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Abstract— Gaussian process prior models offer a nonpara-
metric approach to modelling unknown nonlinear systems from
experimental data. These are flexible models which automati-
cally adapt their model complexity to the available data, and
which give not only mean predictions but also the variance
of these predictions. A further advantage is the analytical
derivation of derivatives of the model with respect to inputs,
with their variance, providing a direct estimate of the locally
linearized model with its corresponding parameter variance.
We show how this can be used to tune a controller based on
the linearized models, taking into account their uncertainty.
The approach is applied to a simulated wheel slip control task
illustrating controller development based on a nonparametric
model of the unknown friction nonlinearity. Local stability and
robustness of the controllers are tuned based on the uncertainty
of the nonlinear models’ derivatives.

I. INTRODUCTION

Robust control is a fairly mature field, in particular for
the controller synthesis problem for linear systems, where
numerous approaches exist, [1] and [2]. However, robust
control synthesis relies on a description or model of plant
uncertainty. Although system identification methods as in
[3] and [4], may provide uncertainty information, this may
be difficult to apply directly in robust control synthesis
since this information may prove to be misleading in case
of structural model mismatch. The availability of reliable
uncertainty estimates is a major concern in applications of
robust control, in particular for nonlinear systems.

Many model-based nonlinear control problems are still
based on parametric models, where the functional form is
fully described by a finite number of parameters, often a
linear function of the parameters. Even in the cases where
flexible parametric models are used, such as neural networks,
spline-based models, multiple models etc, the uncertainty is
usually expressed as uncertainty of parameters (even though
the parameters often have no physical interpretation), and do
not take into account uncertainty about model structure, or
distance of current prediction point from training data used
to estimate parameters.

In such cases, an alternative approach is that some parts
or even the whole structure, may be given by nonparametric
models, such as Gaussian Process prior (GP) models. In
this paper, we study an approach which has the following
properties. It is a non-parametric model which retains the
available data and performs inference conditional on the

current state and local data (called smoothing in some frame-
works). The uncertainty of model predictions is dependent
on local data density, noise on data, and model mismatch.
The final model complexity is automatically related to the
amount and distribution of available data (more complex
models need more evidence to make them likely), as well
as the complexity of the target system. These aspects are
especially useful in transient regimes with sparse data, in
system identification tasks.

II. GAUSSIAN PROCESS PRIOR

In a Bayesian framework the model must be based on
a prior distribution over the infinite-dimensional space of
functions. As illustrated in [5], such priors can be defined
as Gaussian processes. These models have attracted a great
deal of interest recently, in for example reviews such as [6].
Rasmussen [7] showed empirically that Gaussian processes
were extremely competitive with leading nonlinear identifi-
cation methods on a range of benchmark examples.

The further advantage that they provide analytic predic-
tions of model uncertainty makes them very interesting for
control applications. Early use of GPs in a control systems
context is discussed in [8], [9]. A variation which can include
ARMA noise models is described in [10]. k-step ahead
prediction with GP’s is described in [11], [12]. [13] provides
a number of chapters on recent applications of Gaussian
processes in control contexts.

A. Inference with Gaussian processes

Assume we are modelling a nonlinear target function f(x)
where the observed outputs yi to inputs xi, subject to noise
εi can be described by the equation

yi = f(xi) + εi (1)

and that we can observe a set S of input/output pairs X,y, or
{(xi, yi)} are given, where xi ∈ RD, yi ∈ R, i = 1 . . . N ,
hence:

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

...
xi

...
xN

⎤
⎥⎥⎥⎥⎥⎥⎦

, y =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1

...
yi

...
yN

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)
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Instead of parameterising the system as a parametric model,
we are placing a prior directly on the space of functions
where f is assumed to belong. A Gaussian process represents
the simplest form of prior over functions, we assume that
any N points have a N -dimensional multivariate Normal
distribution. In the GP framework, the output values yi

are viewed as being drawn from a zero-mean multivariable
Gaussian distribution whose covariance matrix is a function
of the input vectors xi. Namely the output distribution is

(y1, . . . , yN |x1, . . . ,xN ) ∼ N (0,Λ(X,X)).

Where Λ(xi,xj) = cov(yi, yj) is the covariance matrix of
the function observations. A general model, which reflects
the higher correlation between spatially close (in some
appropriate metric) points – a smoothness assumption in
target function f(x) – uses a covariance matrix with the
following structure;

Λ(xi,xj) = α exp(−
1

2
‖xi − xj‖2

Γ) + v0δi,j , (3)

where δi,j = 1 for i = j, and zero otherwise. The norm ‖·‖Γ

is defined as
‖u‖Γ = (uT Γu)

1

2 , Γ = diag(γ1, . . . , γD).

The D + 2 variables, α, γ1, . . . , γD, v0 are the hyper-
parameters of the GP model, which are constrained to be
non-negative. In particular v0 is included to capture the noise
component of the covariance. The GP model can be used
to calculate the distribution of an unknown output yN+1

corresponding to known input xN+1 as

(yN+1|x1, . . . ,xN ,xN+1, y1, . . . , yN ) ∼ N (µ, Λ̄),

where
µ = Λ(xN+1

, X)Λ−1(X, X)y, (4)

Λ̄ = Λ(xN+1
,x

N+1) − Λ(xN+1
, X)Λ−1(X, X)Λ(X,x

N+1)
(5)

so we can use µ as the expected model output, with a
variance of Λ̄. Note that the covariance matrix Λ(X,X) will
be N × N dimensional, so the computational cost of its
inversion grows rapidly with the number of data points N .

1) Nonstationary covariance function: In this paper, in-
stead of the stationary covariance function of (3) we use a
nonstationary one,

Λ(xi,xj) = v1 sin−1

⎛
⎝ xiT Γxj√

(1 + 2xiT Γxi)(1 + xjT
Γxj)

⎞
⎠
(6)

+ v0δi,j

as described in [14], using Rasmussen’s MATLAB im-
plementation.1 Γ = diag(γ1, . . . , γD+1) where the posi-
tive γi, weight each input i (and an additional constant
one acting as a bias term). The parameter vector Θ =
log[v1, γ1,..,D+1, v0]

T (the log is applied elementwise and
ensures positivity in the parameters) and D is the dimension
of vector x. The hyperparameters Θ, can be adapted as
the model is fit to the identification data, using numerical
methods such as standard gradient-based optimisation tools
to optimise hyperparameters.

1Code available at http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/gp/

B. Gaussian process derivatives

Differentiation is a linear operation, so the derivative of a
Gaussian process remains a Gaussian process. We now use
this fact to infer from and to a mixture of observations of
values and derivatives. Suppose we are given new sets of
pairs S′

j = {(xj,i, ωj,i)}, j = 1, . . . , D, i = 1, . . . K, each
S′

j corresponding to the K points of jth partial derivative of
the underlying function y = f(x). In the noise-free setting
this corresponds to the relation

ωj,i =
∂f(x)

∂xj

|x=xj,i , i = 1, . . . , K.

We now wish to find the joint probability of the vector
of y’s and ω’s, which involves calculation of the covariance
between the function and the derivative observations as well
as the covariance among the derivative observations. Covari-
ance functions are typically chosen to be differentiable, so
the covariance between a derivative and function observation
and the one between two derivative points satisfy

cov(ωj,m, yn) =
∂

∂xj

cov(ym, yn) (7)

cov(ωj,m, ωi,n) =
∂2

∂xj∂xi

cov(ym, yn) (8)

Including these in our covariance function allows us to
identify and predict from a data set which includes a mixture
of function and derivative observations. Predictions can be
inferred function values or inferred derivative values, with
standard deviations in both cases.

The use of derivatives of Gaussian processes is described
in [15], [16], and in engineering applications in [8], [17],
[18], [19]. This allows the integration of prior information
in the form of state or control linearisations, as presented in
[19], and importantly for this paper, GP models can provide
local linearisation information with mean and uncertainty
estimates. This is useful for controller development with
robustness analysis in small regions around the point of
operation, and make GP models interesting candidates for
nonlinear robust control problems.

III. CASE STUDY;WHEEL SLIP CONTROL

An application to wheel slip control is studied to illustrate
the controller development for a nonparametric nonlinear
model.

A. Equations of motion of a quarter car

With reference to Figure 1, the quarter car model consists
of a single wheel attached to a mass m. A tyre reaction force
Fx is generated by the friction between the tyre surface and
the road surface, while the wheel moves driven by inertia
of the mass m in the direction of the velocity v. A rolling
motion of the wheel ω will be initiated by a torque caused by
the tyre reaction force. A brake torque applied to the wheel
will act against the spinning of the wheel causing a negative
angular acceleration. The equations of motion of the quarter
car are

mv̇ = −Fx (9)

Jω̇ = rFx − Tbsign(ω) (10)
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Fig. 1. Quarter car forces and torques.

where

v longitudinal speed at which the car travels
ω angular speed of the wheel
Fz vertical force
Fx tyre friction force
Tb brake torque
r wheel radius
J wheel inertia

Further, the tyre friction force is given by Fx = Fz ·
µ(λ, µH , κ) where the friction coefficient µ is a nonlinear
function of

λ tyre slip
µH maximum friction coefficient between tyre and road
κ slip angle of the wheel

The slip λ = (v − ωr)/v describes the normalized
difference between horizontal speed v and speed of the wheel
perimeter ωr. The slip value of λ = 0 indicates that the
wheel is in free motion and no friction force Fx is exerted.
If the slip attains the value λ = 1 then the wheel is locked
which means that it has come to a standstill. A change of
variables is carried out where the angular speed of the wheel
ω is replaced by the slip λ (assuming ω ≥ 0 and v > 0):

λ̇ = −
1

v

{
1

m
(1 − λ) +

r2

J

}
Fzµ(λ, µH , κ) +

1

v
·

r

J
Tb

(11)

v̇ = −
1

m
Fzµ(λ, µH , κ) (12)

It can be seen that the time scale of the slip dynamics (11)
scales with speed v. The qualitative dynamic behavior of
slip is not affected by speed. Further assuming the slip angle
of the wheel, κ, being zero, an example of such nonlinear
tyre slip/friction curve, µ(λ, µH), is shown in Figure 4.
Several structural models of different complexities exist in
the literature [20], [21], [22] and [23], but the detailed
friction curve also depend on highly uncertain properties
such as wear and tear of the tyres. A non-parametric GP
model may therefore be a suitable alternative.

B. Control strategy

As in [24], assuming the velocity of the car varies much
more slowly than the other variables involved and in addition
that we have in general J

mr2 (1 − λ) � 1, one obtains the
dynamics of the tyre slip:

λ̇v = −
r2Fz

J
µ(λ, µH) +

r

J
Tb (13)

Fig. 2. Linearization µ0(λ) = Γλ+Ψ (solid line) of the nonlinear function
µ(λ, µH) (thin line) at µH = 0.9 and λ = λw .

Further denoting β = r2Fz/J , α = r/J and adding
hydraulic actuator dynamics, with time constant Ta:

Ṫb = −
1

Ta

Tb +
1

Ta

u (14)

λ̇v = −βµ(λ, µH) + αTb (15)

Further, a simplification is made by linearizing the nonlin-
ear function µ(·) at a point of operation λw, as seen in Figure
2. This new linearized function is given by µ0(λ) = Γλ+Ψ,
where Γ is the slope of the line and Ψ is the µ-intercept.

The total slip dynamics model may now be written as:

Ṫb = −
1

Ta

Tb +
1

Ta

u (16)

λ̇v = −β(Γλ + Ψ) + αTb (17)

Assuming zero initial conditions the transfer function of (16)
and (17) is:

hp(s) =
α
v

(s + β
v
Γ)(1 + Tas)

(18)

We remark that Γ is to be considered a highly uncertain
parameter, depending on both the operating point (reference
slip value λ∗), and tyre/road properties. A GP model of the
friction curve will be used to extract information about the
uncertain parameters.

1) PID-controller: The literature presents a range of ap-
proaches to the use of PID-controllers in ABS problems, [25]
and [26], to mention some. Here a different approach using
a PID-controller to solve the ABS problem is presented.

An ideal PID-controller is given by:

hc(s) = Kp

(1 + Tis)(1 + Tds)

Tis
(19)

Choosing Td = Ta leads to the open loop transfer function

h0(s) =
Kp

α
v
s +

Kpα

Tiv

s2 + β
v
Γs

(20)
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which gives the following closed loop transfer function:

G(s) =
Ts + 1

1 + 2ζ s
ω0

+
(

s
ω0

)2
(21)

where 2ζω0 = β
v
Γ + Kp

α
v

, ω2
0 =

Kpα

Tiv
and T = Ti. This

gives the relative damping ζ =
(

β
2v

Γ + Kp
α
2v

) √
Tiv
Kpα

and

undamped resonance frequency ω0 =
√

Kpα

Tiv
.

2) Control performance requirement: For the closed loop
system (21), the poles are given by the solutions of its
characteristic equation. If the parameters of the characteristic
equation of (21) is given as random variables with an
expectation and variance, the poles are then also given as
random variables.

Example 1: First assume for the system in (21) the para-
meter ζ is given as a random number with an expectation
E(ζ) and a variance σ2(ζ) and the parameter ω0 is known
exactly. The locations of the two complex conjugated poles
are given by mean and standard deviation in a set of two
arcs as seen in Figure 3 a). If instead the uncertainty is in
the parameter ω0, and ζ is known exactly, two lines will
characterize locations of the mean and standard deviation of
the poles, Figure 3 b). Finally, if ω0 and ζ are independent
random parameters, the mean and standard deviation of the
poles are given as two areas, illustrated in Figure 3 c).

3) Controller Parameter tuning: Assume the controller is
supposed to regulate the set-point λ = λ∗. The controller
parameters may be tuned according to a linear model of
the quarter car around this point. The GP model provides
estimates of the expectation E(Γ) and variance σ2(Γ).

In this case study, Γ is randomly given, hence the rel-
ative damping ζ will be a random parameter in (21), i.e
E(ζ) =

(
β
2v

E(Γ) + Kp
α
2v

)√
Tiv
Kpα

. This is exactly the
situation depicted in Figure 3 a).

Assume the desired bandwidth and the desired nominal
relative damping are given by ω0d and ζd respectively. The

bandwidth ω0 is known exactly, and given by ω0 =
√

Kp

Ti

α
v

.
If the relative damping ζ is assumed to be less than 1, the
bandwidth may be chosen to be equal to ω0d. Further, since
the best we can do regarding tuning the relative damping, is
given by E(ζ) = ζd, we get the following expressions for
the controller parameters:

Kp = ζdω0d

2v

α
−

β

α
E(Γ) (22)

Ti =
Kp

ω2
0d

α

v
(23)

Given the above and the assumption of Γ being normally
distributed with variance σ2(Γ), stability is ensured with at
least 95% of confidence, i.e. behavior inside 2σ-contours, if
0 < ζ− < ζ+ < 1 where:

ζ+ =

(
β

2v
(E(Γ) + 2σ(Γ)) + Kp

α

2v

)√
Tiv

Kpα
(24)

ζ− =

(
β

2v
(E(Γ) − 2σ(Γ)) + Kp

α

2v

)√
Tiv

Kpα
(25)

Fig. 4. Simplified tyre slip/friction curves µ(λ, µH) by Daiss and Kiencke
1996.

C. Results

In the simulation that follows, a simplified model by [22]
is used for the tyre friction curve µ(λ, µH),

µ(λ) =
kλ

aλ2 + bλ + 1
(26)

Note that this model is linear in the parameters a and b,
where k is the slope at λ = 0.

First assuming the slope to be k = 28, and the slip at
maximum friction to be given by λ0 = 0.2µH , where µH

denotes the maximum friction coefficient at slip value λ0.
Further assuming the two parameters in (26) to be given as
a = 1/(λ2

0) and b = (kλ0 − 2µH)/(λ0µH), one obtains the
following friction curve:

µ(λ, µH) =
kλ(

λ
0.2µH

)2

+ k0.2µH−2µH

0.2µH
λ + 1

(27)

This simplified tyre friction curve is shown in Figure 4.
1) Modelling simulated data with a Gaussian Process:

A set of only 10 noisy (Gaussian noise, zero mean with
standard deviation, σ = 0.05) observations of the simulated
curve is used to train a GP-model. Figure 4 shows curves
which have significantly nonuniform curvatures, showing a
rapid change for small values of λ, with more gradual change
later. Because of this, we use a nonstationary covariance
function, as defined in eq. (9). The parameters Θ were
optimized for the given training data using a conjugate-
gradient algorithm.

Figures 5 and 6 show the resulting GP model of the
function value Ψ and the corresponding slope Γ. In addition
to the noise property described above, also the a priori
knowledge of the friction curve vanishing at the origin is
included in the training data set.

The advantage of using a GP as a modelling tool is easily
motivated by looking at Figure 5. Even with no structural
knowledge of the nonlinear function and with fairly small,
sparsely populated training set, the GP model is close to the
correct one. The GP model in Figure 5 is based on a training
set of 10 noisy data points, taken from a region where data
typically are accessible. Note how the uncertainty increases
in regions with no data, as would be expected.

Assume the controller is supposed to control a fixed slip
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(a) (b) (c)

Fig. 3. Different pole locations. The vertical dotted lines indicates the real part of the mean with standard deviation of the pole placement. The uncertainties
are shown as gray arcs, lines and areas. a) ζ uncertain. b) ω0 uncertain. c) both ω0 and ζ uncertain.
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0.6

0.7

0.8

0.9

1

Fig. 5. GP model of friction coefficient. In addition to the set of accessible
training data (sparsely populated dots), the model mean (thin line) and 2σ
contours (dashed pair of lines) are shown. Also the real model curve (bold
line) is shown for reference.

λ∗ = 0.15. At the point of linearization (selected to be
equal to the slip set-point, i.e. λw = λ∗) the nominal slope
is Γ = 0.3882 with µH = 0.9. But instead knowledge
of an expectation and variance exist at this point, from
our GP model. E(Γ) = −0.0787 and σ2(Γ) = 0.1610.
Further assume the parameters of the quarter car are given by
r = 0.35, Fz = 250 · 9.81 and J = 0.68. Hence β = 441.8
and α = 0.51. The time constant of the actuator dynamics
is Ta = 0.014 s. The desired closed-loop property is given
by ω0d = 20π and ζd = 0.5. Since the relative damping is
assumed to be less than 1, the bandwidth may be selected to
be equal to the desired one, i.e. ω0 = ω0d. Plugging the mean
into (22) and (23), a set of controller parameters, scheduled
with speed v, are inferred:

Kp = ζdω0d

2v

α
−

β

α
E(Γ) = 122.07v + 67.55 (28)

Ti =
Kp

ω2
0d

α

v
= 0.0159 + 0.0088

1

v
(29)

also with this given set of controller parameters, a 95%
boundary of where the poles may be located inside is given
by an upper and lower bound. For a given speed v = 30 m/s,
these bounds are ζ+ = 0.5940 and ζ− = 0.4060, obtain from
(24) and (25).

Figure 7 shows the pole placement of the controller

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

10

15

20

25

30

Fig. 6. Friction coefficient derivative ∂µ
∂λ

(λ). The model mean derivative
(thin line) and 2σ contours (dashed pair of lines) are shown. Also the real
model derivative curve (bold line) is shown for reference.

parameter calculations with the 95% confidence interval,
and the actual placement of the nominal poles. The are
only 10 training points and we have set v = 30 m/s. The
confidence interval is entirely inside the region of stability,
hence stability is ensured with at least 95% of confidence.2

Increasing the size of the training set, will tend to decrease
the 95% confidence interval, Figure 8 shows the situation
with 100 training points.

Only one road condition is considered in the case study,
i.e. µH fixed. An alternative approach would be to include
other road conditions as well. By training the model using
data from different road conditions, a less certain model
will lead to a more robust but hence a more conservative
controller. Alternatively, an adaptive control approach with
online training of the GP model could be implemented.
In this case, tradeoffs between computational capacity and
model update rate must be considered. Also, precautions due

2On a cautionary note, however, where we state e.g. ‘95% confidence
intervals’, these are conditioned on the GP with covariance parameters
being an appropriate model. For simplicity, the examples in this paper used
Maximum likelihood optimisation to find appropriate parameters for GP
covariance function parameters. GPs are very flexible models, but optimisa-
tion will tend to make the model overconfident in its predictions. Taking the
Bayesian approach of integrating over hyperparameter distributions, possibly
implemented using MCMC algorithms, would be more robust, especially for
small data sets [7].
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Fig. 7. Pole placement calculation. Mean placement of the poles are
indicated with an x, the 95% confidence interval is indicated with the arc.
The actual pole is indicated with the circle. The GP model is based on a
training set of size 10. The dotted line is the line of ω0.
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Fig. 8. Pole placement calculation. Mean placement of the poles are
indicated with an x, the 95% confidence interval is indicated with the arc.
The actual pole is indicated with the circle. The GP model is based on a
training set of size 100. The dotted line is the line of ω0.

to persistence of excitation must be made, e.g by turning off
the estimator when information loss.

IV. CONCLUSIONS

We have shown that a nonparametric Gaussian process
prior model can be used to model nonlinear, simulated tyre
slip/friction curves, to a high degree of accuracy considering
the sparseness of the training data. The inference based on
the GP model provides not only mean predictions, with
uncertainty estimates for the curves themselves, but also
mean and uncertainty estimates of local linearisations of
these curves, which is useful for robust control. We illustrate
this with a pole-placement task for a PID controller.

ACKNOWLEDGEMENTS

This work was in part sponsored by the European Com-
mission through the RTN project MAC (Multi Agent Con-
trol) HPRN-CT-1999-00107 , the STREP project CEmACS
(Complex Embedded Automotive Control Systems), the Re-
search Council of Norway and Science Foundation Ireland
grant 00/PI.1/C067.

REFERENCES

[1] K. Zhou, J.C. Doyle, and K. Glover, Robust and Optimal Control,
Prentice-Hall, 1996.

[2] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:
Analysis and Design, John Wiley & Sons, 1996.

[3] A. Garulli, A. Tesi, and A. Vicino, Eds., Robustness in Identification
and Control, Springer-Verlag, 1999, Number 245 in Lecture notes in
Control and Information Sciences.

[4] W. Reinelt, A. Garulli, and L. Ljung, “Comparing different approaches
to model error modelling in robust identification,” Automatica, vol.
(38:5), pp. 787–803, May 2002.

[5] A. O’Hagan, “On curve fitting and optimal design for regression (with
discussion),” Journal of the Royal Statistical Society B, vol. 40, pp.
1–42, 1978.

[6] C. K. I. Williams, “Prediction with Gaussian processes: From linear
regression to linear prediction and beyond,” in Learning and Inference
in Graphical Models, M. I. Jordan, Ed., pp. 599–621. Kluwer, 1998.

[7] C. E. Rasmussen, Evaluation of Gaussian Processes and other Meth-
ods for Non-Linear Regression, Ph.D. thesis, Graduate department of
Computer Science, University of Toronto, 1996.

[8] R. Murray-Smith, T. A. Johansen, and R. Shorten, “On transient
dynamics, off-equilibrium behaviour and identification in blended mul-
tiple model structures,” in European Control Conference, Karlsruhe,
1999, 1999, pp. BA–14.

[9] D. J. Leith, R. Murray-Smith, and W. E. Leithead, “Nonlinear structure
identification: A Gaussian Process prior/Velocity-based approach,” in
Control 2000, Cambridge, 2000.

[10] R. Murray-Smith and A. Girard, “Gaussian Process priors with ARMA
noise models,” in Irish Signals and Systems Conference, Maynooth,
2001, pp. 147–152.

[11] A. Girard, C. E. Rasmussen, J. Quiñonero Candela, and R. Murray-
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