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Abstract— The paper is concerned with both iterative learn-
ing control (ILC) and identification of continuous-time systems
based on sampled I/O data in the presence of measurement
noise. First, we propose a new ILC method which achieves
tracking for uncertain plants by iteration of trials. The dis-
tinguished feature of this method is that (i) the leaning law
works in a finite dimensional parameter space rather than the
infinite dimensional input space and (ii) it takes account of noise
reduction by using I/O data of all past trials efficiently. Second,
it is shown how to estimate parameters of a class of linear
continuous-time systems based on the proposed ILC method in
noisy circumstances. Its effectiveness is demonstrated through
numerical examples.

I. INTRODUCTION

One of the most important issues in control system design
is to obtain an accurate model of the plant to be controlled.
Though most of the existing identification methods are
described in discrete-time, it would be convenient to have
continuous-time models directly from sampled I/O data.
Because most design tools are suitable for continuous-time
systems and it is easy for us to capture the plant dynamics
intuitively in continuous-time rather than discrete-time.

The fundamental difficulty of the direct identification
approach is that it inherently requires time-derivative of I/O
data in the presence of measurement noise. Therefore, a
lot of efforts has been made to cope with this difficulty.
A comprehensive survey of these techniques has been first
given by [17] and then by [15]. A book has also been devoted
to these so-called direct methods [13]. The CONtinuous-
Time System IDentification (CONTSID) tool-box has been
developed on the basis of these methods [6], [7], [5].

On the other hand, as for one of powerful model-free
control methods, iterative learning control (ILC) has attracted
much attention for the last two decades (see e.g., [2], [11],
[10], [3], [4], [16], [1]). This method yields the desired
input which achieves perfect tracking by iteration of trials
for uncertain systems. Though ILC does not need any plant
models, most ILC approaches need time-derivative of I/O
data [14] and it is sensitive to measurement noise. Recently,
Hamamoto et al. [8], [9] propose an ILC where learning law
works in the prescribed finite-dimensional subspace, showing
that even when precise information of the model is not
available, time-derivative of tracking error is not required
to achieve perfect tracking. Following this work, Sakai et
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al. [12] has shown that this type of ILC can be used for
identification of a class of linear continuous-time systems.
Though this method is more robust against measurement
noise compared to exiting ILC, it does not seem to be enough
for identification. Partly because, though it takes account of
noise reduction in one trial, each trial is independent and the
method does not use abundant past I/O data in other trials so
far. Also, since accurate information on tracking error plays
an essential role in any ILC, it is a long-standing critical
issue to make ILC robust against measurement noise.

The purpose of this paper is two-hold. One is to propose
a new ILC method which is robust against measurement
noise. The method utilizes the ILC with a finite-dimensional
prescribed I/O space proposed by Hamamoto, and reduces
the noise effect by employing the past trial data effectively.
Also, a concrete design procedure is given based on I/O
sampled-data. The other is to demonstrate that the proposed
ILC can be adopted for identification of a class of lin-
ear continuous-time systems. This provides an alternative
identification methods from an entirely different viewpoint
from the conventional one. One advantage is that parameters
of the continuous-time system can be identified without
the use of time-derivative of I/O data. In addition, since
system parameters are identified while performing a tracking
control to the reference trajectory, we are able to confirm
the identification accuracy by watching the tracking error
quantity. Detailed simulation study shows the effectiveness
(such as robustness against noise) of the proposed method.

In this paper, the superscript of the variables denotes the
trial number of the experiment and the subscript of those
denotes the element number of a set or a matrix. Namely
the input u of the kth trial is denoted by uk and the ith
element of the vector x is denoted by xi. We use the norm
for the vector x as follows:

‖x‖ �
√
〈x, x〉.

II. SYSTEM DESCRIPTION AND PROBLEM SETTING

Consider the continuous-time SISO system described by
nf∑
i=0

αi

diy(t)

dti
= u(t), t ∈ [0, T ] (1)

where u(t) ∈ L2[0, T ] and y(t) ∈ L2[0, T ] are the input
and the output, respectively, and αi ∈ R (i = 0, 1, · · · , nf )
are coefficient parameters. We assume the following:

• The initial state is at the origin (i.e., y(0) = 0, ẏ(0) = 0,
· · · and so on).

• The system order nf is known.
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• The parameters αi (i = 0, 1, · · · , nf ) are unknown.
• We can measure ỹ(t) , the output contaminated with

noise, at the sampling time, i.e.,

ỹ(t) = y(t) + w(t), t = 0, Ts, 2Ts, · · · , NTs (2)

where Ts is the sampling period satisfying T/Ts = N
(∈ Z) and {w(iTs)} (i = 0, 1, 2, · · · , N) are zero mean
white noises.

• We can repeat the experiments at the same initial
condition on the time interval [0, T ].

• The reference signal r ∈ L2[0, T ] is given in advance,
which is smooth and its initial state is at the origin.

For the system, we consider the following two problems:
A) ILC problem: Find the input update law {φ, ξ}

νk+1(t) = φ(νk(t), r(t), ỹk(t)) (3)

uk(t) = ξ(νk(t)) (4)

such that the tracking error e(t) satisfies

ek(t) � r(t) − yk(t) → 0, (k → ∞)

Here, the superscript k denotes the trial number and ν(t) is
an appropriate intermediate state variable for learning.

Remark 1: In the conventional ILC case, we use
νk(t) = uk(t), φ(νk(t), r(t), ỹk(t)) = νk(t) + Hėk(t) and
ξ(νk(t)) = νk(t).

B) ID problem: Based on I/O data {u(iTs), ỹ(iTs)}
(i = 0, 1, 2, · · · , N), determine the parameters αi (i =
0, 1, · · · , nf ).

III. NOISE TOLERANT ILC BASED ON SAMPLED DATA

In this section, we propose a noise tolerant ILC method
based on sampled I/O data.

A. Preliminaries

Let Vd(t) and α∗ be defined by

Vd(t) �
[
vd0(t), vd1(t), . . . , vdnf

(t)
]

�

[
r(t),

dr(t)

dt
, . . . ,

dnf r(t)

dtnf

]

α∗ � [α0, α1, . . . , αnf
]T .

Note that α∗ represents the true parameter value. Then, (1)
implies that the optimal input u∗(t) defined by

u∗(t) = Vd(t)α
∗

achieves perfect tracking, i.e., y(t) = r(t). Therefore, it
is enough for us to seek u∗(t) in the finite dimensional
parameter space (Rnf +1 ) rather than the infinite dimensional
one (i.e., L2[0, T ]) in ILC. So we update the input of the
form

uk(t) = Vd(t)α
k. (5)

This is one of the most important observation made by
Hamamoto et al. [8]. We will try to find the update algorithm
for αk.

Now, we use the following symbols. Since data are avail-
able only on sampled time, we define

uk � [uk(0), uk(Ts), · · · , uk(NTs)]
T ∈ R

N+1

ỹk � [ỹk(0), ỹk(Ts), · · · , ỹk(NTs)]
T ∈ R

N+1

In the same way, u∗ ∈ R
N+1, yk ∈ R

N+1, r ∈ R
N+1,

ek ∈ R
N+1, and wk ∈ R

N+1 are defined. Also, the error
measurement ẽk ∈ R

N+1 are defined from

ẽ(t) � r(t) − ỹ(t) (= e(t) − w(t)).

Let Ṽd ∈ R
(N+1)×(nf+1) be defined by

Ṽd �

⎡
⎢⎢⎢⎣

vd0(0) vd1(0) . . . vdnf
(0)

vd0(Ts) vd1(Ts) . . . vdnf
(Ts)

...
... . . .

...
vd0(NTs) vd1(NTs) . . . vdnf

(NTs)

⎤
⎥⎥⎥⎦ ,

which yields u∗ = Ṽdα
∗. We assume

rank(Ṽ T
d Ṽd) = nf + 1 (6)

Further, let QR decomposition of Ṽd be

Ṽd = UR, UT U = Inf+1. (7)

where U �
[
f0,f1, . . . ,fnf

]
∈ R

(N+1)×(nf +1) and R ∈
R

(nf +1)×(nf+1) is a nonsingular upper triangular matrix.
Define ak ∈ R

nf +1 by

ak � Rαk, (8)

then Ṽdα = Uak holds. So from (5), we obtain

uk = Uak. (9)

Conversely, ak is uniquely determined by

ak = UT uk

Similarly, we define

a∗ � UT u∗, bk � UT yk, b∗ � UT r∗,

ε̃k � UT ẽk, εk � UT ek, ηk � UT wk.

Note that ak and bk are vector representation in the nf + 1
dimensional space ImṼd of input uk and output yk, respec-
tively, with respect to the bases {f0, · · · ,fnf

}.

B. Learning Law

Now we propose the following learning law:
[Proposed ILC]

ak+1 = H1a
k + H2ξ

k (10)

ξk+1 = ξk + ε̃k+1 (11)

for k = 0, 1, 2, · · · with the initial condition

a0 = 0, ξ0 = 0, (12)

where H1 ∈ R
(nf +1)×(nf+1) and H2 ∈ R

(nf +1)×(nf+1) are
gain matrices to be determined. Note that the plant (1) is
represented by

bk = Lfak (13)
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Fig. 1. Proposed learning law using integral operator

in this parameter space, where Lf ∈ R
(nf +1)×(nf+1) is a

constant matrix uniquely determined from the plant. We will
discuss how to compute Lf later. The proposed learning
law is depicted in Fig. 1, where z denotes the forward shift
operator with respect to the trial number k ( e.g., ak+1 =
zak). Eq. (11) represents the integrator (or accumulator,
more precisely), which is described by z/(z − 1).

Next, we consider the convergence condition of the pro-
posed law. Noting that

ε̃k+1 = b∗ − bk+1 − ηk+1, (14)

from (10), (11), (13), we have[
ak+1

ξk+1

]
= AH

[
ak

ξk

]
+

[
0 0

Lf −I

] [
a∗

ηk+1

]
(15)

AH �

[
H1 H2

−LfH1 I − LfH2

]

If AH is not a stable matrix (i.e., some eigenvalues are
not inside the unit disc), the parameters does not converge.
Therefore, suppose that AH is stable. In addition, temporally,
consider the noise-free case (i.e., ηk = 0). Then, as k → ∞,
we obtain [

a∞

ξ∞

]
= (I − AH)−1

[
0

Lf

]
a∗

(I − AH)

[
a∞

ξ∞

]
=

[
0

Lf

]
a∗.

This implies that

a∞ = a∗

H1a
∞ + H2ξ

∞ = a∗.

Therefore, the parameter converges to the desired value, i.e.,

ak → a∗, (k → ∞) (16)

holds. So we have uk → u∗, which implies that tracking
error ek converges to 0. The above arguments is summarized
as follows.

Theorem 1: For the plant (1), suppose we adopt the
learning law (9), (10), (11). Then

ek → 0, (k → ∞)

is satisfied, if there is no measurement noise and the follow-
ing condition holds.[

H1 H2

−LfH1 I − LfH2

]
is stable (17)

Note that the convergence dose not depend on each matrix
value (H1, H2 or Lf ) as long as AH is stable. This is one
of the reasons why we adopt the integrator in the learning
law.

As for noise effect reduction, we can state the following:
Since wk (noise) and each column of U (determined by the
reference signal) are not correlated, it is expected that each
entry of ηk = UT wk is small. In addition, with the aid of
(11), (12) and (14), we have

ξk =

k−1∑
i=0

(b∗ − bi) −

k∑
i=0

ηi

So, from (10), the noise effect on ak+1 seems to be small.
This is another reason why we adopt the integrator in
the learning law. Since its effectiveness must be verified
quantitatively through numerical simulation, we will perform
simulation in the noisy circumstance later.

C. Choice of learning gains

In what follows, we will show how to choose the learning
gain. To this end, first we need to estimate Lf . Since, the
plant (1) is SISO LTI, when we inject the input sequence
uk, the corresponding output yk is given by

yk = Puk (18)

irrespective of k, where P ∈ R
(N+1)×(N+1) is specified by

P =

⎡
⎢⎢⎢⎢⎢⎣

p0 0 0 . . . 0
p1 p0 0 . . . 0
p2 p1 p0 . . . 0
...

...
... . . .

...
pN pN−1 pN−2 . . . p0

⎤
⎥⎥⎥⎥⎥⎦

.

The first column of P is the output y when we inject the
input u = [1, 0, 0, · · · , 0]. Since uk = Uak and bk = UT yk

hold, (18) implies that bk = UT PUak is satisfied for
arbitrary ak. That is, matrix Lf is computed from U and
P as follows:

Lf = UT PU. (19)

Therefore, we can obtain an estimate of P , say P̂ , by getting
the impulse response through experiment. Then, we have
an estimate of Lf by computing L̂f = UT P̂U . Though
the impulse response may be contaminated by measurement
noise, its effect is reduced considerably by this matrix
production operation.

As for the choice of H1 and H2, it is easy to find such
gains that stabilize AH . Since this is essentially the state
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feedback stabilization problem, we can adopt, for example,
pole assignment technique. In this case, the pole location
must be chosen from the trade-off between the convergence
speed and noise tolerance.

D. Numerical example

We will evaluate the effectiveness of the proposed method
through simulation in this subsection.

Consider the third order plant whose transfer function is
given by

P (s) =
1

s3 + 10s2 + 30s + 8
. (20)

The time interval of each trial is T = 10[s], and the sampling
period is 10[ms]. Namely, the number of data used for one
trial is 1001. Suppose the reference signal r(t) be the step
response of the system whose transfer function is given by

Pr(s) =
24

(s + 2)4
. (21)

The measurement noise of the output is the white one
with zero mean and variance σ2. The variance σ2 of the
measurement noise is chosen so that the noise to signal ratio
(NSR) will be 10[%]. The NSR is defined as

NSR �
‖wk‖

‖r‖
.

What we have to choose in the proposed ILC is the
learning gains H1 and H2. Employing the pole assignment
technique, we choose them in such a way that all eigenvalues
of AH are located at 0.9. Then, we perform hundred iteration
of trials by using the proposed learning control law.

Fig. 2 shows the measured output ỹ(t) contaminated by
noise at the 3rd, 25th, and 100th trials of the learning control.
The reference signal is also shown by thick line. Though
the output measurement is near zero all the time at 3rd
trial, it looks that the tracking performance is good (at the
100th trial). In order to see the real performance, the true
output y(t) of each case is plotted in Fig. 3. It turns out
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Fig. 2. Measured output behavior of the proposed ILC

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

Time [s]

O
ut

pu
t

3
25

100
Reference signal

Fig. 3. True output behavior
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Fig. 4. Tracking error ‖ek‖ vs iteration number

that the true output of 100th trial is almost the same as the
reference. There is no difference between them in this scale
of Fig. 3. Fig. 4 shows the relation between the true tracking
error ‖ek‖ (rather than measured error) and the iteration
number of trails. We can see that almost perfect tracking
is achieved after 60th trail. It is surprising that the proposed
learning control achieves such a nice performance in this
noisy circumstances. These figures show that the proposed
method is really noise tolerant.

IV. APPLICATION TO IDENTIFICATION OF

CONTINUOUS-TIME SYSTEMS

A. The identification algorithm

When the learning control yields the desired input u∗, we
already have a∗ as shown in (16). Therefore, from (8), we
can obtain the system parameter by α∗ = R−1a∗.

From the view point of identification, it is important how
to (choose) the reference r(t). At the current stage, we do
not have any systematic methods of the choice. However,
from various simulation experience, one candidate of r(t) is
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Fig. 5. r(t) and ỹ(t) at 100th trial (NSR:30[%])
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a white noise filtered by higher order linear systems. We will
show this point through simulation in the following.

B. Numerical evaluation

We consider the same system (20) as the plant to be
identified. The time horizon and the sampling time Ts are
also the same, i.e., T = 10[s] and Ts = 10[ms]. Also, we use
the same learning gain as before (i.e., its pole location is at
p = 0.9). The reference signal r(t) is chosen to be the output
of the system (21) when a white noise is injected, which is
shown by the thick line in Fig. 5. In this identification, we
set the NSR of the measured output to be 30[%].

The behavior of the measured output ỹ(t) at the 100th
trial is also shown by dotted line in Fig. 5. This figure tells
us that the output tracks the reference very well. So we can
expect that an accurate model of the plant is obtained. In
fact, this is the case. Fig.6 shows the estimated coefficients
at each trial k (= 1, 2, · · · , 100) in the proposed ILC. From
this figure, we see that the denominator coefficients of the
plant (i.e., α0 = 8, α1 = 30, α2 = 10, α3 = 1) are almost
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Fig. 7. Hankel norm ‖P (s) − P̂ (s)‖H in each trial

accurately estimated, though the convergence may be slow.
Furthermore, it is confirmed that, the identification accu-

racy is improved in each trial in terms of the Hankel norm
of the error system ‖P (s) − P̂ (s)‖H from Fig.7, where
the solid line shows its value at each trial. The figure also
shows the cases where the eigenvalues of AH are located at
p = 0.7 and p = 0.5, respectively. When we use the ILC
with pole location at p = 0.5, the error norm converges to the
neighborhood of zero less than ten iteration as shown by the
broken line, while its behavior is a little bit more sensitive
to noise. The case with poles at p = 0.7 is shown by dotted
line, which exhibits the convergence speed is slower but
more insensitive to noise compared to the case of p = 0.5.
Therefore, as stated in Section III, the pole location must
be chosen by taking account of the trade-off between the
convergence speed and noise tolerance.

C. Comparison with conventional methods

Finally, we try to give a comparison with some of the
existing identification methods. Since the conditions of iden-
tification experiments, such as input signals to be used, are
different, it seems to be difficult to perform a fair comparison.
However, a comparison with the following identification
methods may give us some idea about the effectiveness of
the proposed method.

• The indirect method by the subspace identification
method (N4SID)

• The direct method by the Instrumental-Vector State-
Variable Filter approach (SVF)[7]

• The direct method by the Instrumental-Vector Fourier
Modulating Function (FMF)[7]

The plant is the same as before. However, when we perform
the above identification methods, the number of sampled I/O
data is chosen to be 10000 which is ten times of the data
in one ILC trial. The input signal is white noise and the
identification experiments are conducted for various NSR of
the measured output (0 ∼ 50) [%]. Furthermore, the cut-off
frequency of the SVF element is set as 8 [rad/s], and the
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frequency band of the system to be identified in FMF is set
as 5 [rad/s]. This seems to be near optimal choice as far as
we tried in terms of the reduction of variance of the identified
coefficients.

The relation between NSR and the Hankel norm of the
error system in various methods are shown in Fig. 8. In
the figure, the solid line shows the case when we use the
proposed ILC method at the 100th trial. The dotted line,
the short dashed line and the dashed line show N4SID, SVF
and FMF, respectively. Since estimation accuracy depends on
noise of each identification experiment, the value of Hankel
norms shown in the figure is the average of 20 sets of
experiments. From Fig.8, we see that the proposed ILC based
identification method is robust against noise and may be
useful as an alternative identification method.

V. CONCLUSION

In this paper we have proposed a new iterative learning
control (ILC) method which is robust against measurement
noise. The method utilizes the ILC with a finite-dimensional
prescribed I/O space, and reduces the noise effect by em-
ploying the past trial data effectively. A concrete design
procedure based on I/O sampled-data is given. We have also
demonstrated that the proposed ILC method can be used for
identification of a class of linear continuous-time systems.
This provides an alternative identification methods from an
entirely different viewpoint from the conventional one(s).
One advantage is that the parameters of the continuous-time
system can be identified without the use of time-derivative of
I/O data. In addition, we are able to confirm the identification
accuracy by looking at the tracking performance during the
experiments. Numerical examples are given to demonstrate
its effectiveness.

On of the interesting future research topics is to extend
this method to a broader class of systems.
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