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Jason R. Marden, Gürdal Arslan and Jeff S. Shamma

Abstract— We consider finite multi-player repeated games
involving a large number of players with large strategy spaces
and enmeshed utility structures. In these “large-scale” games,
players are inherently faced with limitations in both their obser-
vational and computational capabilities. Accordingly, players in
large-scale games need to make their decisions using algorithms
that accommodate limitations in information gathering and
processing. A motivating example is a congestion game in a
complex transportation system, in which a large number of
vehicles make daily routing decisions to optimize their own
objectives in response to their observations. In this setting,
observing and responding to the individual actions of all
vehicles on a daily basis would be a formidable task for any
individual driver. This disqualifies some of the well known
decision making models such as “Fictitious Play” (FP) as
suitable models for driver routing behavior. A more realistic
assumption on the information tracked and processed by an
individual driver is the daily aggregate congestion on the specific
roads that are of interest to that driver. We will show that
Joint Strategy Fictitious Play (JSFP), a close variant of FP,
accommodates such information aggregation. Furthermore, we
establish the convergence of JSFP to a pure Nash equilibrium
in congestion games, or equivalently in finite potential games,
when players use some inertia in their decisions and in both
cases of with or without exponential discounting of the historical
data.

I. OVERVIEW

We consider finite multi-player repeated games involving
a large number of players with large strategy spaces and
enmeshed utility structures. In these so called “large-scale”
games, players are inherently faced with limitations in both
their observational and computational capabilities. Accord-
ingly, players in such large-scale games need to make their
decisions using algorithms that accommodate limitations in
information gathering and processing. The main objective
of this paper is to study the convergence properties of a
particular algorithm, called Joint Strategy Fictitious Play
(JSFP) [1], [2], [3], which, we will argue, is a plausible
decision making model for certain large-scale games.

Our motivating example of a large-scale game is a con-
gestion game [4] in a complex transportation system [5]
in which a large number of vehicles make daily routing
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decisions to optimize their own objectives in response to their
own observations. In this setting, observing and responding
to the individual actions of all vehicles on a daily basis
would be a formidable task for any individual driver. This
disqualifies some of the well known decision making models
such as Fictitious Play (FP) [1] as appropriate models for
driver travel choice behavior. A more realistic measure on
the information tracked and processed by an individual driver
is the daily aggregate congestion on the roads that are of
interest to driver [6]. It turns out that JSFP, a close variant
of FP, accommodates such information aggregation.

Deriving accurate driver behavior models has been an
active research area in transportation science [6], [7], [8].
Consider the general framework for the day-to-day adjust-
ment process proposed in [6], where drivers base their daily
routing decisions on their perception of the traffic conditions.
Drivers update their perceptions on a daily basis using
historical information on the traffic network conditions. This
includes a driver’s own daily personal experience on the
chosen routes, as well as aggregate information on daily
traffic conditions for alternative routes. Drivers may acquire
information on traffic conditions via the internet, media
traffic reports, or even communications with friends. The
framework proposed in [6] also incorporates pre-trip pre-
dicted travel information provided by a Driver Information
System. Finally, drivers are assumed to select their travel
patterns using a random utility model, where driver utilities
depend on their perceptions.

In this paper, we consider a specification of the above
dynamics in which each drivers keep track of the (weighted)
average utility they “would have” received on their available
routes. A driver’s utility for an available route reflects the
congestion experienced on that route. Every day, each driver
selects the route that would have yielded the highest average
utility in previous days. At the end of the day, drivers update
their perceptions of the congestion on available routes using
only aggregate information of the traffic conditions.

We will show that such driver behavior can be modeled
as JSFP, even though JSFP, if taken at face value, seemingly
has a significantly more demanding information gathering
and processing requirement for each driver than suggested.
The main result is to establish almost sure convergence of
JSFP to a pure Nash equilibrium in congestion games, or
equivalently in finite potential games [9], when drivers use
some inertia in decisions, i.e., a reluctance to change the
daily route. Such inertia is also motivated by the framework
of [6].

Convergence of driver behavior to a steady-state regime
is of interest in its own right. See [6], [7] where the issue
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of convergence of driver behavior is raised. The significance
of our convergence result is more relevant in the case where
driver utilities are engineered, perhaps indirectly, in such a
way that the resulting game is a coordination type, and a pure
Nash equilibrium is the desired operating point. For instance,
in a traffic congestion game, a global planner may render a
particular pure Nash equilibrium the optimal solution from
the planner’s own perspective by taxation or other means
[10]. Then, the question would become whether the drivers
that are using a reasonable decision making rule such as
JSFP would settle at the optimal Nash equilibrium.

We will now review some of the well-known decision
making models and discuss their limitations in large-scale
games, or specifically in traffic congestion games. See the
monographs [1], [11], [12], [13], [14] and survey article [15]
for a more comprehensive review.

The well-known FP algorithm requires that each player
views all other players as independent decision makers, [9].
In the FP framework, each player observes the decisions
made by all other players and computes the empirical fre-
quencies (i.e, running averages) of these observed decisions.
Then, each player best responds to the empirical frequencies
of other players’ decisions by first computing the expected
utility for each strategy choice under the assumption that the
other players will independently make their decisions proba-
bilistically according to the observed empirical frequencies.
FP is known to be convergent to a Nash equilibrium in
potential games, but need not converge for other classes of
games. General convergence issues are discussed in [16],
[17], [18].

A recent paper [19] introduced a version of FP, called
sampled FP, in order to avoid computing an expected utility
based on the empirical frequencies. In sampled FP, each
player selects samples from the strategy space of every
other player according to the empirical frequencies of that
player’s past decisions. Each player than computes an av-
erage utility for each strategy choice based off of these
samples. Each player still has to observe the decisions made
by all other players to compute the empirical frequencies of
these observed decisions. Furthermore, sampled FP is proved
to be convergent only in identical interest games, and the
number of samples needed to guarantee convergence grows
unboundedly.

Let us now review some of the learning algorithms that
are convergent in a large class of coordination games called
“weakly acyclic” games [11]. In the best-reply and better-
reply dynamics of [20], each player plays a best or better
response to the most recent decision profile whenever that
player randomly receives a strategy revision opportunity.
Players using such best-reply or better-reply dynamics cannot
have any memory. In a traffic congestion problem this lack of
memory translates to the players remembering only the most
recent congestion information, which is an unsuitable model
since drivers typically rely on past information for future
decision making [6]. Another learning algorithm convergent
in weakly acyclic games is adaptive play [21], [11] where
players have finite recall. However, adaptive play requires

each player to track the individual behavior of all other
players for recall windows greater than one. Thus, as the
size of player memory grows, adaptive play suffers from the
same computational setback as FP.

It turns out that there is a strong similarity between JSFP
and the regret matching algorithm [22]. A player’s regret for
a particular choice is defined as the difference between 1) the
utility that would have been received if that particular choice
was played for all the previous steps and 2) the average utility
actually received in the previous steps. A player using the
regret matching algorithm updates a regret vector for each
possible choice, and selects actions according to a probability
proportional to positive regret. One can view JSFP as an
algorithm where each player also best responds to regret. In
particular, a player chooses according to maximum regret.
To the authors’ knowledge, it is not known whether player
choices would converge in coordination-type games when all
players use the regret matching algorithm (except for two-
player games [23]). However, finite memory versions of the
regret matching algorithm and its generalizations [12], such
as playing best or better responses to regret over the last m
time steps, are proven to be convergent in weakly acyclic
games when players use some inertia. These finite memory
algorithms do not require each player to track the behavior of
other players individually. However, each player still needs to
remember the utilities actually received and the utilities that
could have been received in the last m time steps. In contrast,
a player using JSFP best responds to regret computed over
the entire history by using a simple recursion which can also
incorporate exponential discounting of the historical data.

There are also payoff based dynamics, where each player
observes only the actual utilities received and uses a Re-
inforcement Learning (RL) algorithm [24], [25] to make
future choices. In the context of the traffic congestion game,
a driver using an RL-like algorithm would observe only
the congestion personally experienced on routes actually
travelled. Therefore, a driver using an RL-like algorithm
cannot make use of the information on alternate routes
that could be available through means other than personal
experience. Convergence of player choices when all players
use an RL-like algorithm is proved only in identical interest
games [26], [27], [28], [29] but often with delicate tuning
of various parameters, e.g., having each player adapt at a
different time scale. Finally, the payoff based dynamics with
finite-memory presented in [29] leads to a Pareto-optimal
outcome in generic common interest games.

The remainder of the paper is organized as follows.
Section 2 is devoted to decision making in congestion games.
Section 3 presents JSFP. Convergence of JSFP process
with inertia in potential games is presented in Section 4.
Section 5 studies convergence when historical information
is discounted exponentially. Lastly, Section 6 presents an
illustrative example.

II. DECISION MAKING IN CONGESTION GAMES

We consider a transportation network with a finite set
R of road segments that needs to be shared by a set of
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selfish drivers labelled as D := {d1, ..., dn}. Each driver
has a fixed origin/destination pair connected through multiple
routes. The set of all routes available to driver di is denoted
by Yi. A typical route yi in Yi consists of multiple road
segments, therefore, yi ⊂ R. Driver di taking route yi incurs
a cost cr for each road segment r ∈ yi. The utility of driver
di taking route yi is defined as the negative of the total cost
incurred, i.e., Ui = −∑

r∈yi
cr.

The setup described above leads to a congestion game [4],
because we assume that the cost incurred in a road segment
depends on the total number of drivers sharing that road.
Hence, the utility of each driver will depend on the routes
chosen by other drivers. The utility of driver di is stated
more precisely as

Ui(y) = −
∑

r∈yi

cr(σr(y)),

where y := (y1, ..., yn) is the profile of routes chosen by all
drivers and σr(y) is the total number of drivers using the
road segment r.

A class of games closely related to congestion games is
potential games. A finite n-player game with choice sets
{Yi}n

i=1 and utility functions {Ui}n
i=1 constitutes a potential

game if, for some potential function φ : ×jYj �→ R,

Ui(y′
i, y−i) − Ui(y′′

i , y−i) = φ(y′
i, y−i) − φ(y′′

i , y−i),

for every player, for every y−i ∈ ×j �=iYj , and for every
a′

i, a
′′
i ∈ Yi. It turns out that every congestion game is a

potential game and every finite potential game is isomorphic
to a congestion game [9].

Let y−i denote the profile of the route choices of the
drivers other than driver di, i.e.,

y−i = (y1, . . . , yi−1, yi+1, . . . , yn).

With this notation, we will sometimes write a profile y of
route choices as (yi, y−i). Similarly, we may write Ui(y) as
Ui(yi, y−i).

A profile y∗ of route choices is called a pure Nash
equilibrium1 if, for all drivers di ∈ D,

Ui(y∗
i , y∗

−i) = max
yi∈Yi

Ui(yi, y
∗
−i). (1)

Therefore, if the routes chosen by the drivers happen to be
an equilibrium2, then no driver will have an incentive to
unilaterally switch to an alternate route. An equilibrium is
called strict if the maximum in (1) is attained by a unique
choice for every driver.

Let us now consider a repeated congestion game such
that drivers adjust their routing decisions daily in response
to the historical data on traffic conditions. We consider a
specification of the day-to-day driver adjustment process
proposed in [6]. Let yi(k) be the routing choice made by
driver di at day k ∈ {1, 2, ...}, and let y−i(k) and y(k) be
defined analogously. We assume that each driver has access

1We will henceforth refer to a pure Nash equilibrium simply as an
equilibrium.

2A pure Nash equilibrium always exist in congestion games [4].

to the historical aggregate congestion on the road segments
that are of interest to the driver. Based on such information,
driver di can compute the average utility

V ȳi

i (t) :=
1
t

t∑

k=1

Ui(ȳi, y−i(k)) (2)

that would have been received for the route ȳi ∈ Yi if ȳi had
been used at day t and before, assuming that the choices of
all other drivers are unchanged. Before making a choice at
day t, driver di predicts that route ȳi ∈ Yi would result in
a utility of V ȳi

i (t− 1). Based on this prediction, a driver di

who believes that the choice yi(t − 1) in the previous day
cannot be improved upon by switching to a different route
will continue to use yi(t − 1) at day t, i.e., yi(t) = yi(t −
1). Otherwise, driver di will choose a route with maximum
predicted utility with some positive probability αi(t), where
αi(t) represents driver di’s willingness to optimize at day t.
It is clear that the drivers can completely stop adjusting their
choices if and only if their choices constitute an equilibrium.
However, in general, it is not clear whether the driver choices
will converge to such a steady-state. As discussed earlier,
the significance of convergence is that an equilibrium may
be designed by a global planner as a desirable traffic pattern
[10].

In the remainder of the paper, we will analyze the question
of convergence by first associating the adjustment process
described above with Joint Strategy Fictitious Play, a close
variant of the well-known Fictitious Play process.

III. JOINT STRATEGY FICTITIOUS PLAY

We start with the well-known Fictitious Play (FP) process
[1]. Consider a congestion game as introduced in the previous
section with the additional assumption that the choices of all
drivers are public knowledge. Define the empirical frequency,
qȳi

i (t), to be the percentage of days at which driver di has
chosen the route ȳi ∈ Yi up to day t, i.e.,

qȳi

i (t) =
1
t

t∑

k=1

I{yi(k) = ȳi},

where yi(k) ∈ Yi is driver di’s choice at day k and I{·} is
the indicator function. Let us form the empirical frequency
vector qi(t) by stacking up {qȳi

i (t)}ȳi∈Yi
. Before making a

choice at day t, driver di using FP predicts the utility for the
route ȳi ∈ Yi to be

Ui(ȳi, q−i(t)) :=
∑

y−i∈Y−i

Ui(ȳi, y−i)
∏

j �=i

q
yj

j (t), (3)

where q−i(t) := {q1(t), ..., qi−1(t), qi+1(t), ..., qn(t)} and
Y−i := ×j �=iYj . Based on this predictions, driver di (ran-
domly) selects a route at day t from the set

BRi(q−i(t − 1)) :=
{ỹi ∈ Yi : Ui(ỹi, q−i(t − 1)) = max

yi∈Yi

Ui(yi, q−i(t − 1))}.

The set BRi(q−i(t)) is called driver di’s best response to
q−i(t).
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It is known that the empirical frequencies generated by
FP converge in potential games [9]. Note that FP as describe
above requires each driver to observe the routing choices
made by every other individual driver. Moreover, choosing
a route based on the predictions (3) amounts to enumerating
all possible joint choices in ×jYj every day for each driver.
Hence, FP is not a reasonable decision making model for
drivers in a large-scale congestion game.

Consider now the case in which each driver views all other
drivers as a collective group, which leads us to Joint Strategy
Fictitious Play (JSFP). In this case, each driver tracks the
empirical frequencies of the joint choices of all other drivers.
Let z

y−i

−i (t) be the percentage of days at which drivers other
then driver di have chosen the joint route choice profile
y−i ∈ Y−i up to day t, i.e.,

z
ȳ−i

−i (t) =
1
t

t∑

k=1

I{y−i(k) = ȳ−i}. (4)

Let z−i(t) denote the empirical frequency vector formed by
stacking up {zȳ−i

−i (t)}ȳ−i∈Y−i
. Before choosing a route at

day t, driver di predicts the utility for the route ȳi ∈ Yi as

Ui(ȳi, z−i(t)) =
∑

y−i∈Y−i

Ui(ȳi, y−i)z
y−i

−i (t). (5)

Then, at day t, driver di chooses a route from the set

BRi(z−i(t − 1)) :=
{ỹi ∈ Yi : Ui(ỹi, z−i(t − 1)) = max

yi∈Yi

Ui(yi, z−i(t − 1))}.

Clearly, the computational burden of JSFP on each driver
appears to be even higher than that of FP since tracking the
empirical frequencies z−i(t) ∈ ∆(Y−i) of the joint choices
of the other drivers is more demanding for driver di than
tracking the empirical frequencies q−i(t) ∈ ×j �=i∆(Yj) of
the choices of the other drivers individually, where ∆(Y )
denotes the set of probability distributions on a finite set Y .
However, JSFP has a connection to regret based dynamics
that can be exploited to significantly reduce its computational
burden on each driver. To choose a route at any day t, driver
di using JSFP needs only the predicted utilities Ui(ȳi, z−i(t))
for each ȳi ∈ Yi. Substituting (4) into (5) yields

Ui(ȳi, z−i(t)) =
1
t

t∑

k=1

Ui(ȳi, y−i(k)),

which implies

Ui(ȳi, z−i(t)) = V ȳi

i (t),

where V ȳi

i (t), introduced in (2), is the average utility driver
di would have received if route ȳi had been chosed at every
day up to day t. This means that the drivers’ day-to-day
route adjustment process described in the previous section is
in fact a JSFP process with some inertia.

The average utility V ȳi

i (t) admits the following simple
recursion,

V ȳi

i (t + 1) =
t

t + 1
V ȳi

i (t) +
1

t + 1
Ui(ȳi, y−i(t + 1)),

which permits the JSFP dynamics to proceed without re-
quiring each driver to track the empirical frequencies of the
joint choices of the other drivers or of having to compute an
expectation over the space of the joint choices of all other
drivers. Each driver using JSFP merely updates the predicted
utilities for each available route using the recursion above,
and chooses a route every day with maximal predicted utility.

The general convergence properties of JSFP for games
involving more than two players is unresolved 3. Our simu-
lations indicate that JSFP process is convergent in potential
games with or without players using inertia, however, we are
able to produce a proof only for the case where players use
some inertia.

IV. CONVERGENCE OF JSFP WITH INERTIA

Here, we consider the case where drivers using JSFP are
reluctant to switch to a better route. More precisely, drivers
choose their routes according to the following rules:

• If the route yi(t − 1) chosen by driver di at day t − 1
belongs to BRi(z−i(t − 1)), then yi(t) = yi(t − 1).

• Otherwise, driver di chooses a route, yi(t), at day t
according to the probability distribution

αi(t)βi(t) + (1 − αi(t))vyi(t−1),

where αi(t) is a parameter representing driver Pi’s
willingness to optimize at day t, βi(t) ∈ ∆(Yi) is
a probability distribution with full support on the set
BRi(z−i(t − 1)), and vyi(t−1) is the vertex of ∆(Yi)
corresponding to route yi(t − 1).

Thus, driver di will stay with the previous action yi(t−1)
with probability 1 − αi(t) even when there is a perceived
opportunity for utility improvement. We make the following
assumption on the drivers’ willingness to optimize.

Assumption 4.1: There exist constants ε and ε̄ such that,
for all sufficiently large days t and for all drivers,

0 < ε < αi(t) < ε̄ < 1.

This assumption implies that drivers are always willing to
optimize with some nonzero inertia at least asymptotically.
This leads to the following convergence result.

Theorem 4.1: In any potential game, the choice profiles
y(t) generated by JSFP with Inertia satisfying Assump-
tion 4.1 converge to a pure Nash equilibrium almost surely.

The proof Theorem 4.1 is omitted for the sake of brevity.
It loosely follows the proof of Theorem 5.1, but with various
modifications.

V. DISCOUNTING OLD INFORMATION

We now extend our convergence result to the case where
drivers view recent information as more important. Drivers

3For two player games, JSFP and standard FP are equivalent, hence the
convergence results for FP hold for JSFP.
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using JSFP replace true empirical frequencies with weighted
empirical frequencies defined as

z̃
ȳ−i

−i (t) = (1 − γ)tI{y−i(1) = ȳ−i}

+
t∑

k=1

γ(1 − γ)t−kI{y−i(k) = ȳ−i},

where 0 < γ ≤ 1 is a parameter with 1−γ being the discount
factor. The weighted empirical frequencies can be updated
using the recursion

z̃
ȳ−i

−i (t) = (1 − γ)z̃ȳ−i

−i (t − 1) + γI{y−i(k) = ȳ−i}.
One can identify the limiting cases of the discount factor.
When γ = 1 we have “Cournot” beliefs where only the
most recent information matters. In the case when γ is not a
constant, but rather γt = 1/t, all information is given equal
importance as in the previous sections.

Utility prediction and route selection with exponentially
discounted information are done in the same way as in
the previous sections. To make a routing choice, driver di

needs only the weighted average utility that would have been
received for each route, which is defined for route ȳi ∈ Yi

as

Ṽ ȳi

i (t) := Ui(ȳi, z̃−i(t)) =
∑

y−i∈Y−i

Ui(ȳi, y−i)z̃
y−i

−i (t).

One can easily verify that the weighted average utility Ṽ ȳi

i (t)
for route ȳi ∈ Yi admits the recursion

Ṽ ȳi

i (t) = γUi(ȳi, y−i(t)) + (1 − γ)Ṽ ȳi

i (t − 1).

Once again, driver di is not required to track the weighted
empirical frequency vector z̃−i(t) or required to compute
expectations over Y−i. The following result characterizes the
long-term behavior of JSFP with inertia and exponentially
discounted information.

Theorem 5.1: In any potential game, the choice profiles
y(t) generated by JSFP with inertia satisfying Assump-
tion 4.1 and exponentially discounted information converge
to a pure Nash equilibrium almost surely.

Proof: The proof follows a similar structure as the proof
of Theorem 6.2 in [12]. Fix a sufficiently large day t so
that Assumption 4.1 holds true. At day t + 1, we will have
yi(t+1) ∈ BRi(z̃−i(t1)) for every player with probability at
least εn, where n is the number of players. Let y0 := y(t+1).
If y0 is an equilibrium we are done.

Otherwise, there exists a positive constant T , independent
of t, such that if y(t + 1) = ... = y(t + T ) = y0

then BRi(z̃−i(t + T )) ⊂ BRi(y0
−i) for all players. The

probability of such an event is at least (1 − ε)nT . Since y0

is not an equilibrium, there must be at least one player di

such that y0
i �∈ BRi(y0

−i).
Consider now the event that, at day t+T +1, exactly one

player switches to a different choice, i.e., y(t +T + 1) = y1

for some y1 where y0 and y1 differs in exactly one player
position. This event happens with probability at least ε(1 −
ε)n−1. Note that if φ is a potential function for the game,
then φ(y0) < φ(y1).

One can repeat the arguments above to construct a se-
quence of profiles y0, y1, y2, ..., yM , where M is independent
of t, with the property that

φ(y0) < φ(y1) < ... < φ(yM ),

and yM is an equilibrium. This means that given {z̃−i(t)}n
i=1

at any sufficiently large t, there exist constants, T̃ > 0 and
ε̃ > 0, both of which are independent of t, such that the
following event happens with probability at least ε̃: y(t+ T̃ )
is an equilibrium and yi(t + T̃ ) ∈ BRi(z̃−i(t + T̃ − 1))
for all i ∈ {1, ..., n}. This implies that y(t) converges to an
equilibrium almost surely.

VI. ILLUSTRATIVE EXAMPLE

We consider a congestion game with 100 drivers seeking
to traverse from node A to node B along 10 different parallel
roads as illustrated in Fig. 1. Each road is a possible route
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Fig. 1. Network Topology for a Congestion Game

for each driver, and has a quadratic congestion function with
positive (randomly chosen) coefficients,

cri
(k) = ρri

1 k2 + ρri
2 k + ρri

3 , i = 1, ..., 10.

We simulated a case where drivers choose their initial routes
randomly, and every day thereafter, adjust their routes using
JSFP with inertia and exponentially discounted information.
The parameters αi(t) are chosen as 0.5 for all days and
all players, whereas the parameter γ is chosen as 0.03.
The number of vehicles on each road fluctuates initially
and then stabilizes as illustrated in Fig. 2. Fig. 3 illustrates
the evolution of the congestion cost on each road. One can
observe that the congestion cost on each road converges
approximately to the same value, which is consistent with
a Nash equilibrium with large number of drivers. This
behavior resembles an approximate “Wardrop equilibrium”
[31], which represents a steady-state situation in which the
congestion cost on each road is equal due to the fact that, as
the number of drivers increases, the effect of an individual
driver on the traffic conditions becomes negligible. Note
that a driver using FP would need to track the empirical
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Fig. 3. Congestion Cost on each Route

frequencies of the choices of the 99 other drivers and
compute an expected utility evaluated over a choice space
of dimension 1099.

VII. CONCLUDING REMARKS AND FUTURE WORK

We have considered the long-term behavior of a large
number of players in large-scale games where players are
limited in both their observational and computational capa-
bilities. The methods were motivated by and illustrated on a
transportation congestion game, in which a large number of
vehicles make daily routing decisions to optimize their own
objectives in response to the aggregate congestion on each
road of interest. In particular, we analyzed a version of JSFP
and showed that it accommodates inherent player limitations
in information gathering and processing. Furthermore, we
showed that JSFP has guaranteed convergence to a pure Nash
equilibrium in congestion games, or equivalently in finite
potential games [9], when players use some inertia and either
with or without exponential discounting of the historical data.
An important continuation of this research would be the case
where players observe only the actual utilities they receive.
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