an agent with valuation v(x), let

dc(p) be the demand function elicited by a mechanism in

C with a strictly convex cost function cc(s) where c′c(0) >
0. Let dl(p) be the demand function elicited by the linear

cost function cl(s) = c′c(0)s. For all p > 0, dl(p) > dc(p).

Proof. We obtain dc(p) by solving (3) for x given each
p ∈ [0, v′(0)]. Let us say that for some arbitrary p, we
have v′(xc)(1 − xc) = pc′c(pxc). Then, dc(p) = xc. To
find the demand at the same price when applying cl(s),
we need to solve v′(x)(1 − x) = pc′l(px). Let us denote
the solution as xl. We have c′l(pxl) = c′c(0) < c′c(pxc) if
xc > 0. Since v′(x)(1−x) is a decreasing function of x,
we have xl > xc, which implies that dl(p) = xl > xc =
dc(p). �

What does this imply in terms of revenue genera-
tion? If a resource owner declares a linear cost function
cl(s) = c′c(0)s instead of a strictly convex cost function
cc(s), the equilibrium value of p will be higher as the de-
mands under the linear costs are higher. If the same al-
locations are maintained, each agent will have a larger
signal at equilibrium which leads to a larger payment
to the resource. Simply put, if intelligent agents are
going to split their signals to pay a linear cost regard-
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Figure 3. Demand Functions for Convex Cost
Function c(s) = 10s2 + s and Linear Cost Func-
tion c(s) = s.

less of the declared cost function, the resource might as
well declare the linear cost function to move the equi-
librium to a point where more revenue can be gener-
ated. This is illustrated in the following example.

Example 3 Comparison of revenue generated between

a mechanism with strictly convex cost c(s) = 10s2 + s
which leads to agents splitting signals and a mechanism

with linear cost c(s) = s, for two agents with v(x) =
log(1 + x).

We first obtain the demand function for the convex
cost function c(s) = 10s2 +s. From (3), we have 1−x

1+x =

p(20px + 1) ⇒ 1 − x = 20p2x + 20p2x2 + p + px ⇒
[20p2]x2 + [20p2 + p + 1]x + [p − 1] = 0 ⇒ x =
−(20p2+p+1)+

√
(20p2+p+1)2−80p2(p−1)

40p2 =: dc(p). Again

applying (3) with c(s) = s, we have 1−x
1+x = p ⇒ 1−x =

p + px ⇒ x = 1−p
1+p =: dl(p). The demand functions

and resulting equilibrium values of p are shown in Fig-
ure 3. We see that the demand function elicited by the
linear cost dominates the one elicited from the con-
vex cost and pl ≈ 0.333 > 0.139 ≈ pc. If the two
agents did not split bids, the resource would obtain
2[10(pc/2)2 + (pc/2)] ≈ 0.2346 in revenue. However, if
the agents split their bids in an arbitrarily large man-
ner the resource would only receive 2(0.139/2) = 0.139.
If the resource instead declared c(s) = s, the resulting
revenue would be 2(0.333/2) = 0.333. �

What have we learned from our analysis of revenue
generation? For symmetric agent populations, mech-
anisms with linear cost functions are optimal within
the class proportional allocations where costs are con-
vex functions of signal. We also know there are cases
where a service provider can obtain greater revenue
when it does not allocate the entire resource to agents.
We know that strictly convex cost functions may out-
perform linear cost functions in settings with asym-

metry. However, strictly convex cost functions can be
undermined by agents that split their signals. The re-
source can alleviate some of the revenue loss by declar-
ing a linear cost function, which increases demand and
hence the signal magnitude at equilibrium.

The structure of the allocation mechanism has im-
plications on whether agents split or combine their pro-
cess streams. The splitting phenomenon might be ad-
dressed by the resource if it were to add a small cost
for making any bid. This may not completely elimi-
nate the incentive to split, but could add a thresh-
old beyond which an agent may choose not to split.
It is also important to note that knowing the valua-
tion structure of the agent population is often neces-
sary to construct an optimal revenue generating mech-
anism. In general, this information is not available, and
makes revenue a difficult metric to optimize, however,
as it is critical to many communication network do-
mains, maximizing revenue under this uncertainty be-
comes a key area for further research.
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