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Abstract— When dealing with positive nonlinear systems,
conventional stability requires too much for the equilibrium
points located on the boundary of the positive orthant, which
encourages the consideration of ‘stability with respect to the
positive orthant.’ In addition, since this case arises often
when the bifurcation occurs, variation of stability property
(regarding the size of basin of attraction) along the variation
of the parameter becomes of interest. Motivated by this
fact, NvBA(Non-vanishing Basin of Attraction)-stability was
recently proposed and investigated. In particular, it was
claimed that NvBA-stability holds if and only if the same
property holds for the reduced order system on a parametrized
center manifold. However, the verification of NvBA-stability is
not easy in general, because a solution to the partial differential
equation for the center manifold needs to be found. In this
paper, we present a readily verifiable condition for the NvBA-
stability by restricting the system structure and by utilizing
the information about the location of another equilibria that
split from or merge into the equilibrium of interest due to
the parameter variation. The proposed condition requires
neither the solution to the center manifold equation nor the
construction of Lyapunov functions.

Notation: A function is said to be of class Ck if it is
continuously differentiable k times. For a (column) vector
x and a matrix A, the i-th component of x and the i-th
row of A are denoted by x(i) and A(i), respectively. (x(i) is
replaced by xi if there is no confusion.) We denote by ek

the column vector [0 · · · 0 1 0 · · · 0]T with the entry 1 in the
k-th place. The elementary matrix obtained by interchanging
the first and the k-th row of the identity matrix is denoted
by Ek. The r × 1 zero vector is denoted by 0r and when
there is no confusion, 0r is abbreviated to 0. ||x|| stands
for the Euclidean norm of a vector x and, for some r > 0
and x∗ ∈ R

n, B(x∗, r) := {x ∈ R
n : ||x − x∗|| < r}.

Let R̄
n
+ := {x ∈ R

n : x1 ≥ 0, · · · , xn ≥ 0} and R
n
+ :=

{x ∈ R
n : x1 > 0, · · · , xn > 0}. The order of magnitude

notation o is used as follows: we say f(x) = o(g(x)) if, for
each ε > 0, there exists δ > 0 such that |f(x)| ≤ ε|g(x)| for
|x| < δ. Finally, the intervals {x ∈ R : a ≤ x ≤ b}, {x ∈
R : a ≤ x < b}, and {x ∈ R : a < x ≤ b} will be denoted
by [a, b], [a, b), and (a, b], respectively.

I. INTRODUCTION

A class of nonlinear systems that often appear in biology,
chemical kinetic network, and finance is positive systems
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[3], whose property is that all the states of the system
remain in the positive orthant of the state-space if initiated
there. This is because, in those applications, the state is
meaningful only when it is positive, and therefore, the
corresponding dynamic system, if appropriately modeled,
has such property. As a result, stability analysis of a certain
equilibrium located on the boundary of the positive orthant
needs to take into account the fact that the positive orthant
is positively invariant. This implies that such an equilibrium
may be asymptotically stable even when the corresponding
Jacobian has an eigenvalue with nonnegative real part
because the feasible perturbation of the initial condition
is restricted to the positive orthant. More interesting case
arises when the Jacobian is marginally stable, and thus one
wants to utilize the center manifold theory. In this case,
the positive orthant plays an important role in the stability
analysis of the reduced system.

On the other hand, for a system under a parameter
variation (or, having a constant input), the location of an
equilibrium and its stability property often depend on the
parameter. In fact, the afore-mentioned case where the
Jacobian loses its rank, is often resulted from the bifurcation
with the parameter (or, the constant input) as the bifurcation
variable. Assuming that the bifurcation occurs at a certain
equilibrium, the authors of [6] have studied the variation
of the size of basin of attraction along the variation of the
parameter. In addition, they characterized the case where
the basin of attraction never vanishes under the variation of
the bifurcation parameter, and called the property by ‘Non-
vanishing Basin of Attraction(NvBA)-stability.’1 It was also
shown that the NvBA-stability holds if and only if the same
property holds for the corresponding reduced order system
on a parametrized center manifold.

Generally speaking, if a bifurcation occurs at a certain
equilibrium where two or more equilibria split or merge ac-
cording to the variation of the bifurcation variable, then the
NvBA-stability cannot hold (because every neighborhood of
stable equilibrium contains another equilibrium). However,
if it occurs on the boundary of the positive orthant, there are
still chances for NvBA-stability, which yields the concept of
‘NvBA-stability with respect to (w.r.t.) the positive orthant.’
Although this concept is investigated in [6], determining
NvBA-stability on the parametrized center manifold is not
easy in general because the partial differential equation for
the center manifold needs to be solved.

In this paper, we present a readily verifiable condition for

1One of the motivations of studying the variation of the basin of
attraction is for applying the slowly-varying control approach in order
to solve the HIV infection control problem of [7], for example. See [2]
for the application of the NvBA-stability.
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the NvBA-stability w.r.t. the positive orthant by restricting
our attention to the class of systems2 such as

ẋ1 = f1(x, u)
...

ẋk = fk(x, u) = xkφ(x, u)
...

ẋn = fn(x, u)

(1)

where u is a parameter (or, a constant input), and by
focusing on a particular equilibrium x∗ (with a certain u∗)
such that

x∗
k = 0 and φ(x∗, u∗) = 0. (2)

Clearly, x∗ is located on the boundary of the positive orthant
and, because of (2), the Jacobian at x∗ has at least one
zero eigenvalue. Thus, it is natural to apply the center
manifold theory in order to verify the stability (with respect
to the positive orthant). In contrast to the previous work [6],
the proposed condition in this paper does not require the
solution to the center manifold equation, although relying
on the center manifold approach. Thus, it becomes very
straightforward to check NvBA-stabilty w.r.t. the positive
orthant.

The paper is organized as follows: In Section 2, the notion
of stability w.r.t. the positive orthant and NvBA-stabilty is
presented, and an easily checkable condition is proposed
that guarantees the NvBA-stability. Section 3 contains the
proof of the main result of Section 2 and some concluding
remarks are given in Section 4.

II. MAIN RESULTS

A. Verifying Stability with respect to R
n
+

Consider the following nonlinear system

ẋ = f(x), x ∈ R
n, (3)

where f is of class C2. It is assumed that R
n
+ is a positively

invariant set for system (3). We are interested in an isolated
equilibrium point x∗ of the system, (i.e., f(x∗) = 0 and
there is no other equilibrium in a neighborhood of x∗) which
is located on the boundary of R

n
+ and satisfies the following

assumption.
Assumption 1: Let A be the Jacobian of the system at

x∗, that is,

A :=
∂f

∂x
(x∗).

The matrix A has one eigenvalue at zero and n − 1
eigenvalues with negative real parts. Moreover, there exists
an integer k (1 ≤ k ≤ n) such that

x∗
(k) = 0 and

∂f(k)

∂x
(x∗) = 0. (4)

♦
2There are several systems such as chemical reaction networks [1],

biological systems [5], and HIV-infection model [7], that conform to the
class considered in this paper.

It is easily seen that the whole class of systems that
satisfy the condition (4) can be represented by (2) (without
u-term).

We are now interested in the stability of x∗ under the
assumption that the state remains in R

n
+.

Definition 1: The equilibrium point x∗ is locally stable
with respect to the set R

n
+ if, for each ε > 0, there exists

δ(ε) > 0 such that

x(0) ∈ B(x∗, δ) ∩ R
n
+ ⇒ x(t) ∈ B(x∗, ε) ∩ R

n
+.

Moreover, it is locally asymptotically stable w.r.t. R
n
+ if it

is stable w.r.t. R
n
+ and δ can be chosen such that

x(0) ∈ B(x∗, δ) ∩ R
n
+ ⇒ lim

t→∞x(t) = 0.

♦
The following proposition provides a Lyapunov-type

characterization of the stability w.r.t. R
n
+ [6].

Proposition 1: The equilibrium point x∗ is locally
asymptotically stable w.r.t. R

n
+ if there exists a C1 function

V : R
n → R and a positive constant R such that, for all

x ∈ B(x∗, R) ∩ R
n
+,

α1(||x − x∗||) ≤ V (x) ≤ α2(||x − x∗||)
∂V

∂x
(x)f(x) ≤ −α3(||x − x∗||),

where αi(·), i = 1, 2, 3 are class-K functions. ♦
In contrast to Proposition 1, we now provide a simple

sufficient condition for the stability w.r.t. R
n
+ that does not

require a Lyapunov function. Under Assumption 1, since
A(k) = [0 0 · · · 0], exchanging the first and the k-th
row and exchanging the first and the k-th column (i.e.,
EkAE−1

k ) result in

EkAE−1
k =

[
0 0

Ā21 Ā22

]
, (5)

where Ā21 ∈ R
(n−1)×1 and Ā22 ∈ R

(n−1)×(n−1) is a
Hurwitz matrix because of Assumption 1.

Theorem 1: Under Assumption 1, suppose that

∂2ψ

∂y2
(0) < 0, (6)

where the function ψ : R → R is defined as

ψ(y) := f(k)

(
Ek

[
1

−Ā−1
22 Ā21

]
y + x∗

)
, (7)

where Ā21 ∈ R
(n−1)×1 and Ā22 ∈ R

(n−1)×(n−1) are
defined by (5). Then, the isolated equilibrium point x∗ is
locally asymptotically stable w.r.t. R

n
+. ♦

The proof of Theorem 1 follows as a corollary from The-
orem 2. As addressed in the introduction, the verification
of the stability with respect to R

n
+ is much more simpler

than the previous work [6] since there is no need to solve
the center manifold equation.
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B. Verifying NvBA-stability with respect to R
n
+

In the previous section, we studied the stability w.r.t. R
n
+

of a single equilibrium point. In contrast, we now deal with
a family of equilibrium points and their stability property.
Consider the following nonlinear system

ẋ = f(x, u), x ∈ R
n, u ∈ R, (8)

where f is of class C3 and u is a constant input (or, a
parameter) such that u ∈ Γ = [0, ū], ū > 0. For each
u ∈ Γ, we assume that the set R

n
+ is positively invariant for

the system (8) and that the system has at least one isolated
equilibrium in R̄

n
+. More specifically, we assume that there

exists a C2 function X : Γ → R̄
n
+ such that f(X (u), u) =

0.
Definition 2: The system (8) is Non-vanishing Basin of

Attraction(NvBA)-stable w.r.t. R
n
+ on the locus of equilib-

rium points X (u), u ∈ Γ, if there exists a constant R > 0
such that, for each u ∈ Γ, X (u) is asymptotically stable
w.r.t. R

n
+ and B(X (u), R) ∩ R

n
+ is contained in the region

of attraction for X (u). ♦
With regard to Definition 2, it should be noticed that R

is independent of u. When there is no confusion, NvBA-
stability w.r.t. R

n
+ on the locus of equilibrium points X (u),

u ∈ Γ, will be abbreviated to NvBA-stability. Moreover, for
all u ∈ Γ, the largest R ∈ (0,∞] such that B(X (u), R) ∩
R

n
+ is contained in the basin of attraction for X (u) will be

referred to as the size of the basin of attraction w.r.t. R
n
+.

The following lemma provides a simple condition to
guarantee NvBA-stability on the locus of equilibrium,
whose proof is omitted since it follows directly from [4,
Lemma 9.8].

Lemma 1: If ∂f
∂x (X (u), u) is Hurwitz for each u ∈ Γ,

then the system (8) is NvBA-stable (w.r.t. R
n) on the locus

of X (u), u ∈ Γ. ♦
The assumption of Lemma 1 is quite restrictive in the

sense that it guarantees the NvBA-stability with respect to
not only R

n
+ but also R

n. We emphasize that there are
many cases when the assumption of Lemma 1 does not
hold, especially when the system undergoes the bifurcation
at X (u) with u as the bifurcation parameter. For example,
consider the following system

ẋ1 = −x1(x1 + u)(x1 − u), ẋ2 = −x2. (9)

Let X (u) = [u, 0]T and Γ = [0, 1]. Then, it is seen that
the Jacobian at X (u) is Hurwitz for all u ∈ (0, 1] but is
not at u = 0. For each u ∈ (0, 1], the size of basin of
attraction w.r.t. R

2 is equal to |u|, and hence it shrinks to
zero as u → 0. Thus, the system (9) is not NvBA-stable
w.r.t. R

2. However, it is clear from Fig. 1 that the system

Fig. 1. Phase plane for ẋ1 = −x1(x1 + u)(x1 − u), ẋ2 = −x2

(9) is NvBA-stable w.r.t. R
2
+. As a matter of fact, the size

of basin of attraction w.r.t. R
2
+ can be as large as desired.

This example indicates that there are some class of systems
that are NvBA-stable w.r.t. R

n
+ although it does not satisfy

the assumption of Lemma 1.
The following definition will be helpful for the presenta-

tion of the NvBA-stability theorem that requires the weaker
condition than Lemma 1.

Definition 3: If there exist a positive constant δ and
a locus of equilibria X̄ (u) such that X̄ (·) is continuous,
X̄ (0) = X (0), and X̄ (u) �= X (u) for u ∈ (0, δ], we call
X̄ (u) by the locus of split equilibria of X (u). ♦

A locus of split equilibria of X (u) exists typically when
the bifurcation occurs at u = 0. For example, in the system
(9), X̄ (u) = [−u, 0]T and X̄ (u) = [0, 0]T are the loci of
split equilibria of X (u) = [u, 0]T .

Now we state the main theorem.
Theorem 2: Assume that the following conditions are

satisfied:
(H1) the Jacobian ∂f

∂x (X (u), u) is Hurwitz for u ∈ (0, ū],
(H2) the equilibrium X (0) and the corresponding Jacobian
∂f
∂x (X (0), 0) satisfy Assumption 1,
(H3) all the loci of split equilibria of X (u), if any, are
contained in the set

{x ∈ R
n : x(k) ≤ 0}, (10)

(that is, X̄(k)(u) ≤ 0 for all u ∈ Γ,)

(H4) ∂2ψ
∂y2 (0) < 0, where the function ψ : R → R is defined

by

ψ(y) := f(k)

(
Ek

[
1

−Ā−1
22 Ā21

]
y + X (0), 0

)
, (11)

in which Ā21 ∈ R
(n−1)×1 and Ā22 ∈ R

(n−1)×(n−1) are
obtained from

Ek
∂f

∂x
(X (0))E−1

k =:
[

0 0
Ā21 Ā22

]
. (12)

Then, the system (8) is NvBA-stable w.r.t. R
n
+ on the locus

of X (u), u ∈ Γ. ♦
Compared to Theorem 1, a new condition (H3) is added

in the assumption list. To appreciate (H3), consider the
following system

ẋ1 = −x1(x1 − u)(x1 − 2u), ẋ2 = −x2. (13)

Let X (u) = [2u, 0]T and Γ = [0, 1]. Then, it can be seen
that X (u) is locally asymptotically stable w.r.t. R

2
+ for u ∈

(0, 1] and is globally asymptotically stable even when u =
0. But, the size of basin of attraction w.r.t. R

2
+ is |u| for

u ∈ (0, 1] and as a result, (13) is not NvBA-stable w.r.t.
R

2
+. Note that [u, 0]T is a locus of split equilibria of X (u)

and it violates (10) (with k = 1).

III. PROOF OF THEOREM 2

Let x̄ := x −X (u). Then, we have

˙̄x = f(x̄ + X (u), u) =: f̄(x̄, u). (14)

Let

A(u) :=
∂f̄

∂x̄
(0, u) =

∂f

∂x
(X (u), u). (15)
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Claim 1: From (H2), there exists a nonsingular matrix
T0 such that

T0A(0)T−1
0 =

[
0 0
0 As

]
, (16)

(T0)(1) = eT
k (17)

(T−1
0 )(1) = Ek

[
1

−Ā−1
22 Ā22

]
(18)

where As ∈ R
(n−1)×(n−1) is a Hurwitz matrix and (T0)(1)

is the first column of T0. ♦
Proof: Let N := −Ā−1

22 Ā21 and pick any nonsingular
matrix M ∈ R

(n−1)×(n−1). Define

T̄ :=
[

1 0
−MN M

]
,

then we obtain

T̄−1 =
[

1 0
N M−1

]
. (19)

Then, since Ā21 + Ā22N = 0, it can be verified by (12)
and (19) that

(EkA(0)E−1
k )T̄−1 = T̄−1

[
0 0
0 MĀ22M

−1

]
,

which results in

(T̄Ek)A(0)(T̄Ek)−1 =
[
0 0
0 MĀ22M

−1

]
, (20)

where MĀ22M
−1 is Hurwitz since Ā22 is.

Let T0 := T̄Ek. Then, since Ek exchanges the first and
the k-th column of T̄ and E−1

k = Ek, we have

(T0)(1) = (T̄Ek)(1) = eT
k

(T−1
0 )(1) = (E−1

k T̄−1)(1) = Ek

[
1
N

]
.

Also, from (20), we complete the proof.
Claim 2: From the matrix T0 obtained above, there exist

ū1 such that 0 < ū1 ≤ ū and a C2 function T : [0, ū1] →
R

n×n such that T (0) = T0 and

T (u)A(u)T−1(u) =
[
A1(u) 0

0 A2(u)

]
, (21)

where A1(u) ∈ R is such that A1(0) = 0 and A1(u) < 0
for u ∈ (0, ū1], and A2(u) ∈ R

(n−1)×(n−1) satisfies that
A2(u) is Hurwitz for u ∈ [0, ū1] and A2(0) = As. ♦

Proof: Proof of the claim is omitted due to the page
restriction.

Now, by changing the coordinates as

z =
[
z1

z2

]
:= T (u)x̄, z1 ∈ R

1, z2 ∈ R
n−1,

the system (14) is transformed into

ż = T (u)f̄(T−1(u)z, u)
=: T (0)A(0)T−1(0)z + g(z, u),

where

g(z, u) = T (u)f̄(T−1(u)z, u) − T (0)A(0)T−1(0)z. (22)

That is, referring to (16), the system is written as

ż1 = g1(z1, z2, u) (23a)

ż2 = Asz2 + g2(z1, z2, u), (23b)

where the C2 function g satisfies

g(0, 0, u) = 0,
∂g

∂z
(0, 0, 0) = 0, ∀u ∈ [0, ū1]. (24)

Claim 3: There exist positive constants r̄1 and ū2 (≤
ū1), and a C1 function (z1, u) 	→ π(z1, u) defined for all
|z1| ≤ r̄1 and 0 ≤ u ≤ ū2 such that

π(0, u) = 0,
∂π

∂z1
(0, 0) = 0, (25)

and

Asπ(z1, u) + g2(z1, π(z1, u), u)

=
∂π

∂z1
g1(z1, π(z1, u), u).

♦
This claim is basically the center manifold theorem.

Indeed, it is observed that the set {(z1, z2) : z2 = π(z1, u)}
becomes the center manifold if u = 0. However, in contrary
to the fact that the standard center manifold theorem (by
augmenting the dynamics with u̇ = 0) results in the property
π(0, 0) = 0, the above claim yields π(0, u) = 0 for all
u ∈ [0, ū2] whose utility will be seen shortly. Proof of this
claim is found in [6] and we do not repeat it here.

From (25), π can be written as

π(z1, u) = π1(u)z1 + o(|z1|), (26)

where π1 : [0, ū2] → R
n−1 is continuous and π1(0) =

0. Moreover, it follows from (21), (22), and (24) that
g1(z1, z2, u) is of the form

g1(z1, z2, u) = A1(u)z1 + c1(u)z2
1 + z1c2(u)z2

+ zT
2 c3(u)z2 + o(|(z1, z2)|2) (27)

for u ∈ [0, ū2] and |z1| ≤ r̄2, ‖z2‖ ≤ r̄2 with some 0 <
r̄2 ≤ r̄1, where ci(·) is continuous functions of appropriate
dimensions3. This, together with (26), leads to

g1(z1, π(z1, u), u) = A1(u)z1 + [c1(u) + c2(u)π1(u)

+ πT
1 (u)c3(u)π1(u)]z2

1 + o(z2
1). (28)

Claim 4: Under (H4), it holds that

c1(0) =: −c < 0. (29)

♦

3The vector norm ‖ · ‖ in the proof of Section III is defined by

‖w‖ =
√

wT Pw

where P = P T > 0 is the solution of PAs + AT
s P = −I . This is just

for convenience and, due to the norm equivalence, the flow of the proof
is not altered.
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Proof: From (17), it happens that z1 = x̄(k) when
u = 0. Therefore,

g1(z1, z2, 0) = ż1 = ˙̄x(k) = f(k)(x̄ + X (0), 0)
= f(k)(T (0)−1z + X (0), 0)

(30)

Putting z2 = 0 and referring to (11), (18) and (30), it follows
that

ψ(z1) = g1(z1, 0, 0),

which, by virtue of (27), results in

ψ(z1) = c1(u)z2
1 + o(z2

1).

Hence, from (H4), the claim is proved.
Let w := z2 − π(z1, u). Then, we obtain, from (23),

ż1 = g1(z1, π(z1, u), u) + N1(z1, w, u) (31a)

ẇ = Asw + N2(z1, w, u) (31b)

where

N1(z1, w, u) = g1(z1, w + π(z1, u), u) − g1(z1, π(z1, u), u)
N2(z1, w, u) = g2(z1, w + π(z1, u), u) − g2(z1, π(z1, u), u)

− ∂π

∂z1
(z1, u)N1(z1, w, u),

so that Ni(z1, 0, u) = 0 and ∂Ni

∂w (0, 0, u) = 0, for i = 1, 2.
Up to now, we have defined several transformations in

order to convert the system (8) to (31). The coordinate
change from the state (z1, w) to the state x is written as

x = φ(z1, w, u) := T−1(u)
[

z1

w + π(z1, u)

]
+ X (u), (32)

which is valid for |z1| ≤ r̄3, ‖w‖ ≤ r̄3 and u ∈ [0, ū2],
where r̄3 > 0 is such that

|z1| ≤ r̄3, ‖w‖ ≤ r̄3 ⇒ |z1| ≤ r̄2, ‖w+π(z1, u)‖ ≤ r̄2

for all u ∈ [0, ū2]. Note that, for each u, the map φ is
a C1 diffeomorphism, so that it maps an open set in x-
coordinates to an open set in (z1, w)-coordinates, and vice
versa.

Define

Ω(u, r) := {(z1, w) : φ(k)(z1, w, u) > 0, z1 ≤ r, ‖w‖ ≤ r}.
(33)

Claim 5: Let

γ(w, u) := inf z1 subject to φ(k)(z1, w, u) > 0.

Then, there exist positive constants r̄4 ≤ r̄3 and ū3 ≤ ū2

such that, for ‖w‖ ≤ r̄4 and u ∈ [0, ū3], the function
γ(w, u) is C1 and

γ(w, 0) = 0, (34)

γ(0, u) ≤ 0, (35)

φ(k)(γ(w, u), w, u) = 0. (36)

♦
Proof: We note that (T−1(0))(k) = [1, 0, · · · , 0]

because x(k) = (T−1(0)z)(k) = z1. From this fact, let the
scalar functions ti(u), i = 1, · · · , n, be defined by

(T−1(u))(k) =: [1 + t1(u), t2(u), · · · , tn(u)],

and let t̄2(u) := [t2(u), · · · , tn(u)]T for simplicity. Obvi-
ously, ti(u) is C1 with ti(0) = 0. Then, we have

φ(k)(z1, w, u) = (1 + t1(u))z1

+ t̄T2 (u)(w + π(z1, u)) + X(k)(u). (37)

The function φ(k) is C1, and it is seen referring to (26) that

∂φ(k)

∂z1
(0, w, u) = 1 + t1(u) + t̄T2 (u)π1(u). (38)

Since φ(k)(0, 0, 0) = 0 and
∂φ(k)

∂z1
(0, 0, 0) = 1, by the

implicit function theorem, there exist a C1 function γ̄(w, u)
defined on ‖w‖ ≤ r̄4 and u ∈ [0, ū3] with positive constants
r̄4(≤ r̄3) and ū3(≤ ū2), such that

φ(k)(γ̄(w, u), w, u) = 0.

Without loss of generality, (38) is positive for ‖w‖ ≤ r̄4

and u ∈ [0, ū3], which implies that γ̄(w, u) is the infimum
of z1 satisfying φ(k)(z1, w, u) > 0, i.e., γ̄(w, u) = γ(w, u).

On the other hand, since φ(k)(z1, w, 0) = z1 from (37),
it follows from the definition of γ(w, u) that γ(w, 0) = 0.

Furthermore, from (38), it can also be seen that γ(0, u) ≤
0 because φ(k)(0, 0, u) = X(k)(u) ≥ 0.

From the definition of γ(w, u), it follows that

Ω(u, r) = {(z1, w) : γ(w, u) < z1 ≤ r, ‖w‖ ≤ r}
for all r ∈ (0, r̄4] and u ∈ [0, ū3]. Note that Ω(u, r) is a
bounded set.

w

z1

r

r

R
n

+

Ω(u, r)

Ω0(u, r)γ(w, u)

Fig. 2. Geometric representation of the set Ω(u, r) and Ω0(u, r).

Claim 6: There exist positive r̄5 ≤ r̄4 and ū4 ≤ ū3 such
that, for all r ∈ (0, r̄5], u ∈ [0, ū4], the system (31a) has no
equilibrium except the origin on the set

Ω0(u, r) := Ω(u, r)
∣∣
w=0

= {(z1, 0) : γ(0, u) < z1 ≤ r}.
In addition, every solution trajectory of system (31a) start-
ing in Ω0(u, r) converges to the origin. ♦

Proof: By virtue of (28) and N1(z1, 0, u) = 0, the
system (31a) on the set Ω0(u, r) is given by

ż1 = g1(z1, π(z1, u), u) (39a)

= A1(u)z1 + ḡ1(u)z2
1 + o(z2

1), (39b)

where ḡ1(u) = c1(u) + c2(u)π1(u) + πT
1 (u)c3(u)π1(u). It

follows from Claim 4 and π1(0) = 0 that there exists a ū4

such that ḡ1(u) is negative for u ∈ [0, ū4]. Thus, there exists
a positive r̄5 ≤ r̄4 such that ḡ1(u)z2

1 +o(z2
1) is negative for
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all 0 < z1 ≤ r̄5. Since A1(u) ≤ 0, we conclude that there
is no equilibrium of (39a) in the interval 0 < z1 < r̄5, and
that every solution trajectory starting from z1(0) such that
0 < z1(0) ≤ r̄5 converges to zero.

On the other hand, suppose that γ(0, u) < 0 for some
u ∈ (0, ū4], and that there exists an equilibrium point, say
z∗1 , of system (39a) in the interval γ(0, u) < z1 < 0. (Note
that γ(0, u) < 0 is impossible when u = 0 due to (34).)
Then, the point (z1, w) = (z∗1 , 0) is an equilibrium (other
than the origin) of system (31). The equilibrium is expressed
in the x-coordinates as

x∗ = φ(z∗1 , 0, u) = T−1(u)
[

z∗1
π(z∗1 , u)

]
+ X (u).

Therefore, we have

x∗
(k) = φ(k)(z∗1 , 0, u).

Since z∗1 > γ(0, u) and φ(k)(γ(0, u), 0, u) = 0 by virtue of
(36), it follows from the definition of γ(w, u) that

x∗
(k) > 0.

This is a contradiction to (H3), which implies there is no
equilibrium in γ(0, u) < z1 < 0. In addition, because of
A1(u) < 0, we have g1(z1, π(z1, u), u) > 0 for γ(0, u) <
z1 < 0. Thus, every solution with γ(0, u) < z1(0) < 0
converges to zero.

Claim 7: There exist positive r∗ ≤ r̄5 and ū5 ≤ ū4 such
that, for each u ∈ [0, ū5], Ω(u, r∗) is positively invariant
for (31), and every solution initiated in Ω(u, r∗) converges
to Ω0(u, r∗). ♦

Proof: Since N2(z1, 0, u) = 0 and ∂N2
∂w (0, 0, u) = 0, it

follows that there exists a nonnegative continuous function
k(z1, w, u) such that k(0, 0, u) = 0 and that

‖N2(z1, w, u)‖ ≤ k(z1, w, u)‖w‖
for sufficiently small |z1| and ‖w‖. Let P (= PT ) be the
solution of PAs + AT

s P = −I . Then, with V (w) =
wT Pw = ‖w‖2, we have

V̇ = −p1‖w‖2 + 2p2k(z1, w, u)‖w‖2 (40)

where pi’s are some positive constants. Therefore, there
exists r∗ ≤ r̄5 such that V̇ (z1, w, u) is negative for all
(z1, w) such that |z1| ≤ r∗ and 0 < ‖w‖ ≤ r∗. In
addition, by virtue of (34), there exists a ū5 ≤ ū4 such
that |γ(w, u)| < r∗ for each u ∈ [0, ū5]. Thus, for each
u ∈ [0, ū5], V̇ (z1, w, u) is negative for all (z1, w) ∈
Ω(u, r∗) and ‖w‖ �= 0. Consequently, the solution starting
in Ω(u, r∗) does not leave it through the boundary ‖w‖ =
r∗.

On the other hand, the boundary of Ω(u, r∗) such that
z1 = γ(w, u) is in fact the boundary {x : x(k) = 0} of
R

n
+ in x-coordinates, which can be seen from (36) and

(32). Since system (8) is a positive system, no solution
x(t) can touch the boundary of R

n
+. Therefore, no solution

(z1(t), w(t)) starting in Ω(u, r∗) can cross the boundary
z1 = γ(w, u).

Finally, we note that ż1 < 0 at (z1, w) = (r∗, 0) by Claim
6. Hence, by the continuity of solutions with respect to the

initial condition [4], the solution does not leave Ω(u, r∗)
(reduce r∗ if necessary) through the boundary z1 = r∗
(and ‖w‖ ≤ r∗). In summary, the set Ω(u, r∗) is positively
invariant for (31).

Now, on the set Ω(u, r∗), V̇ of (40) is negative except
where w = 0, which implies that every solution initiated in
Ω(u, r∗) converges to Ω0(u, r∗).

From Claims 6 and 7, and by the LaSalle’s Invariance
Theorem, we conclude that, for each u ∈ [0, ū5], the origin
of (31) is asymptotically stable and its basin of attraction
contains Ω(u, r∗). The following claim is needed to show
that the NvBA-stability also holds in x-coordinates for each
u ∈ [0, ū5].

Claim 8: There exists an R > 0 such that, for each u ∈
[0, ū5],

R
n
+ ∩ B(X (u), R) ⊂ φ(Ω(u, r∗), u).

♦
Proof: Recalling that φ(0, 0, u) = X (u) and that the

manifold z1 = γ(w, u) corresponds to the boundary {x :
x(k) = 0} of R

n
+, the proof is trivial.

It is left to show that the NvBA-stability holds for all
u ∈ [0, ū]. Because of Claims 6, 7, and 8, the system (8) is
NvBA-stable on u ∈ [0, ū5]. Further, it follows from (H1)
and Lemma 1 that it is also NvBA-stable on u ∈ [ū5, ū].
This completes the proof.

IV. CONCLUSIONS

The main contribution of the paper is to prove that the
system (1) is NvBA-stable w.r.t. the positive orthant under
the assumption that the equilibrium at the bifurcation point
and its corresponding Jacobian satisfy (2), the Jacobian is
Hurwitz except at the bifurcation point, another equilibrium
that splits from or merges into the equilibrium of interest
does not move into the positive set in xk-coordinate, and
the negativity of a certain function is satisfied.

The benefit of the proposed condition is its simplicity,
which is called for especially in systems biology where
the model complexity usually causes much difficulty. For
example, NvBA-stability of the HIV infection model [7],
which is a fifth order nonlinear system, can be easily
verified with the help of the proposed condition.
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