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Abstract— Methods for solving multi target tracking and
data association problems in presence of clutter and occlusions
are based on models that describe the target dynamics and
the measurements statistics. Most often the dynamics of the
targets are assumed to be independent from each other. In
many applications, however, the motion of the targets may be
coordinated. We introduce a statistical concept of shape, or
coordination, in terms of invariants w.r.t. the motion of the
targets. Assuming that the rules of coordination may slowly
change over time, we study the interplay among the shape and
the target dynamics.

I. INTRODUCTION

In many applications from air traffic control, to tracking
features on the image plane of a camera, there is the problem
of tracking a multitude of targets while they are moving in
space. Each target is seen by one or more sensors which
generate measurements of its position in space at every time
step. The problem is difficult because the dynamics of the
targets are uncertain and the sensors generate unlabelled and
similar measurements of their positions. It is, therefore, not
trivial to associate measurements to targets. The problem is
often rendered even more difficult by clutter which consists
of the presence of false measurements and occlusions which
happen when some targets are hidden from the sensors and
do not generate measurements for some time intervals.

In the literature, the problem is known with the name of
multi-target tracking and data association. There is a vast
number of papers addressing it from many different facets
since the late ’60ies early ’70ies. Standard methods are
described, for instance, in [1].

Most algorithms exploit two forms of information: a
dynamic model describing the motion of the targets and a
statistical model of the measurements. The data association is
solved by jointly examining the positions of all the received
measurements w.r.t. their predictions on the basis of the
dynamic model. Probably, the most well known algorithm
is the JPDA (Joint Probability Data Association) which
evaluates the probabilities of all possible associations and
combines them accordingly in order to compute the updated
estimate of the targets position. The MHT (Multiple Hypoth-
esis Tracking) [2] is more powerful than the JPDA because it
evaluates the probability of the associations on a whole time
interval. It finally selects the most likely association to update
the state estimate. The complexity of the MHT is, however,

much higher and a latency in the generation of the estimate
is necessarily introduced. The MMF (Multiple Model Filter)
is applied when the targets go through aggressive maneuvers.
Multiple dynamic models are used to better describe the
different phases of the maneuvers and improve the state
predictions. It is clear that the more accurate the dynamic
model is, the easier is the data association problem.

In recent years, in the scientific literature on computer
vision, a number of papers on tracking have appeared. In
vision the multi-target tracking problem is fundamental to
reconstruct the trajectories of features or objects in the image
plane. In [8] particle filters and the condensation algorithm
have been proposed in order to estimate non-Gaussian and
multi-modal posterior probability densities which arise in
case of ambigous data associations. In [9] the problem of
proper re-sampling of the densities is addressed by inte-
grating the tracker with information on the measurements
which eases the data association problem. In [6], [12],
[13] statistical learning techniques have been applied to
the problem. The authors of [12], [13], in particular, have
proposed a method for learning the joint probability density
of the position of the targets in space. The approach is com-
plementary to the standard methods such as the JPDA. There
is no local information on the trajectories and, consequently,
no assumptions on their regularity. All the information is
collected in the joint probability density and the association
events are independent in time. The computational complex-
ity of learning the joint probability density is exponential
with the size of the maximum clique of the graph describing
the conditional dependencies among targets. In order to make
the problem manageable, a triangulate structure is assumed.
This means that the graph is composed by cliques of order
three or less. The advantage of this approach is that it
models statistical dependencies among targets which, with
the standard algorithms such as the JPDA, are neglected
in favor of local coherence of trajectories described by
independent dynamic models. The goal of our research is
to combine the advantages of both approaches. The main
drawback of the statistical learning methods is that they
require the acquisition and the labeling of a large training
set for each action of interest such as a walking person. The
learning set may be used for other instances of the same
action, but cannot be extrapolated to other subjects or scenes.
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The classical techniques based on model based filters and
assuming independence are more general in this sense as
they do not require particular training, but, since they do
not model coordination among targets, they might produce
highly segmented tracks.

In [10], [11], [3], [4] an effort to include information on
shape or coordination among targets in the JPDA has been
done with some success. The advantage of these approaches
is that coordination may be learned during those segments of
the targets trajectories which are succesfully labeled by the
JPDA and then it can be integrated in the scheme in order
to solve the data association problem better.

In this paper we continue along the line of research
introduced in [3], [4]. We assume the existence of symme-
tries of motion among some of the targets. Think at, for
example, airplanes flying in formation. The shape of the
formation is invariant w.r.t. the motion of each aircraft and
it is an important feature for solving the data association
problem. We model these symmetries as some functions fi

for i = 1, . . . , p of the dynamical state of the targets which
are constant in time or slowly varying. We, then, apply
standard parameter estimation methods for estimating their
statistics and, by properly adjusting the forgetting factors, we
can adapt the scheme to slowly varying parameters.

II. THE MULTI-TARGET TRACKING AND DATA

ASSOCIATION PROBLEM

With the purpose of introducing some notation which will
be used throughout the paper, we provide a short introduction
to the probabilistic approach to data association. We refer the
reader to the classic book [1] for a thorough description.

Consider the problem of tracking over time a set of NT

moving targets; yi(k) shall denote the position of target
i ∈ [1, .., NT ] at time instant1 k ∈ Z. In many real-world
scenarios one has available, at each time instant k, a set
of “unlabelled” measurements {zi(k)}, i = 1, ..,Mk; this
means that in general no knowledge is available regarding
(a) which measurement has been originated by which target2,
(b) which target has generated no measurement (in which
case we shall say that the target is occluded) and (c) which
measurements are “false detections” in the sense that they
have not been generated by any of the targets; in the literature
these measurements are said to be originated from clutter.
Note that at each time k the number of measurements Mk

is in general different from the number of targets NT .
Dealing with (a), (b) and (c) is the data association

problem. Traditionally, the solution is based on assuming
that the position of each target yi is a hidden Markov process
whose dynamical state is xi defined by its probability density
at the initial time p(xi(0)) and by its transition density
p(xi(t + 1)|xi(t)). The observations are the positions of
the targets. They are modeled by the conditional density

1Without loss of generality we assume that measurements are gathered
uniformly in time with unit sample time and that only the positions of targets
at those time instant are observed.

2A standard assumption is that each target can originate at most one
measurement.

p(yi|xi). The filtering problem consists in the computation
of the following Bayesian recursion

p(x(k)|Yk) =
p(y(k)|x(k))p(x(k)|Yk−1)

p(y(k)|Yk−1)

= p(y(k)|x(k))
∫

p(y(k)|x(k − 1))p(x(k − 1)|Yk−1)dx∫
p(y(k)|x(k))p(x(k)|Yk−1)dx

where with the capital letter Yk we mean the σ algebra
generated by all the position measurements from the initial
time to time k. In the linear Gaussian setting, the above
recursion is solved by the Kalman filter. The problem is that
at each time instant k, a set of unlabeled measurements z
arrives and the association to the targets is unknown. It is
customary [1] to denote with θk an “association event” (or
hypothesis) at time3 k and with Θk the set of all possible
association events at time k. Under the hypothesis θk, j(i, θk)
shall denote the index of the measurement associated to
target i, i.e.

yi(k) = zj(i,θk)(k). (II.1)

If the target i is occluded then

j(i, θk) = 0. (II.2)

It is sometimes useful to use the index 0 do denote clutter and
therefore j(0, θk) will denote the set4 of false measurements
under θk.

Some approaches are based on hard decisions, where
at each time only the most likely possible association is
considered; unfortunately these fail in the presence of strong
clutter and occlusions.

The Joint Probabilistic Data Association Filter (JPDAF
hereafter) (see [1] for a thorough description) is a probabilis-
tic method which integrates (1) a dynamical model for the
motion of targets, (2) a model for the clutter (false detections)
and (3) the probability of occlusions.

A key observation is that under an association hypothesis
θk, estimating the position5 of each target is the standard
filtering problem described above. The main idea behind the
JPDAF is to fuse the information from (1),(2) and (3) above
in order to attach a weight (a “posterior probability”) to the
possible associations. Then an estimate of the position of the
targets can be obtained by conditionally weighting the state
estimates on all possible6 associations.

We shall denote with z(k) := [z1(k), .., zMk
(k)] the set

of measurements available at time k. The symbol Zk will
denote the set of measurements up to time k (included), i.e.
Zk := {z(s), s ∈ [0, k]}.

In the gaussian linear case, the position yi(k) of the i-
th target are described by a linear state space model of the

3Note that, since the number of measurements may change over time,
also the set of possible associations changes over time.

4As explained above under each θk , j(i, θk) is a well defined function
of i ∈ [1, NT ] while j(0, θk) is in general a set.

5Or, more generally, the state of a dynamical system describing its motion.
6It is customary to consider only a subset of association which corre-

sponds to “large enough” weights (posterior probabilities). This is usually
done employing suitable “validation regions” for each target; see [1] for
details.
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form: {
xi(k + 1) = Fi · xi(k) + vi(k)

yi(k) = Hi · xi(k) + wi(k) (II.3)

The model and measurement noises vi and wi are assumed
to be white, zero mean and uncorrelated gaussian distributed
with covariances Qi and Ri respectively.
The generalization to nonlinear independent dynamics im-
plies the use of nonlinear filtering methods like, for ex-
ample, the Extended Kalman Filter or particle filters like
the condensation algorithm [8]. Our interest, however, is
focused on the data association problem which is unaffected
by the fact that the dynamics are linear or not. We assume,
therefore, that at time k−1 the conditional density of the state
xi(k−1) given all measurements up to time k−1 is Gaussian
with mean x̂i(k − 1) and covariance matrix Pi(k − 1), i.e.
p(xi(k − 1)|Zk−1) ∼ N (x̂i(k − 1), Pi(k − 1)).

Once measurements at time k become available these
estimates can be updated, conditionally on an association
event θ, by using standard Kalman filter formulas with
measurements 7 yi = zj(i,θk). We denote with x̂i,θk

(k) and
Pi,θk

(k) the updated mean and covariance conditionally on
the association θk, initialized from initial conditions (at time
k − 1) x̂i(k − 1) and Pi(k − 1); since the dynamics are
described by a Gauss-Markov model (II.3), the conditional
density p(xi(k)|θk, Zk) is Gaussian with mean x̂i,θk

(k) and
covariance matrix Pi,θk

(k).
A simple application of the Total Probability Theorem

provides the conditional probability density function

p(xi(k)|Zk) =
∑

θk∈Θk

p(xi(k)|θk, Zk)p(θk|Zk) (II.4)

which turns out to be a mixture of Gaussian densities.
In order to make the computation tractable this Gaussian

mixture is approximated (in the Kullback-Leibler sense for
instance) by a Gaussian density with mean x̂i(k) and covari-
ance Pi(k) according to

⎧⎪⎪⎨
⎪⎪⎩

x̂i(k) =
∑

θk
x̂i,θk

(k) · p(θk | Zk)
Pi(k) =

∑
θk

Pi,θk
(k) · p(θk | Zk)

+
∑

θk
(x̂i,θk

(k) − x̂i(k)) · (x̂i,θk
(k)−

−x̂i(k))′ · p(θk | Zk)
(II.5)

This allows to start again at time k with a Gaussian
posterior for each target and iterate the procedure just
described. This last approximation step is implicit in the
classical description of JPDAF (see [1]) where only second
order moments x̂i(k), Pi(k) are considered.

The only point left is to compute the posterior association
probabilities p(θk|Zk). Assume that a prior p(θk) on the
association events is available8; the posterior p(θk|Zk) can

7If under association θk no measurement is associated to target i then
only the prediction will be computed.

8We shall not discuss this choice in the paper. We refer the reader to [1]
for details. Suffices it to say that p(θk) usually depends on the probability
that each target is detected, on the number of detected targets and on the
number of false measurements.

be computed using Bayes’ formula as follows:

p(θk|Zk) = c p(z(k)|θk, Zk−1)p(θk | Zk−1)
= c p(z(k)|θk, Zk−1)p(θk) (II.6)

where the last equality holds because associations at time k
are conditionally independent upon measurements up to time
k − 1. The constant c is a normalization factor which does
not play a role.

From now on, we shall omit the time index k unless
needed; according to the notation introduced above, Z shall
denote the set of past and present measurements, while Z−

only the past. Similarly x̂−
i will denote the prediction of

the state at time k given Z− and P−
i its conditional error

covariance.
In order to evaluate p(z|θ, Z−), it is convenient to in-

troduce the set9 Dθ containing the indices of all the de-
tected targets10; consequently we shall denote with zT,θ :=
{zj(i,θ), i ∈ Dθ} the set of “true” measurements, i.e. mea-
surements which have been associated to some target and
with zF,θ the complementary set of “false” measurements
attributed to clutter. Similarly we define the set of “occluded”
target indexes11 as Mθ. Postulating (conditional) indepen-
dence p(z|θ, Z−) can be factored in the form

p(z|θ, Z−) = p(zT,θ|θ, Z−)p(zF,θ|θ, Z−).

The term p(zF,θ|θ, Z−) describing clutter is usually taken
to be uniform over the volume V of interest, i.e.

p(zF,θ|θ, Z−) =
(

1
V

)NF (θ)

(II.7)

where NF (θ) is the number of false measurements under
hypothesis θ.

As the term p(zT,θ|θ, Z−) is concerned, it is sufficient
to recall that zT,θ = {zj(i,θ), i ∈ Dθ} = {yi, i ∈ Dθ}.
Let us define the vectors yDθ

:= {yi, i ∈ Dθ} and
yMθ

:= {yi, i ∈ Mθ} containing respectively the detected
and occluded targets.

Therefore

p(zT,θ|θ, Z−) =
[
p(yDθ

|Z−)
]
|yi=zj(i,θ),i∈Dθ

(II.8)

which is the marginal of p(y1, .., yNT |Z−) =
p(yDθ

,yMθ
|Z−) with respect to yMθ

:

p(yDθ
|Z−) =

∫
p(yDθ

,yMθ
|Z−) dyMθ

. (II.9)

Under the assumption that the target positions are condi-
tionally independent we have that

p(zT,θ|θ, Z−) =
∏

i∈Dθ

[
p(yi|Z−)

]
|yi=zj(i,θ)

(II.10)

The density p(yi|Z−) describes the prediction of the
position of target i given past measurements. From the

9Remind that since θ depends on time k we should use the notation Dθk
10I.e. targets to which a measurements has been associated under hypoth-

esis θ
11M stands for “missing”. Note that Dθ ∪ Mθ = [1, .., NT ].
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assumption that xi conditionally on Z− is Gaussian with
mean x̂−

i and covariance P−
i it follows from (II.3) that

p(yi|Z−) is a Gaussian density with mean ŷi = Hix̂
−
i and

covariance matrix Σ−
i = HiP

−
i H�

i + Ri.
Remark 2.1: Equation (II.10) is fundamental in comput-

ing the association probabilities. It relies on the fact that
targets are assumed to be conditionally independent given
past measurements, which is not certainly true when there
is coordination between targets. In [4], a shape model has
been integrated into the JPDAF algorithm. When the poste-
rior density of the positions includes the shape model, the
marginalization (II.9) is not trivial. We applied Monte Carlo,
or equivalently, particle methods to implement this step.

III. MOTION SYMMETRIES

During their motion, the targets may be coordinated, where
by coordination we mean the existence of some statistical
dependence among them. Quantifying statistical dependence
is a difficult problem. The correlation coefficient, for ex-
ample, can only be applied to pairs of random variables
and only measures linear dependence. In the literature, there
exist a number of measures of statistical dependency. In [5],
for example, a generalization of Pearson’s φ2 measure is
proposed

φ2 =
∫

x∈XN

p(x)∏N
i=1 p(xi)

x − 1

as well as a measure based on the Kullback-Leibler pseudo
distance among the joint distribution and the product of
the marginals. Both measures, if the targets are statistical
independent, are null, otherwise they can even be unbounded.
The problem with these kinds of measures is that they cannot
be easily computed from the experimental observations. It
would be necessary to estimate the joint density p(x), but
this is a formidable task unless particular structures of the
conditional dependence graph are assumed. It is customary
to assume either a tree or a triangular structure. The former
implies that the maximum cliques are of order two while
the latter implies that they are of order three. They are both
manageable computationally, but the triangular structure is
more robust w.r.t. occlusions. A single occlusion, in fact, cuts
a tree structured graph. This is the reason why a triangular
structure was chosen in [12], [13].

We take a different approach. We do not try to estimate the
joint density of the ensemble of targets, but we search for
invariants in the motion of the ensemble of targets. When
a number of aircrafts are flying in formation or a set of
markers are attached to a rigid body, the position of three
non collinear targets fully determines the position of all
the others. The motion of the whole ensemble of targets
can, in this case, be factored in the motion of any triple
of points and on a local, invariant, representation of the
others w.r.t. the first three. In other words, the motion of
the ensemble can be factored in a rigid body motion and an
invariant description of the shape of the ensemble. In terms of
statistical dependency among targets, the conditional density
of the position of the targets given a triple is degenerate and,

in absence of noise, it is deterministic. In presence of noise
it can be modeled reasonably well by a Gaussian mixture.
Besides rigid motion, other interesting coordinated motions
generate symmetries or, equivalently, invariants. Any kind of
link or joint among articulated bodies can be described by
some invariants. In general, we can model holonomic and
non-holonomic constraints with invariants. If, for example,
the targets are all moving along straight lines, the directions
of motion are invariants, or, if the targets are orbiting about
a fixed point then its coordinates are the seeked invariants.
Our purpose is to exploit these symmetries in order to solve
the data association problem.

This paper is, in particular, on the estimate of the statistics
of the motion invariants and how to combine this information
with that provided by the independent dynamical models
(II.3) in order to solve the data association problem. For con-
sistency, the independent dynamical models are assumed to
describe the transition density of each target. They describe,
therefore, the marginal probability density of each target.

In general, let us assume that there exist some features fi

for i = 1, . . . , p that are functions of the dynamical state of
the targets

fi = fi(x1, . . . , xn)

which are invariant w.r.t. the motion of the targets, so that

dfi

dt
(t) = ∇fi

⎡
⎢⎢⎢⎣

ẋ1

ẋ2

...
ẋn

⎤
⎥⎥⎥⎦ = 0.

Two important problems arise: (1) find or identify from
the data the invariants fi; (2) estimate the statistics of the
invariants fi in presence of noise and uncertainties.

The first problem is also very difficult and it is not within
the scope of this paper even if it is one of the main objectives
of our research. We assume a list of possible invariants and,
while tracking, we check if there exist group of targets that
satisfy them.

An example of the definition of an invariant description is
the procedure proposed by Kendall [7] to represent the shape
of an ensemble of N points. It consists of the following steps:

1) determine the center of mass of the points ycm =∑N
i=1 yi and move the origin of the reference frame in

ycm;
2) rotate by R the reference frame so that the N dimen-

sional vector [0, . . . , 0, 1]T becomes the right kernel of
the matrix

S̄ =
[

(y1 − ycm) . . . (yn − ycm)
]
R

3) eliminate the last row of matrix S̄, the 3×N−1 matrix
S obtained in this fashion is a representation of shape
and it is an invariant of rigid motion.

The invariant proposed by Kendall is, unfortunately, not
robust w.r.t. occlusions, so, in the list of possible invariants,
we also include distances among pairs of targets and angles
between target velocities. We assume, therefore, that the form
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of the invariants fi is known and we address the problems
of verifying their existence in the motion of the ensemble of
the targets and of estimating their statistics. The existence of
a specific invariant is formulated as an hypothesis test, the
null hypothesis being that the invariant is true. The statistic
on which the test is performed is the variance of fi.

When an invariant is declared true, we update the estimate
of its mean and covariance with a recursive estimator which
is described in the following section, and on the other we
add links between the correspondent targets to a coordination
graph which describes the dependencies among targets.

It often happens that the invariants of motion last only for
short time intervals or show slow dynamics. Can they still
be exploited for the data association problem? We assume
that the statistics of the invariants may slowly drift in time.
This wants to be an initial model describing the dynamics
of shape. While, shape, in fact, might be evanescent and
persist in time briefly, it can still carry a lot of information
helpful for solving the data association problem. We, de-
facto, implement an adaptive scheme that adjusts to changing
coordination strategies among targets.

The coordination graph collects information on the struc-
ture of the dependency among targets. If the targets are, for
example, all attached to a rigid body the coordination graph
will be complete. It is used for two reasons: book keeping
and as a topological support to the data association. We
have, in the past, implemented a graph matching algorithm
to solve the data association problem, but it only helps when
the structure of the graph is complex with more than one
clique of relatively high order. This is usually the situation
when the scene is composed by articulated bodies. In other
situations, like a single rigid body, the graph is complete, i.e.
it is a clique and the matching algorithm does not provide
any information for labeling the measurements.

IV. ESTIMATING THE STATISTICS OF SLOWLY VARYING

INVARIANTS

In estimation theory, it is customary to model slowly
varying parameters with a linear model

ξ(k + 1) = A(k)ξ(k) + ν(k)
f(k) = H(k)ξ(k) + w(k) (IV.1)

where the matrix A(k) is close to the identity, while ν and
w are independent gaussian white noises. We approximate
the matrix A(k) assuming that it is the identity and we
assume that the observation matrix H(k) is constant. The
covariances of the process and measurement noises are
assumed unknown.

Under our hypothesis, the extended forgetting factor re-
cursive least squares estimator (EFRLS) [14] becomes

ξ(k) = ξ(k − 1) + L(k)(f(k) − Hξ(k − 1))
L(k) = P (k − 1)HT (λI + HP (k − 1)HT )−1

P (k) = 1
λ (I − L(k)H)P (k − 1)

(IV.2)
The choice of the forgetting factor λ is based on the

following considerations: λ should be large and close to
one whenever the process noise covariance or when the

measurement noise covariance is large. In the first case, past
measurements contain information, in the second, averaging
over more samples in time reduces the covariance of the
estimate. λ, however, should not be too large or we loose
adaptability to slow drifts of the mean of f .

An hypothesis test is then performed, based on the esti-
mated covariance HP (k)HT of the invariant. If the norm
of the estimated covariance is larger than an appropriate
threshold then the alternative hypothesis is considered true
and the invariant is considered not true.

V. INTEGRATION OF SHAPE IN THE JPDA

In order to compute the posterior probability of a given
association event θ we need to compute the likelihood of the
true measurements zT . The overall observation model can
be written as follows:

p(yDθ
= zT ,yMθ

| Z−) = c ·
∏

i∈Dθ

p(zj(i,θ) | Z−
i )·

·
∏

i∈Mθ

p(yi | Z−
i ) ·

p∏
i=1

p(fi(yDθ
,yMθ

))
(V.1)

which yields:

p(zT | θ, Z−) = c ·
∏

i∈Dθ

p(zj(i,θ) | Z−
i )·

·
∫ ∏

i∈Mθ

p(yi | Z−
i ) ·

p∏
i=1

p(fi(yDθ
,yMθ

)) dyMθ

(V.2)

As in [4], we solve the integral in (V.2) by a Monte Carlo
approach. The reason is twofold. First, it is simple and con-
sistent. Second, as a byproduct, it yields for free a set of fair
samples from the posterior distribution of the occluded points
positions. This allows to compute mean and covariance and
hence provides a natural gaussian approximation of the more
complicated posterior. We draw an appropriate number Ns

of independent and identically distributed samples:

y(n)
Mθ

� {y(n)
i , i ∈ Mθ} ∼

∏
i∈Mθ

p(· | Z−
i ) n = 1, ..., Ns

(V.3)
and compute the n-th weight through the following expres-
sion:

π(n) =
p∏

i=1

p(fi(yDθ
= zT ,yMθ

= y(n)
Mθ

)) (V.4)

Finally, the integral is computed as follows:∫ ∏
i∈Mθ

p(yi | Z−
i )·

·∏p
i=1 p(fi(yDθ

= zT ,yMθ
)) dyMθ

∝ ∑Ns

n=1 π(n)

(V.5)
which, substituted in (V.2), yields p(zT | θ, Z−).

The conditional state estimates of a detected point are
computed combining the Kalman updates on the basis of all
the feasible associations as in the JPDA. The fundamental
difference being that the symmetries fi are instrumental
in computing the likelihood of the association events. The
conditional state estimates of an occluded point are, instead,
computed exploiting the shape information starting from
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the measurements generated by the detected points. It is
fundamentally different than in standard approaches where
it is taken equal to the state predictions.

VI. RESULTS

The multi-target tracking algorithm proposed in this paper
is currently being implemented on a optical motion capture
system. We implemented the algorithm in matlab and we
tested it on data previously acquired with the motion capture
system. Twentytwo markers have been attached to a human
subject, three on the head, two on the shoulders, two on each
arm, five on the torso and four on each leg. A rigid object
with six markers on it was held by the subject in his hand
during the acquisition of motion. The total of 28 markers was
tracked by a six 50 Hz camera motion capture system for
approximately two minutes, i.e. for about 6000 frames. The
first 2000 frames were used to determine and initialize the
estimate of the invariants of motion. All the markers attached
to the rigid body held by the subject in his hand satisfy
the mutual distance invariants and even Kendall’s invariant
when there are no occlusions. The coordination graph clearly
exhibits the articulation structure of the human body. All the
markers on the torso, for example, belong to the same clique
of maximum order equal to five. The markers on the feet all
belong to a complete subgraph. This is because the subject
was asked not to move his feet in order to check adaptability
to changes in the coordination and the effect of the forgetting
factor.

As an example the statistics of some invariants are de-
scribed in the following table.

Invariant: distance among two targets Mean Std Persistence interval max (frames)
Targets 1 and 3 both on the head 16.8cm 0.12cm All
Targets 12 and 13 on the left arm 29.7cm 0.57cm 786

The total number of trajectories segments has been taken
as a performance index of the data association algorithm.
Ideally, the number of trajectories should have been equal to
the total number of markers i.e. 28.

An implementation of the JPDA alone generated 112
segments. The number of trajectory segments is, furthermore,
highly dependent on the choice of noise covariances in the
Kalman filters. If the covariances are set too small, the
measurements do not fall within the validation gates and are
associated to clutter. If the covariance is set too large, the data
association becomes very difficult because the number of
possible associations increases. After a few trials, we found
a choice that led to the best result of 112 segments.

The shape integrated JPDA generated 36 segments, where
most of the wrongly labeled segments were produced be-
cause of the incorrect invariants detected between the feet of
the subject.

Tuning the forgetting factor λ for the invariants is im-
portant to obtain significant results. A small λ leads to the
creation of invariants which persist in time very briefly. A
large λ renders the scheme rigid and not adaptable so that
wrong invariants declared as such because of not sufficiently
exciting dynamics lead to wrong data association.

VII. CONCLUSIONS

This paper continues along the research line presented in
[4]. The spirit is to include information due to the statistical
dependence among the targets in standard algorithms multi
target tracking algorithms that otherwise treat targets as
independent. This information is of great help in solving the
data association problem. The proposed schemes should also
improve on the techniques proposed in the computer vision
literature based on statistical learning methods which do not
imply any local coherence in time of the targets trajectories.

Coordination among targets has been models by the means
of motion symmetries or invariants. The shape description
proposed by Kendall is used as an invariant, but, since this
is not robust w.r.t. occlusions, it has been integrated with
pairwise distances among targets and angles between target
velocities.

The possibility of slow drifts in time of the invariants is
dealt with by introducing forgetting factors in the estimate
of their statistics.

In experiments with a motion capture system segmentation
of the tracks has been substantially reduced compared to the
standard JPDA assuming the possibility of learning the in-
variants on a sufficiently long time interval with persistently
exciting dynamics.
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